Effects of Straw Return with Nitrogen Fertilizer Reduction on Rice (Oryza sativa L.) Morphology, Photosynthetic Capacity, Yield and Water–Nitrogen Use Efficiency Traits under Different Water Regimes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Experimental Design
2.3. Measurements and Methods
2.3.1. Growth Dynamics
2.3.2. Nitrogen Uptake and Grain Yield
2.3.3. Water–Nitrogen Utilization
2.4. Statistical Analysis
3. Results
3.1. Rice Morphological Traits
3.2. Leaf Chlorophyll Fluorescence and Photosynthetic Physiology
3.3. Dry Matter, N Uptake and Grain Yield
3.4. Water–Nitrogen Utilization and Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA): Roma, Italy, 2012. [Google Scholar]
- Zhang, W.; Yu, J.; Xu, Y.; Wang, Z.; Liu, L.; Zhang, H.; Gu, J.; Zhang, J.; Yang, J. Alternate Wetting and Drying Irrigation Combined with the Proportion of Polymer-Coated Urea and Conventional Urea Rates Increases Grain Yield, Water and Nitrogen Use Efficiencies in Rice. Field Crops Res. 2021, 268, 108165. [Google Scholar] [CrossRef]
- FAO. Rice Market Monitor, Volume XXI. Issue No. 1. 2018. Available online: http://www.fao.org/economic/RMM (accessed on 1 September 2022).
- Fageria, N.K. Yield Physiology of Rice. J. Plant Nutr. 2007, 30, 843–879. [Google Scholar] [CrossRef]
- Norton, G.J.; Shafaei, M.; Travis, A.J.; Deacon, C.M.; Danku, J.; Pond, D.; Cochrane, N.; Lockhart, K.; Salt, D.; Zhang, H.; et al. Impact of Alternate Wetting and Drying on Rice Physiology, Grain Production, and Grain Quality. Field Crops Res. 2017, 205, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice Yields and Water Use under Alternate Wetting and Drying Irrigation: A Meta-Analysis. Field Crops Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Shan, A.; Pan, J.; Kang, K.J.; Pan, M.; Wang, G.; Wang, M.; He, Z.; Yang, X. Effects of Straw Return with N Fertilizer Reduction on Crop Yield, Plant Diseases and Pests and Potential Heavy Metal Risk in a Chinese Rice Paddy: A Field Study of 2 Consecutive Wheat-Rice Cycles. Environ. Pollut. 2021, 288, 117741. [Google Scholar] [CrossRef]
- Ding, W.; Xu, X.; Zhang, J.; Huang, S.; He, P.; Zhou, W. Nitrogen Balance Acts an Indicator for Estimating Thresholds of Nitrogen Input in Rice Paddies of China. Environ. Pollut. 2021, 290, 118091. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.; Pan, J.; Luo, J.; Liu, J.; Gu, B.; Liu, S.; Zhai, L.; Lindsey, S.; Zhang, Y.; et al. Nitrogen Application Rates Need to Be Reduced for Half of the Rice Paddy Fields in China. Agric. Ecosyst. Environ. 2018, 265, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Cheng, S.; Liu, H.; Zhao, Z.; Wei, S.; Sun, S. Effects of Nitrogen Reduction Combined with Organic Fertilizer on Growth and Nitrogen Fate in Banana at Seedling Stage. Environ. Res. 2022, 214, 113826. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, D.; Yu, Y. Investigation into the Effects of Straw Retention and Nitrogen Reduction on CH4 and N2O Emissions from Paddy Fields in the Lower Yangtze River Region, China. Sustainability 2020, 12, 1683. [Google Scholar] [CrossRef]
- Yang, S.; Xiao, Y.; Xu, J.; Liu, X. Effect of Straw Return on Soil Respiration and NEE of Paddy Fields under Water-Saving Irrigation. PLoS ONE 2018, 13, e0204597. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Kong, F.; Wang, Z.; Luo, Y.; Lv, X.; Zhou, Z.; Meng, Y. Growth and Yield of Cotton as Affected by Different Straw Returning Modes with an Equivalent Carbon Input. Field Crops Res. 2019, 243, 107616. [Google Scholar] [CrossRef]
