Micro Electric Shocks Control Broadleaved and Grass Weeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment and Materials
2.2. Plant Material and Growing Method
2.3. Plant Measurements
2.4. Treatments
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghanizadeh, H.; Harrington, K.C. Perspective: Root exudation of herbicides as a novel mode of herbicide resistance in weeds. Pest Manag. Sci. 2020, 76, 2543–2547. [Google Scholar] [CrossRef] [PubMed]
- Heap, I. The International Survey of Herbicide Resistant Weeds. 2022. Available online: www.weedscience.com (accessed on 23 July 2022).
- Ngow, Z.; Chynoweth, R.J.; Gunnarsson, M.; Rolston, P.; Buddenhagen, C.E. A herbicide resistance risk assessment for weeds in wheat and barley crops in New Zealand. PLoS ONE 2020, 15, e0234771. [Google Scholar] [CrossRef]
- Crinnion, W.J. Organic Foods Contain Higher Levels of Certain Nutrients, Lower Levels of Pesticides, and May Provide Health Benefits for the Consumer. Environ. Med. 2010, 15, 9. [Google Scholar]
- Forbes, S.L.; Cohen, D.A.; Cullen, R.; Wratten, S.D.; Fountain, J. Consumer attitudes regarding environmentally sustainable wine: An exploratory study of the New Zealand marketplace. J. Clean. Prod. 2009, 17, 1195–1199. [Google Scholar] [CrossRef]
- Galati, A.; Schifani, G.; Crescimanno, M.; Migliore, G. “Natural wine” consumers and interest in label information: An analysis of willingness to pay in a new Italian wine market segment. J. Clean. Prod. 2019, 227, 405–413. [Google Scholar] [CrossRef]
- Hoek, A.C.; Pearson, D.; James, S.W.; Lawrence, M.A.; Friel, S. Shrinking the food-print: A qualitative study into consumer perceptions, experiences and attitudes towards healthy and environmentally friendly food behaviours. Appetite 2017, 108, 117–131. [Google Scholar] [CrossRef]
- Koch, S.; Epp, A.; Lohmann, M.; Bol, G.F. Pesticide Residues in Food: Attitudes, Beliefs, and Misconceptions among Conventional and Organic Consumers. J. Food Prot. 2017, 80, 2083–2089. [Google Scholar] [CrossRef]
- Magnusson, M.K.; Arvola, A.; Hursti, U.-K.K.; Åberg, L.; Sjödén, P.-O. Choice of organic foods is related to perceived consequences for human health and to environmentally friendly behaviour. Appetite 2003, 40, 109–117. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Mahajan, G.; Chauhan, B.S. Nonconventional Weed Management Strategies for Modern Agriculture. Weed Sci. 2015, 63, 723–747. [Google Scholar] [CrossRef]
- Hageman, K.J.; Aebig, C.H.F.; Luong, K.H.; Kaserzon, S.L.; Wong, C.S.; Reeks, T.; Greenwood, M.; Macaulay, S.; Matthaei, C.D. Current-use pesticides in New Zealand streams: Comparing results from grab samples and three types of passive samplers. Environ. Pollut. 2019, 254, 112973. [Google Scholar] [CrossRef]
- Helander, M.; Saloniemi, I.; Omacini, M.; Druille, M.; Salminen, J.P.; Saikkonen, K. Glyphosate decreases mycorrhizal colonization and affects plant-soil feedback. Sci. Total Environ. 2018, 642, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Melander, B.; Munier-Jolain, N.; Charles, R.; Wirth, J.; Schwarz, J.; van der Weide, R.; Bonin, L.; Jensen, P.K.; Kudsk, P. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced-Tillage Systems for Arable Crops. Weed Technol. 2013, 1, 231. [Google Scholar] [CrossRef]
- Reiser, D.; Sehsah, E.S.; Bumann, O.; Morhard, J.; Griepentrog, H.W. Development of an autonomous electric robot implement for intra-row weeding in vineyards. Agriculture 2019, 9, 18. [Google Scholar] [CrossRef]
- Bauer, M.V.; Marx, C.; Bauer, F.V.; Flury, D.M.; Ripken, T.; Streit, B. Thermal weed control technologies for conservation agriculture—A review. Weed Res. 2020, 60, 241–250. [Google Scholar] [CrossRef]
- Nørremark, M.; Sørensen, C.G.; Jorgensen, R.N. HortiBot: Comparison of Present and Future Phytotechnologies for Weed Control—Part III; ASABE: Portland, OR, USA, 2006. [Google Scholar]
- Sorensen, C.G.; Madsen, N.A.; Jacobsen, B.H. Organic farming scenarios: Operational analysis and costs of implementing innovative technologies. Biosyst. Eng. 2005, 91, 127–137. [Google Scholar] [CrossRef]
- Scheible, A. Apparatus for Exterminating Vegetation. US Patent 546,682, 24 September 1895. [Google Scholar]
- Sharp, A.A. Vegetation Exterminator. US Patent US492635A, 28 February 1893. [Google Scholar]
- Carr, E.R. Apparatus for Killing Weeds. US Patent US5600918A, 11 February 1997. [Google Scholar]
- Diprose, M.F. Apparatus and Method for Electrically Killing Plants. WO2016016627, 4 February 2016. [Google Scholar]
- Dykes, W.G. Plant Destruction Using Electricity. US Patent US4177603A, 1977. [Google Scholar]
- Opp, F.W.; Opp, W.H. Electric Weed-Killing Apparatus. US4428150A, 1 April 1952. [Google Scholar]
- Pluenneke, R.H.; Dykes, W.G. Method and Apparatus for Useng Electrical Current to Destroy Grasses and Weeds. 3,919,806, 18 November.
