Spatiotemporal Heterogeneity of Chlorophyll Content and Fluorescence Response within Rice (Oryza sativa L.) Canopies under Different Cadmium Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Determination of Relative Chlorophyll Content
2.3. Determination of Chlorophyll Fluorescence Parameters
2.4. Determination of Photosynthetic Parameters
2.5. Determination of Cd Content of Leaves
2.6. Statistical Analysis
3. Results
3.1. Effects of Different Cd Stress Concentrations on Cd Content of Rice Canopy Leaves
3.2. Temporal and Spatial Changes in Chlorophyll Content of Rice Canopy Leaves
3.3. Effects of Different Cd Stress Concentrations on Photosynthetic Parameters of Rice Leaves in the Heading Stage
3.4. Responses of Chlorophyll Fluorescence Parameters of Rice Canopy Leaves to Different Cadmium Concentrations
3.5. Effects of Different Cadmium Concentrations on Chlorophyll Fluorescence Parameters of Rice Canopy Leaves at Different Positions
4. Discussion
4.1. Effects of Different Cd Stress Concentrations on Cd Content of Rice Canopy Leaves
4.2. Vertical Distribution Characteristics of Relative Chlorophyll Content under Different Cd Stress Concentrations
4.3. Effects of Different Cd Concentrations on Photosynthetic Gas Exchange Parameters of Rice Leaves in the Heading Stage
4.4. Effects of Different Cadmium Stress Concentrations on Chlorophyll Fluorescence Parameters of Rice Leaves
4.5. Significant Spatiotemporal Characteristics of Leaf Photochemistry
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahid, M.; Dumat, C.; Khalid, S.; Niazi, N.K.; Antunes, P. Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System. Rev. Environ. Contam. Toxicol. 2017, 241, 73–137. [Google Scholar] [CrossRef]
- Liang, C.; Xiao, H.; Hu, Z.; Zhang, X.; Hu, J. Uptake, transportation, and accumulation of C60 fullerene and heavy metal ions (Cd, Cu, and Pb) in rice plants grown in an agricultural soil. Envion. Pollut. 2018, 235, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Qiu, R.; Zeng, X.; Fang, X.; Yu, F.; Zhou, X.; Wu, Y. Zn and Cd hyperaccumulating characteristics of Picris divaricata Vant. Int. J. Environ. Pollut. 2009, 38, 26–38. [Google Scholar] [CrossRef]
- Liu, F.; Liu, X.; Ding, C.; Wu, L. The dynamic simulation of rice growth parameters under cadmium stress with the assimilation of multi-period spectral indices and crop model. Field Crops Res. 2015, 183, 225–234. [Google Scholar] [CrossRef]
- Chen, W.; Yang, Y.; Xie, T.; Wang, M.; Peng, C.; Wang, R. Challenges and Countermeasures for Heavy Metal Pollution Control in Farmlands of China. Acta Pedol. Sin. 2018, 55, 261–272. (In Chinese) [Google Scholar] [CrossRef]
- Fu, J.; Zhou, Q.; Liu, J.; Liu, W.; Wang, T.; Zhang, Q.; Jiang, G. High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere 2008, 71, 1269–1275. [Google Scholar] [CrossRef]
- Xue, Z.C.; Gao, H.Y.; Zhang, L.T. Effects of cadmium on growth, photosynthetic rate and chlorophyII content in leaves of soybean seedlings. Biol. Plantarum. 2013, 57, 587–590. [Google Scholar] [CrossRef]
- Adhikari, A.; Lee, K.; Khan, M.A.; Kang, S.; Adhikari, B.; Imran, M.; Jan, R.; Kim, K.; Lee, I. Effect of Silicate and Phosphate Solubilizing Rhizobacterium Enterobacter ludwigii GAK2 on Oryza sativa L. under Cadmium Stress. J. Microbiol. Biotechnol. 2020, 30, 118–126. [Google Scholar] [CrossRef]
- Zhang, J.; Wan, L.; Igathinathane, C.; Zhang, Z.; Cen, H. Spatiotemporal Heterogeneity of ChlorophyII Content and Fluorescence Response within Rice (Oryza sativa L.) Canopies Under Different Nitrogen Treatments. Front. Plant Sci. 2021, 12, 645977. [Google Scholar] [CrossRef]