- Brennan, J.; Hackett, R.; McCabe, T.; Grant, J.; Fortune, R.A.; Forristal, P.D. The Effect of Tillage System and Residue Management on Grain Yield and Nitrogen Use Efficiency in Winter Wheat in a Cool Atlantic Climate. Eur. J. Agron. 2014, 54, 61–69. [Google Scholar] [CrossRef]
- Limon-Ortega, A.; Govaerts, B.; Sayre, K.D. Straw Management, Crop Rotation, and Nitrogen Source Effect on Wheat Grain Yield and Nitrogen Use Efficiency. Eur. J. Agron. 2008, 29, 21–28. [Google Scholar] [CrossRef]
- Thuy, N.H.; Shan, Y.; Bijay-Singh; Wang, K.; Cai, Z.; Yadvinder-Singh; Buresh, R.J. Nitrogen Supply in Rice-Based Cropping Systems as Affected by Crop Residue Management. Soil Sci. Soc. Am. J. 2008, 72, 514–523. [Google Scholar] [CrossRef]
- Li, N.; Lei, W.; Sheng, M.; Long, J.; Han, Z. Straw Amendment and Soil Tillage Alter Soil Organic Carbon Chemical Composition and Are Associated with Microbial Community Structure. Eur. J. Soil Biol. 2022, 110, 103406. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, R.; Li, H.; Zhang, J.; Chen, S.; Lu, B. Effect of the Applied Fertilization Method under Full Straw Return on the Growth of Mechanically Transplanted Rice. Plants 2020, 9, 399. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.; Lan, Y.; Lyu, T.; Zhang, Y.; Lin, D.; Li, F.; Li, Y.; Yang, Z.; Sun, Y.; Ma, J. Improving Rice Yields and Nitrogen Use Efficiency by Optimizing Nitrogen Management and Applications to Rapeseed in Rapeseed-Rice Rotation System. Agronomy 2020, 10, 1060. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Tuong, T.P. Field Water Management to Save Water and Increase Its Productivity in Irrigated Lowland Rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Chen, K.; Yu, S.; Ma, T.; Ding, J.; He, P.; Li, Y.; Dai, Y.; Zeng, G. Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D. Agriculture 2022, 12, 924. [Google Scholar] [CrossRef]
- Kim, J.S.; Oh, S.Y.; Oh, K.Y. Nutrient Runoff from a Korean Rice Paddy Watershed during Multiple Storm Events in the Growing Season. J. Hydrol. 2006, 327, 128–139. [Google Scholar] [CrossRef]
- Peng, S.; Luo, Y.; Xu, J.; Khan, S.; Jiao, X.; Wang, W. Integrated Irrigation and Drainage Practices to Enhance Water Productivity and Reduce Pollution in a Rice Production System. Irrig. Drain. 2012, 61, 285–293. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, Y.; Wang, Z.; Yang, J.; Zhang, J. An Alternate Wetting and Moderate Soil Drying Regime Improves Root and Shoot Growth in Rice. Crop Sci. 2009, 49, 2246–2260. [Google Scholar] [CrossRef]
- Jabran, K.; Riaz, M.; Hussain, M.; Nasim, W.; Zaman, U.; Fahad, S.; Chauhan, B.S. Water-Saving Technologies Affect the Grain Characteristics and Recovery of Fine-Grain Rice Cultivars in Semi-Arid Environment. Environ. Sci. Pollut. Res. 2017, 24, 12971–12981. [Google Scholar] [CrossRef]
- Xu, X.; Pang, D.; Chen, J.; Luo, Y.; Zheng, M.; Yin, Y.; Li, Y.; Li, Y.; Wang, Z. Straw Return Accompany with Low Nitrogen Moderately Promoted Deep Root. Field Crops Res. 2018, 221, 71–80. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, P.; Choudhary, O.P. Neemisha Nitrogen and Rice Straw Incorporation Impact Nitrogen Use Efficiency, Soil Nitrogen Pools and Enzyme Activity in Rice-Wheat System in North-Western India. Field Crops Res. 2021, 266, 108131. [Google Scholar] [CrossRef]