- Rona, S.A.; Valverde, B.; Mendes de Souza, D.T.; de Andrade Coutinho Filho, S. Weed Inactivation Device. EP3557750A1, 17 January 2019. Ceased. [Google Scholar]
- Diprose, M.F.; Benson, F.A. Electrical methods of killing plants. J. Agric. Eng. Res. 1984, 30, 197–209. [Google Scholar] [CrossRef]
- Diprose, M.F.; Fletcher, R.; Longden, P.C.; Champion, M.J. Use of electricity to control bolters in sugar beet (Beta vulgaris L.): A comparison of the electrothermal with chemical and mechanical cutting methods. Anwend. Von Elektrizität Zur Bekämpfung Von Schossern Zuckerrüben (Beta Vulgaris L.): Vgl. Der Elektrothermischen Methode Mit Der Chem. Und Dem Mech. Schneiden. 1985, 25, 53. [Google Scholar] [CrossRef]
- Lati, R.N.; Rosenfeld, L.; David, I.B.; Bechar, A. Power on! Low-energy electrophysical treatment is an effective new weed control approach. Pest Manag. Sci. 2021, 77, 4138–4147. [Google Scholar] [CrossRef]
- Lysakov, A.A.; Masyutina, G.V.; Rostova, A.T.; Eliseeva, A.A.; Lubentsov, V.F. Development of a Weeding Robot with Tubular Linear Electric Motors. IOP Conf. Ser. Earth Environ. Sci. 2021, 852, 012063. [Google Scholar] [CrossRef]
- Lehnhoff, E.A.; Neher, P.; Indacochea, A.; Beck, L. Electricity as an effective weed control tool in non-crop areas. Weed Res. 2022, 62, 149–159. [Google Scholar] [CrossRef]
- Vigneault, C.; Benoit, D.L.; McLaughlin, N.B. Energy aspects of weed electrocution. Rev. Weed Sci. 1990, 5, 15–26. [Google Scholar]
- McCool, C.; Beattie, J.; Firn, J.; Lehnert, C.; Kulk, J.; Bawden, O.; Russell, R.; Perez, T. Efficacy of Mechanical Weeding Tools: A Study Into Alternative Weed Management Strategies Enabled by Robotics. IEEE Robot. Autom. Lett. 2018, 3, 1184–1190. [Google Scholar] [CrossRef]
- Carley, J. Current Developments in Electrical Weeding. Lamma Show. 2021. Available online: https://www.lamma365.com/news/current-developments-in-electrical-weeding-116579 (accessed on 26 July 2022).
- Schneider, D. The Electric Weed-Zapper Renaissance—IEEE Spectrum. 2020. Available online: https://spectrum.ieee.org/the-electric-weed-zapper-renaissance (accessed on 8 August 2022).
- Vigneault, C.; Benoit, D.L. Electrical Weed Control: Theory and Applications. In Physical Control Methods in Plant Protection; Vincent, C., Panneton, B., Fleurat-Lessard, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Rootwave. RootWave Working with Small Robot Company to Create A Weed Zapping Autonomous Robot. Available online: https://rootwave.com/rootwave-working-with-small-robot-company-to-create-a-weed-zapping-autonomous-robot/ (accessed on 2 August 2021).