- Bidabadi, S.S.; Abolghasemi, R.; Zheng, S.J. Grafting of watermelon (Citrullus lanatus cv. Mahbubi) onto different squash rootstocks as a means to minimize cadmium toxicity. Int. J. Phytoremediat. 2018, 20, 730–738. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, X.; Liu, Y.; Wei, J.; Shen, W.; Shen, Z.; Cui, J. Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul. 2017, 81, 253–264. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, T.; Liu, H.; Zhou, F.; Cao, T. Nano-selenium controlled cadmium accumulation and improved photosynthesis in indica rice cultivated in lead and cadmium combined paddy soils. J. Environ. Sci. 2021, 103, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, C.; Wang, J.; Zhou, C.; Feng, H.; Mahajan, M.D.; Han, X. Influence and interaction of iron and cadmium on photosynthesis and antioxidative enzymes in two rice cultivars. Chemosphere 2017, 171, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, D.A.; Bernards, M.A. ChlorophyII fluorescence imaging as a tool to monitor the progress of a root pathogen in a perennial plant. Planta 2016, 243, 263–279. [Google Scholar] [CrossRef]
- Baker, N.R.; Eva, R. Applications of chlorophyII fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, N.R. ChlorophyII fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorbe, E.; Calatayud, A. Applications of chlorophyII fluorescence imaging technique in horticultural research: A review. Sci. Hortic. 2012, 138, 24–35. [Google Scholar] [CrossRef]
- Tan, Z.; Xuan, Z.; Wu, C.; Cheng, Y.; Xu, C.; Ma, X.; Wang, D. Effects of Selenium on the AsA-GSH System and Photosynthesis of Pakchoi (Brassica chinensis L.) Under Lead Stress. J. Soil Sci. Plant Nut. 2022, 22, 5111–5122. [Google Scholar] [CrossRef]
- Bączek-Kwinta, R.; Antonkiewicz, J. Differential Physiological Response and Potential Toxicological Risk of White Cabbage Grown in Zinc-Spiked Soil. Agronomy 2022, 12, 2186. [Google Scholar] [CrossRef]
- Alam, P.; Balawi, T.H.; Altalayan, F.H.; Hatamleh, A.A.; Ashraf, M.; Ahmad, P. Silicon attenuates the negative effects of chromium stress in tomato plants by modifying antioxidant enzyme activities, ascorbate–glutathione cycle and glyoxalase system. Acta Physiol. Plant 2021, 43, 110. [Google Scholar] [CrossRef]
- Feng, W.; He, L.; Zhang, H.Y.; Guo, B.B.; Zhu, Y.J.; Wang, C.Y.; Guo, T.C. Assessment of plant nitrogen status using chlorophyII fluorescence parameters of the upper leaves in winter wheat. Eur. J. Agron. 2015, 64, 78–87. [Google Scholar] [CrossRef]
- Meng, Q.; Siebke, K.; Lippert, P.; Baur, B.; Weis, M.E. Sink-Source Transition in Tobacco Leaves Visualized Using ChlorophyII Fluorescence Imaging. New Phytol. 2001, 151, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Larbi, A.; Vázquez, S.; El-Jendoubi, H.; Msallem, M.; Abadía, J.; Abadía, A.; Morales, F. Canopy light heterogeneity drives leaf anatomical, eco-physiological, and photosynthetic changes in olive trees grown in a high-density plantation. Photosynth. Res. 2015, 123, 141–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bari, M.A.; El-Shehawi, A.M.; Elseehy, M.M.; Naheen, N.N.; Rahman, M.M.; Kabir, A.H. Molecular characterization and bioinformatics analysis of transporter genes associated with Cd-induced phytotoxicity in rice (Oryza sativa L.). Plant Physiol. Bioch. 2021, 167, 438–448. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Álvarez-Gómez, F.; Del Rosal, Y.; Celis-Plá, P.S.M.; González, G.; Hernández, M.; Korbee, N. In situ photosynthetic yields of cave photoautotrophic biofilms using two different Pulse Amplitude Modulated fluorometers. Algal Res. 2017, 22, 104–115. [Google Scholar] [CrossRef]