- Pan, J.; Liu, Y.; Zhong, X.; Lampayan, R.M.; Singleton, G.R.; Huang, N.; Liang, K.; Peng, B.; Tian, K. Grain Yield, Water Productivity and Nitrogen Use Efficiency of Rice under Different Water Management and Fertilizer-N Inputs in South China. Agric. Water Manag. 2017, 184, 191–200. [Google Scholar] [CrossRef]
- Chen, K.; Yu, S.; Ma, T.; Ding, J.; He, P.; Dai, Y.; Zeng, G. Effects of Water and Nitrogen Management on Water Productivity, Nitrogen Use Efficiency and Leaching Loss in Rice Paddies. Water 2022, 14, 1596. [Google Scholar] [CrossRef]
- Zhang, J.; Hang, X.; Lamine, S.M.; Jiang, Y.; Afreh, D.; Qian, H.; Feng, X.; Zheng, C.; Deng, A.; Song, Z.; et al. Interactive Effects of Straw Incorporation and Tillage on Crop Yield and Greenhouse Gas Emissions in Double Rice Cropping System. Agric. Ecosyst. Environ. 2017, 250, 37–43. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, G.; Ma, J.; Song, K.; Zhu, X.; Shen, W.; Xu, H. Dynamic Interactions of Nitrogen Fertilizer and Straw Application on Greenhouse Gas Emissions and Sequestration of Soil Carbon and Nitrogen: A 13-Year Field Study. Agric. Ecosyst. Environ. 2022, 325, 107753. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, G.; Wang, D.; Liu, Q.; Xu, M. Investigation into Runoff Nitrogen Loss Variations Due to Different Crop Residue Retention Modes and Nitrogen Fertilizer Rates in Rice-Wheat Cropping Systems. Agric. Water Manag. 2021, 247, 106729. [Google Scholar] [CrossRef]
- Shao, G.; Cui, J.; Yu, S.; Lu, B.; Brian, B.J.; Ding, J.; She, D. Impacts of Controlled Irrigation and Drainage on the Yield and Physiological Attributes of Rice. Agric. Water Manag. 2015, 149, 156–165. [Google Scholar] [CrossRef]
- Tan, X.; Shao, D.; Liu, H.; Yang, F.; Xiao, C.; Yang, H. Effects of Alternate Wetting and Drying Irrigation on Percolation and Nitrogen Leaching in Paddy Fields. Paddy Water Environ. 2013, 11, 381–395. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Zhang, Y.; Heskel, M.A.; Lu, X.; Munger, J.W.; Sun, S.; Tang, J. Chlorophyll Fluorescence Tracks Seasonal Variations of Photosynthesis from Leaf to Canopy in a Temperate Forest. Glob. Change Biol. 2017, 23, 2874–2886. [Google Scholar] [CrossRef]
- Yoshida, S.; Forno, D.A.; Cock, J.; Gomez, K. Analysis for Total Nitrogen (Organic Nitrogen) in Plant Tissues. In Laboratory Manual for Physiological Studies of Rice, 3rd ed.; IRRI; International Rice Research Institute: Los Baños, Philippines, 1976. [Google Scholar]
- Ma, T.; Chen, K.; He, P.; Dai, Y.; Yin, Y.; Peng, S.; Ding, J.; Yu, S.; Huang, J. Sunflower Photosynthetic Characteristics, Nitrogen Uptake, and Nitrogen Use Efficiency under Different Soil Salinity and Nitrogen Applications. Water 2022, 14, 982. [Google Scholar] [CrossRef]
- Huang, L.; Sun, F.; Yuan, S.; Peng, S.; Wang, F. Different Mechanisms Underlying the Yield Advantage of Ordinary Hybrid and Super Hybrid Rice over Inbred Rice under Low and Moderate N Input Conditions. Field Crops Res. 2018, 216, 150–157. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Fathian, F.; Safari, M.J.S.; Adamowski, J.F. Comparative Assessment of Time Series and Artificial Intelligence Models to Estimate Monthly Streamflow: A Local and External Data Analysis Approach. J. Hydrol. 2019, 579, 124225. [Google Scholar] [CrossRef]
- Sriphirom, P.; Chidthaisong, A.; Towprayoon, S. Effect of Alternate Wetting and Drying Water Management on Rice Cultivation with Low Emissions and Low Water Used during Wet and Dry Season. J. Clean. Prod. 2019, 223, 980–988. [Google Scholar] [CrossRef]