- Gerhards, R. Weed suppression ability and yield impact of living mulch in cereal crops. Agriculture 2018, 8, 39. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, W.; Wei, X. A review on weed detection using ground-based machine vision and image processing techniques. Comput. Electron. Agric. 2019, 158, 226–240. [Google Scholar] [CrossRef]
- Li, Y.; Al-Sarayreh, M.; Irie, K.; Hackell, D.; Bourdot, G.; Reis, M.M.; Ghamkhar, K. Identification of Weeds Based on Hyperspectral Imaging and Machine Learning. Front. Plant Sci. 2021, 11, 611622. [Google Scholar] [CrossRef] [PubMed]
- Coleman, G.; Salter, W.; Walsh, M. OpenWeedLocator (OWL): An open-source, low-cost device for fallow weed detection. Sci. Rep. 2022, 12, 170. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J.; Muhammad, K.; Ahmad, I.; Ahmad, W.; Smith, M.L.; Smith, L.N.; Jain, D.K.; Wang, H.; Mehmood, I. Visual features based boosted classification of weeds for real-time selective herbicide sprayer systems. Comput. Ind. 2018, 98, 23–33. [Google Scholar] [CrossRef]
- Barber, A. New Zealand Fuel and Electricity Total Primary Energy and Life Cycle Greenhouse Gas Emission Factors; AgriLINK New Zealand Ltd.: Kumeu, New Zealand, 2010. [Google Scholar]
- Barber, A.; Lucock, D. Total Energy Indicators: Benchmarking Organic, Integrated and Conventional Sheep and Beef Farms; 06/07; The AgriBusiness Group: Lincoln, New Zealand, 2006. [Google Scholar]
- Coleman, G.R.Y.; Stead, A.; Rigter, M.P.; Xu, Z.; Johnson, D.; Brooker, G.M.; Sukkarieh, S.; Walsh, M.J. Using energy requirements to compare the suitability of alternative methods for broadcast and site-specific weed control. Weed Technol. 2019, 33, 633. [Google Scholar] [CrossRef]
- Kaufman, K.R.; Schaffner, L.W. Energy and Economics of Electrical Weed Control. Trans. ASAE 1982, 25, 297–300. [Google Scholar] [CrossRef]
- Judaev, I.V.; Brenina, T.P. The Definition of Electro Impulses Used in Weed Control. J. Agric. Sci. Belgrade 2008, 51, 37–44. [Google Scholar] [CrossRef]
- Merfield, C.N. Robotic weeding’s false dawn? Ten requirements for fully autonomous mechanical weed management. Weed Res. 2016, 56, 340–344. [Google Scholar] [CrossRef]
- Vigoureux, A. Results of trials carried out in Belgium in 1980 about killing weed beets by electric discharge. Meded. Van De Fac. Landbouwwet. Rijksuniv. Gent 1981, 46, 163–172. [Google Scholar]
- Diprose, M.F.; Hackam, R.; Benson, F.A. Weed control by high voltage electric shocks. In Proceedings of the British Crop Protection Conference-Weeds; Boots Company: Nottingham, UK, 1978; pp. 443–450. [Google Scholar]
- Baev, I.V.; Igor, Y.V. The Determination of the Most Effective Current Type for Electrical Damage of Plants. Indian J. Sci. Technol. 2017, 10, 1. [Google Scholar]
- Mizuno, A.; Tenma, T.; Yamano, N. Destruction of weeds by pulsed high voltage discharges. In Proceedings of the Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting, Seattle, WA, USA, 7–12 October 1990; p. 720. [Google Scholar] [CrossRef]
- Mizuno, A.; Nagura, A.; Miyamoto, T.; Chakrabarti, A. A portable weed control device using high frequency AC voltage. In Proceedings of the Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting, Toronto, ON, Canada, 2–8 October 1993; p. 2000. [Google Scholar]
- Ejima, H.; Mizuno, A.; Nakazawa, M. Weeding and Sterilizing Device. JP2633751B2, 23 July 1997. [Google Scholar]
- Ejima, H.; Mizuno, A.; Nakazawa, M. Weeding and Sterilizing Device. JP2633750B2, 23 July 1997. [Google Scholar]
- Kimura, I.; Mizuno, A. Apparatus for Removing Weed. Patent JPH04148633A, 21 July 1992. [Google Scholar]
- Easlon, H.M.; Bloom, A.J. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Appl. Plant Sci. 2014, 2, 1400033. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, R.A. When to use the Bonferroni correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef]
- Perneger, T.V. What’s wrong with Bonferroni adjustments. BMJ 1998, 316, 1236. [Google Scholar] [CrossRef]
- Field, A.P. Discovering Statistics Using IBM SPSS Statistics: And Sex and Drugs and Rock ‘n’ Roll, 4th ed.; Sage: North Tyneside, UK, 2013. [Google Scholar]
- International Electrotechnical Commission. Household and Similar Electrical Appliances—Safety—Part 2-76: Particular Requirements for Electric Fence Energizers; International Electrotechnical Commission: Geneva, Switzerland, 2002; p. 43. [Google Scholar]
- Gallagher Group, L. Electric Fencing 101: Electric Fencing Systems Design, Installation & Maintenance; Gallagher North America: Riverside, MO, USA, 2022; Available online: https://store.am.gallagher.com/am/medias/Electric-Fencing-101-Manual-NA?context=bWFzdGVyfHN1cHBvcnR8NDA0NDY2NnxhcHBsaWNhdGlvbi9wZGZ8aDM5L2g2MS84ODYyMDg1NDE0OTQyL0VsZWN0cmljIEZlbmNpbmcgMTAxIE1hbnVhbCBOQXxiYzIzNzk3NWRlYjhlNWNhMDRlMTBhOGY3MmNiMjg0M2Q0MWE4ZDJlNTUwYjk5ZTc5NDMyM2IxMGIxNjYzNzc3 (accessed on 23 February 2022).