- Yudina, L.; Sherstneva, O.; Sukhova, E.; Grinberg, M.; Mysyagin, S.; Vodeneev, V.; Sukhov, V. Inactivation of H+-ATPase Participates in the Influence of Variation Potential on Photosynthesis and Respiration in Peas. Plants 2020, 9, 1585. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rubio, D.; Grindlay, G.; Llaver, M.; Wuilloud, R.G.; Mora, J. Development of preconcentration strategies for the simultaneous ultratrace determination of As, Cd and Pb in foods by ICP-OES: Knotted-reactor vs dispersive liquid-liquid microextraction. J. Anal. Atom. Spectrom. 2020, 35, 933–942. [Google Scholar] [CrossRef]
- Liang, T.S.; Liu, C.X.; Kang, J.Q.; Jing, Z.H.; Lv, J.Y. Effects of Sulfuron Cadmium Accumulation, Photosynthesis and Some Other Physiological Characteristics of Pakchoi (Brassica chinensis L.) Under Cadmium Stresses. J. Agro-Environ. Sci. 2015, 34, 1455–1463. (In Chinese) [Google Scholar] [CrossRef]
- Shi, J.; Li, Z.W.; Gong, W.Q.; Pan, G.X. Uptake and Partitioning of Cd and Zn by Two Non-hybrid Rice Cultivarsin Different Growth Stages: Effect of Cultivars, Soil Type and Cd Spike. Asian J. Ecotoxicol. 2007, 2, 32–40. (In Chinese) [Google Scholar]
- Wang, K.R.; Gong, H.Q. Comparative studies on the difference of the uptake and redistribution of environmental Cd by two Genic rice. Agro-Environ. Prot. 1996, 15, 145–149. (In Chinese) [Google Scholar]
- Ding, Y.; Zong, L.G.; Xu, X.Y.; Liu, G.R. Effect of cadmium on the growth and quality of rice (Oryza sativa L.) in different growth period. Ecol. Environ. Sci. 2009, 18, 183–186. (In Chinese) [Google Scholar]
- Vaculík, M.; Pavlovič, A.; Lux, A. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath’s cell chloroplasts ultrastructure in maize. Ecotox. Environ. Saf. 2015, 120, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Lysenko, E.A.; Klaus, A.A.; Pshybytko, N.L.; Kusnetsov, V.V. Cadmium accumulation in chloroplasts and its impact on chloroplastic processes in barley and maize. Photosynth. Res. 2015, 125, 291–303. [Google Scholar] [CrossRef]
- Hammami, H.; Parsa, M.; Bayat, H.; Aminifard, M.H. The behavior of heavy metals in relation to their influence on the common bean (Phaseolus vulgaris) symbiosis. Environ. Exp. Bot. 2022, 193, 104670. [Google Scholar] [CrossRef]
- Ouni, Y.; Mateos-Naranjo, E.; Abdelly, C.; Lakhdar, A. Interactive effect of salinity and zinc stress on growth and photosynthetic responses of the perennial grass, Polypogon monspeliensis. Ecol. Eng. 2016, 95, 171–179. [Google Scholar] [CrossRef]
- Haider, F.U.; Cai, L.; Coulter, J.A.; Cheema, S.A.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotox. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Amari, T.; Ghnaya, T.; Abdelly, C. Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. S. Afr. J. Bot. 2017, 111, 99–110. [Google Scholar] [CrossRef]
- Liu, Z.H.; Tang, Y.L.; Chang, J.; Lou, J. Correlation Analysis between Leaf ChlorophyII Content and Spectral Absorption Variables for Rice. Chin. Agric. Sci. Bull. 2009, 25, 68–71. (In Chinese) [Google Scholar]
- Li, Q.; Qi, L.Y.; Yin, L.N.; Wang, S.Y.; Deng, X.P. Relationship between Lipid and Flag Leaf Senescence Induced by Low Nitrogen Stress during Grain filling of Wheat. Acta Agron. Sin. 2018, 44, 1221–1228. [Google Scholar] [CrossRef]
- Li, G.H.; Ding, Y.F.; Xue, L.H.; Wang, S.H. Research progress on diagnosis of nitrogen nutrition and fertilization recommendation for rice by use chlorophyII meter. Plant Nutr. Fertil. Sci. 2005, 11, 412–416. (In Chinese) [Google Scholar] [CrossRef]
- Li, J.W. The Diagnosis of Rice N Status Based on Leaf Physioecological Characteristics; Zhejiang University: Hangzhou, China, 2010. [Google Scholar]