- Lampayan, R.M.; Bouman, B.A.M.; de Dios, J.L.; Espiritu, A.J.; Soriano, J.B.; Lactaoen, A.T.; Faronilo, J.E.; Thant, K.M. Yield of Aerobic Rice in Rainfed Lowlands of the Philippines as Affected by Nitrogen Management and Row Spacing. Field Crops Res. 2010, 116, 165–174. [Google Scholar] [CrossRef]
- Cao, X.; Zhong, C.; Sajid, H.; Zhu, L.; Zhang, J.; Wu, L.; Jin, Q. Effects of Watering Regime and Nitrogen Application Rate on the Photosynthetic Parameters, Physiological Characteristics, and Agronomic Traits of Rice. Acta Physiol. Plant. 2017, 39, 135. [Google Scholar] [CrossRef]
- Long, J.; Ma, G.; Wan, Y.; Song, C.; Sun, J.; Qin, R. Effects of Nitrogen Fertilizer Level on Chlorophyll Fluorescence Characteristics in Flag Leaf of Super Hybrid Rice at Late Growth Stage. Rice Sci. 2013, 20, 220–228. [Google Scholar] [CrossRef]
- Hussain, H.A.; Men, S.; Hussain, S.; Chen, Y.; Ali, S.; Zhang, S.; Zhang, K.; Li, Y.; Xu, Q.; Liao, C.; et al. Interactive Effects of Drought and Heat Stresses on Morpho-Physiological Attributes, Yield, Nutrient Uptake and Oxidative Status in Maize Hybrids. Sci. Rep. 2019, 9, 3890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Wang, B.; Chen, L.; Li, P.; Cao, C. The Different Influences of Drought Stress at the Flowering Stage on Rice Physiological Traits, Grain Yield, and Quality. Sci. Rep. 2019, 9, 3742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Zhang, S.; Yang, J.; Zhang, J. Yield, Grain Quality and Water Use Efficiency of Rice under Non-Flooded Mulching Cultivation. Field Crops Res. 2008, 108, 71–81. [Google Scholar] [CrossRef]
- Liang, K.; Zhong, X.; Huang, N.; Lampayan, R.M.; Pan, J.; Tian, K.; Liu, Y. Grain Yield, Water Productivity and CH4 Emission of Irrigated Rice in Response to Water Management in South China. Agric. Water Manag. 2016, 163, 319–331. [Google Scholar] [CrossRef]
- Cao, X.; Wu, L.; Lu, R.; Zhu, L.; Zhang, J.; Jin, Q. Irrigation and Fertilization Management to Optimize Rice Yield, Water Productivity and Nitrogen Recovery Efficiency. Irrig. Sci. 2020, 39, 235–249. [Google Scholar] [CrossRef]
- Chu, G.; Chen, T.; Wang, Z.; Yang, J.; Zhang, J. Morphological and Physiological Traits of Roots and Their Relationships with Water Productivity in Water-Saving and Drought-Resistant Rice. Field Crops Res. 2014, 162, 108–119. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Semida, W.M.; Rady, M.M. Moringa Leaf Extract as Biostimulant Improves Water Use Efficiency, Physio-Biochemical Attributes of Squash Plants under Deficit Irrigation. Agric. Water Manag. 2017, 193, 46–54. [Google Scholar] [CrossRef]
- Abdou, N.M.; Abdel-Razek, M.A.; Abd El-Mageed, S.A.; Semida, W.M.; Leilah, A.A.A.; Abd El-Mageed, T.A.; Ali, E.F.; Majrashi, A.; Rady, M.O.A. High Nitrogen Fertilization Modulates Morpho-Physiological Responses, Yield, and Water Productivity of Lowland Rice under Deficit Irrigation. Agronomy 2021, 11, 1291. [Google Scholar] [CrossRef]
- Prieto, P.; Peñuelas, J.; Llusià, J.; Asensio, D.; Estiarte, M. Effects of Long-Term Experimental Night-Time Warming and Drought on Photosynthesis, Fv/Fm and Stomatal Conductance in the Dominant Species of a Mediterranean Shrubland. Acta Physiol. Plant. 2009, 31, 729–739. [Google Scholar] [CrossRef]
- Ogaya, R.; Peñuelas, J.; Asensio, D.; Llusià, J. Chlorophyll Fluorescence Responses to Temperature and Water Availability in Two Co-Dominant Mediterranean Shrub and Tree Species in a Long-Term Field Experiment Simulating Climate Change. Environ. Exp. Bot. 2011, 71, 123–127. [Google Scholar] [CrossRef]
- Ru, C.; Hu, X.; Chen, D.; Song, T.; Wang, W.; Lv, M.; Hansen, N.C. Nitrogen Modulates the Effects of Short-Term Heat, Drought and Combined Stresses after Anthesis on Photosynthesis, Nitrogen Metabolism, Yield, and Water and Nitrogen Use Efficiency of Wheat. Water 2022, 14, 1407. [Google Scholar] [CrossRef]
- Chen, B.; Liu, E.; Tian, Q.; Yan, C.; Zhang, Y. Soil Nitrogen Dynamics and Crop Residues. A Review. Agron. Sustain. Dev. 2014, 34, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Gu, D.; Beebout, S.S.; Zhang, H.; Liu, L.; Yang, J.; Zhang, J. Effect of Irrigation Regime on Grain Yield, Water Productivity, and Methane Emissions in Dry Direct-Seeded Rice Grown in Raised Beds with Wheat Straw Incorporation. Crop J. 2018, 6, 495–508. [Google Scholar] [CrossRef]
- Maneepitak, S.; Ullah, H.; Paothong, K.; Kachenchart, B.; Datta, A.; Shrestha, R.P. Effect of Water and Rice Straw Management Practices on Yield and Water Productivity of Irrigated Lowland Rice in the Central Plain of Thailand. Agric. Water Manag. 2019, 211, 89–97. [Google Scholar] [CrossRef]
- Shan, Y.; Cai, Z.; Han, Y.; Johnson, S.E.; Buresh, R.J. Organic Acid Accumulation under Flooded Soil Conditions in Relation to the Incorporation of Wheat and Rice Straws with Different C:N Ratios. Soil Sci. Plant Nutr. 2008, 54, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, P.; Roy, K.S.; Neogi, S.; Adhya, T.K.; Rao, K.S.; Manna, M.C. Effects of Rice Straw and Nitrogen Fertilization on Greenhouse Gas Emissions and Carbon Storage in Tropical Flooded Soil Planted with Rice. Soil Tillage Res. 2012, 124, 119–130. [Google Scholar] [CrossRef]
- Li, J.; Zhong, F. Nitrogen Release and Re-Adsorption Dynamics on Crop Straw Residue during Straw Decomposition in an Alfisol. J. Integr. Agric. 2021, 20, 248–259. [Google Scholar] [CrossRef]
- Cucu, M.A.; Said-Pullicino, D.; Maurino, V.; Bonifacio, E.; Romani, M.; Celi, L. Influence of Redox Conditions and Rice Straw Incorporation on Nitrogen Availability in Fertilized Paddy Soils. Biol. Fertil. Soils 2014, 50, 755–764. [Google Scholar] [CrossRef]
- Jiang, D.; Zhuang, D.; Fu, J.; Huang, Y.; Wen, K. Bioenergy Potential from Crop Residues in China: Availability and Distribution. Renew. Sustain. Energy Rev. 2012, 16, 1377–1382. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Zhou, Y.; Ding, Y.; Xu, L.; Jiang, Y.; Li, G. Long-Term Straw Incorporation Increases Rice Yield Stability under High Fertilization Level Conditions in the Rice–Wheat System. Crop J. 2021, 9, 1191–1197. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, T.; Zhao, J.; Wang, L.; Yang, D.; Li, G.; Xiu, W. Variation of Soil Bacterial and Fungal Communities from Fluvo-Aquic Soil Under Chemical Fertilizer Reduction Combined with Organic Materials in North China Plain. J. Soil Sci. Plant Nutr. 2021, 21, 349–363. [Google Scholar] [CrossRef]
Source of Variation | Plant Height | Tiller Number | Pn | Tr | Gs | Fv/Fm | ΦPSII | qP | NPQ |
---|---|---|---|---|---|---|---|---|---|
Water regime (W) | ns | * | * | * | * | * | ** | * | ** |
N-Fertilizer management (N) | ns | * | * | ns | ns | ns | ** | ns | ** |
W × N | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Year | Water Regime | N Fertilizer Management | Late Tillering Stage | Heading Stage | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Fv/Fm | ΦPSII | qP | NPQ | Fv/Fm | ΦPSII | qP | NPQ | |||
2020 | CF | N300 | 0.737 a | 0.511 a | 0.735 a | 0.393 a | 0.838 a | 0.519 ab | 0.722 a | 0.302 b |