- Atabayeva, S.D.; Rakhymgozhina, A.B.; Nurmahanova, A.S.; Kenzhebayeva, S.S.; Usenbekov, B.N.; Alybayeva, R.A.; Asrandina, S.S.; Tynybekov, B.M.; Amirova, A.K. Rice Plants (Oryza sativa L.) under Cd Stress in Fe Deficiency Conditions. Biomed. Res. Int. 2022, 2022, 7425085. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.B.; Cai, Y.; Liu, L.; Zhang, M.; He, X.Y.; Zhang, G.P.; Wu, F.B. Differences in photosynthesis, yield and grain cadmium accumulation as affected by exogenous cadmium and glutathione in the two rice genotypes. Plant Growth Regul. 2015, 75, 715–723. [Google Scholar] [CrossRef]
- Li, J.; Cang, Z.; Jiao, F.; Bai, X.; Zhang, D.; Zhai, R. Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage. J. Saudi Soc. Agric. Sci. 2017, 16, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Wang, L.; Chen, M.; Wang, L.; Liang, C.; Zhou, Q.; Huang, X. Interactive effects of cadmium and acid rain on photosynthetic light reaction in soybean seedlings. Ecotox. Environ. Saf. 2012, 79, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Hou, W.; Yan, J.; Jákli, B.; Lu, J.; Ren, T.; Cong, R.; Li, X. Synergistic Effects of Nitrogen and Potassium on Quantitative Limitations to Photosynthesis in Rice (Oryza sativa L.). J. Agric. Food Chem. 2018, 66, 5125–5132. [Google Scholar] [CrossRef]
- Perfus-Barbeoch, L.; Leonhardt, N.; Vavasseur, A.; Forestier, C. Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 2002, 32, 539–548. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Hu, J.; Guo, J.; Du, S. Improving the potential of red SIF for estimating GPP by downscaling from the canopy level to the photosystem level. Agric. Forest Meteorol. 2020, 281, 107846. [Google Scholar] [CrossRef]
- Per, T.S.; Masood, A.; Khan, N.A. Nitric oxide improves S-assimilation and GSH production to prevent inhibitory effects of cadmium stress on photosynthesis in mustard (Brassica juncea L.). Nitric. Oxide. 2017, 68, 111–124. [Google Scholar] [CrossRef]
- Bernardini, A.; Salvatori, E.; Guerrini, V.; Fusaro, L.; Canepari, S.; Manes, F. Effects of high Zn and Pb concentrations on Phragmites australis (Cav.) Trin. Ex. Steudel: Photosynthetic performance and metal accumulation capacity under controlled conditions. Int. J. Phytoremediat. 2016, 18, 16–24. [Google Scholar] [CrossRef]
- Zouari, M.; Ben Ahmed, C.; Elloumi, N.; Bellassoued, K.; Delmail, D.; Labrousse, P.; Ben Abdallah, F.; Ben Rouina, B. Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress. Ecotox. Environ. Saf. 2016, 128, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Asgher, M.; Per, T.S.; Masood, A.; Fatma, M.; Khan, M.I.R. Ethylene Potentiates Sulfur-Mediated Reversal of Cadmium Inhibited Photosynthetic Responses in Mustard. Front. Plant Sci. 2016, 7, 1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takai, T.; Adachi, S.; Taguchi-Shiobara, F.; Sanoh-Arai, Y.; Iwasawa, N.; Yoshinaga, S.; Hirose, S.; Taniguchi, Y.; Yamanouchi, U.; Wu, J.; et al. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci. Rep. 2013, 3, 2149. [Google Scholar] [CrossRef] [Green Version]
- Stirbet, A.; Lazár, D.; Kromdijk, J.; Govindjee. ChlorophyII a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 2018, 56, 86–104. [Google Scholar] [CrossRef]
- He, X.; Richmond, M.; Williams, D.V.; Zheng, W.; Wu, F. Exogenous Glycinebetaine Reduces Cadmium Uptake and Mitigates Cadmium Toxicity in Two Tobacco Genotypes Differing in Cadmium Tolerance. Int. J. Mol. Sci. 2019, 20, 1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, M.; Li, Y.; Wang, J.; Hu, X.; Wang, L.; Miao, Z. Study on the Law of Nitrogen Transfer and Conversion and Use of Fertilizer Nitrogen in Paddy Fields under Water-Saving Irrigation Mode. Water 2019, 11, 218. [Google Scholar] [CrossRef] [Green Version]