SN225 | 0.735 a | 0.510 a | 0.730 a | 0.391 a | 0.832 b | 0.512 ab | 0.717 a | 0.295 bc | ||
SN150 | 0.731 a | 0.505 ab | 0.724 a | 0.382 a | 0.829 b | 0.511 b | 0.715 a | 0.292 c | ||
CID | N300 | 0.734 a | 0.494 b | 0.705 b | 0.365 b | 0.850 a | 0.525 a | 0.726 a | 0.316 a | |
SN225 | 0.738 a | 0.496 ab | 0.706 b | 0.366 b | 0.856 a | 0.529 a | 0.727 a | 0.323 a | ||
SN150 | 0.728 b | 0.487 b | 0.695 c | 0.359 b | 0.843 a | 0.515 ab | 0.714 a | 0.308 ab | ||
2021 | CF | N300 | 0.734 a | 0.512 a | 0.719 a | 0.383 a | 0.824 ab | 0.519 ab | 0.714 b | 0.309 ab |
SN225 | 0.730 a | 0.507 a | 0.715 a | 0.379 a | 0.818 ab | 0.511 b | 0.705 b | 0.301 b | ||
SN150 | 0.727 b | 0.503 ab | 0.711 a | 0.377 a | 0.814 b | 0.509 b | 0.703 b | 0.300 b | ||
CID | N300 | 0.724 b | 0.493 ab | 0.692 b | 0.349 b | 0.827 a | 0.522 a | 0.730 a | 0.311 a | |
SN225 | 0.724 b | 0.495 ab | 0.694 b | 0.350 b | 0.830 a | 0.522 a | 0.733 a | 0.318 a | ||
SN150 | 0.716 c | 0.488 b | 0.686 b | 0.345 b | 0.826 ab | 0.515 b | 0.727 a | 0.311 a |
Year | Treatment | Panicles (×104 ha−1) | Spikelets (No. Panicle−1) | Filled Spikelets (%) | 1000-Grain Weight (g) | Grain Yield (kg ha−1) |
---|---|---|---|---|---|---|
Water regime (W) | ||||||
2020 | CF | 296.3 a | 142.3 a | 83.7 a | 24.8 a | 8061.7 a |
CID | 292.7 a | 146.8 a | 86.7 a | 25.0 a | 8306.4 a | |
2021 | CF | 289.8 a | 148.4 a | 83.8 a | 24.8 a | 7454.4 a |
CID | 286.3 a | 146.5 a | 85.4 a | 24.7 a | 7919.1 a | |
N fertilizer management (N) | ||||||
2020 | N300 | 315.2 a | 147.3 a | 88.8 a | 24.9 a | 8953.3 a |
SN225 | 296.3 b | 158.3 a | 85.0 b | 24.6 a | 8316.8 b | |
SN150 | 272.1 c | 150.6 a | 81.8 c | 24.2 a | 6882.1 c | |
2021 | N300 | 308.5 a | 146.4 a | 88.2 a | 24.6 a | 8533.2 a |
SN225 | 297.5 a | 153.2 a | 84.2 b | 24.5 a | 7966.1 b | |
SN150 | 258.0 b | 142.8 b | 81.5 c | 24.2 a | 6360.9 c | |
Analysis of variance (ANOVA) | ||||||
2020 | W | ns | ns | ** | ns | ns |
N | ** | * | ** | ns | * | |
W × N | * | ns | ns | ns | ns | |
2021 | W | ns | ns | ** | ns | ns |
N | ** | * | ** | * | ** | |
W × N | * | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Ma, T.; Ding, J.; Yu, S.; Dai, Y.; He, P.; Ma, T. Effects of Straw Return with Nitrogen Fertilizer Reduction on Rice (Oryza sativa L.) Morphology, Photosynthetic Capacity, Yield and Water–Nitrogen Use Efficiency Traits under Different Water Regimes. Agronomy 2023, 13, 133. https://doi.org/10.3390/agronomy13010133
Chen K, Ma T, Ding J, Yu S, Dai Y, He P, Ma T. Effects of Straw Return with Nitrogen Fertilizer Reduction on Rice (Oryza sativa L.) Morphology, Photosynthetic Capacity, Yield and Water–Nitrogen Use Efficiency Traits under Different Water Regimes. Agronomy. 2023; 13(1):133. https://doi.org/10.3390/agronomy13010133
Chicago/Turabian StyleChen, Kaiwen, Tao Ma, Jihui Ding, Shuang’en Yu, Yan Dai, Pingru He, and Teng Ma. 2023. "Effects of Straw Return with Nitrogen Fertilizer Reduction on Rice (Oryza sativa L.) Morphology, Photosynthetic Capacity, Yield and Water–Nitrogen Use Efficiency Traits under Different Water Regimes" Agronomy 13, no. 1: 133. https://doi.org/10.3390/agronomy13010133
APA StyleChen, K., Ma, T., Ding, J., Yu, S., Dai, Y., He, P., & Ma, T. (2023). Effects of Straw Return with Nitrogen Fertilizer Reduction on Rice (Oryza sativa L.) Morphology, Photosynthetic Capacity, Yield and Water–Nitrogen Use Efficiency Traits under Different Water Regimes. Agronomy, 13(1), 133. https://doi.org/10.3390/agronomy13010133