- Schnettger, B.; Critchley, C.; Santore, U.J.; Graf, M.; Krause, G.H. Relationship between photoinhibition of photosynthesis, D1 protein turnover and chloroplast structure: Effects of protein synthesis inhibitors. Plant Cell Environ. 1994, 17, 55–64. [Google Scholar] [CrossRef]
- Zhou, M.L.; Shen, G.S.; Zhao, R.R.; Gao, Z.Y.; Chen, g.p.; Shi, F.C. Effects of Lead Stress on Photosynthesis and Physiological and Biochemical Characteristics of Amorpha fruticosa. J. Agric. Resour. Environ. 2017, 34, 286–292. (In Chinese) [Google Scholar] [CrossRef]
- He, H.; Yang, R.; Jia, B.; Chen, L.; Fan, H.; Cui, J.; Yang, D.; Li, M.; Ma, F. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation. Sci. World J. 2014, 2014, 839658. [Google Scholar] [CrossRef] [Green Version]
- Cordon, G.; Lagorio, M.G.; Paruelo, J.M. ChlorophyII fluorescence, photochemical reflective index and normalized difference vegetative index during plant senescence. J. Plant Physiol. 2016, 199, 100–110. [Google Scholar] [CrossRef] [Green Version]
- Wiedemuth, K.; Müller, J.; Kahlau, A.; Amme, S.; Mock, H.; Grzam, A.; Hell, R.; Egle, K.; Beschow, H.; Humbeck, K. Successive maturation and senescence of individual leaves during barley whole plant ontogeny reveals temporal and spatial regulation of photosynthetic function in conjunction with C and N metabolism. J. Plant Physiol. 2005, 162, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Marie-Odile, B.; Bertrand, N.; Lannou, A.C. Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status. New Phytol. 2005, 165, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.A.; Detterbeck, A.; Clemens, S.; Dietz, K.J. Silicon-induced reversibility of cadmium toxicity in rice. J. Exp. Bot. 2016, 67, 3573–3585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, W.; Li, Y.; Zhang, Y.; Zhang, L.; Liu, H.; Liu, C.; Yang, C. Diminished photoinhibition is involved in high photosynthetic capacities in spring ephemeral Berteroa incana under strong light conditions. J. Plant Physiol. 2012, 169, 1463–1470. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.W.; Fu, X.S.; Xi, H.; Cai, C.; Wang, T.H. Gas exchange and chlorophyII fluorescence research on different position leaves of rice plant. J. Zhejiang Univ. (Agric. Life Sci.) 2007, 33, 277–283. (In Chinese) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Chen, H.; Chen, H.; Fan, C.; Tai, Y.; Chen, X.; Zhang, W.; He, T.; Gao, Z. Spatiotemporal Heterogeneity of Chlorophyll Content and Fluorescence Response within Rice (Oryza sativa L.) Canopies under Different Cadmium Stress. Agronomy 2023, 13, 121. https://doi.org/10.3390/agronomy13010121
Huang X, Chen H, Chen H, Fan C, Tai Y, Chen X, Zhang W, He T, Gao Z. Spatiotemporal Heterogeneity of Chlorophyll Content and Fluorescence Response within Rice (Oryza sativa L.) Canopies under Different Cadmium Stress. Agronomy. 2023; 13(1):121. https://doi.org/10.3390/agronomy13010121
Chicago/Turabian StyleHuang, Xiaoyun, Hongxing Chen, Hui Chen, Chengwu Fan, Yueying Tai, Xiaoran Chen, Wang Zhang, Tengbing He, and Zhenran Gao. 2023. "Spatiotemporal Heterogeneity of Chlorophyll Content and Fluorescence Response within Rice (Oryza sativa L.) Canopies under Different Cadmium Stress" Agronomy 13, no. 1: 121. https://doi.org/10.3390/agronomy13010121
APA StyleHuang, X., Chen, H., Chen, H., Fan, C., Tai, Y., Chen, X., Zhang, W., He, T., & Gao, Z. (2023). Spatiotemporal Heterogeneity of Chlorophyll Content and Fluorescence Response within Rice (Oryza sativa L.) Canopies under Different Cadmium Stress. Agronomy, 13(1), 121. https://doi.org/10.3390/agronomy13010121