- Diprose, M.F.; Benson, F.A.; Hackam, R. Electrothermal control of weed beet and bolting sugar beet. Elektrothermische Bekämpfung Von Unkrautrüben Und Zucker-Rübenschossern 1980, 20, 311. [Google Scholar] [CrossRef]
- Eberius, M. Digital herbicides tackle weeds at the root. Outlooks Pest Manag. 2017, 28, 277–281. [Google Scholar] [CrossRef]
- Vartapetian, A.B.; Tuzhikov, A.I.; Chichkova, N.V.; Taliansky, M.; Wolpert, T.J. A plant alternative to animal caspases: Subtilisin-like proteases. Cell Death Differ. 2011, 18, 1289–1297. [Google Scholar] [CrossRef]
- Sedigheh, H.G.; Mortazavian, M.; Norouzian, D.; Atyabi, M.; Akbarzadeh, A.; Hasanpoor, K.; Ghorbani, M. Oxidative stress and leaf senescence. BMC Res. Notes 2011, 4, 477. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Petrov, V.; Hille, J.; Mueller-Roeber, B.; Gechev, T.S. ROS-mediated abiotic stress-induced programmed cell death in plants. Front. Plant Sci. 2015, 6, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trial | Species | Size | Treatments | Reps | Notes |
---|---|---|---|---|---|
1 | L. multiflorum | 1 tiller, 2 leaves, long leaf 109 mm | Single pulse: 6 kV (1.8 J), 10 kV (5.0 J) | 4 | Single pulses to single leaves 60 mm above soil |
2 | C. album | 50–70 mm high | Single pulse: 6 kV (1.8 J), 10 kV (5.0 J) | 4 | Single pulses, treatment electrode < 5 mm from stem, 50 mm above soil |
Trial | Species | Size | Treatments | Reps | Notes |
---|---|---|---|---|---|
3 | L. multiflorum | Most 1 tiller, 2 leaves, long leaf 149 mm | 16 treatments: combinations of 3 and 6 kV, 2 pulse lengths, target energy levels 1, 3, 5 & 7 J | 4 | Multiple pulses at top of basal sheath about 30 mm above the soil; 3 kV pulse length 4 × 6 kV pulse length for equivalent energy/pulse |
4 | A. powellii | 50–70 mm high | 3 kV, target energy levels 1, 3, 5 and 7 J | 6 | Multiple pulses, treatment electrode set against stem 30 mm above soil |
5 | S. nigrum | 110 mm tall, stem 4 mm diameter | 3 kV, target energy levels 1, 3, 5 and 7 J | 6 | Multiple pulses, treatment electrode set against stem 30 mm above soil |
Trial | Species (Dose Type) | Chi-Square | df | Sig. p | Nagel Kerke R Square | Correct Case Classifn | Predictive Variable | Sig. | Exp(B) |
---|---|---|---|---|---|---|---|---|---|
1 | L. multiflorum (single pulse) | 12.258 | 3 | 0.007 | 0.486 | 86.1 | Set Voltage | 0.039 | 1.561 |
Total Leaf Length | 0.051 | 0.608 | |||||||
2 | C. album (single pulse) | 10.312 | 1 | 0.001 | 0.338 | 69.4 | Set Voltage | 0.011 | 1.000 |
Trial | Species (Dose Type) | Independent Variable | Dependent Variable | Tot n | Kruskal–Wallis Ha | df | Asymptotic Sig. |
---|---|---|---|---|---|---|---|
1 | L. multiflorum | Voltage | Leaf Number | 12 | 5.115 | 2 | 0.077 |
(single pulse) | Tiller Number | 12 | 3.520 | 2 | 0.172 | ||
Longest Leaf Length | 12 | 7.284 | 2 | 0.026 | |||
Total Green Leaf Length | 12 | 8.000 | 2 | 0.018 | |||
Number of Alive Plants | 12 | 4.015 | 2 | 0.134 |
Treatment | Plant Dry Mass per Bag (g) | Number of Live Plants per Bag |
---|---|---|
0-0 | 0.607a | 3.00a |
3000-1 | 0.460ab | 3.00a |
3000-3 | 0.074c | 0.75b |
3000-5 | 0.000d | 0.00c |
3000-7 | 0.000d | 0.00c |
6000-1 | 0.494a | 3.00a |
6000-3 | 0.319b | 2.50a |
6000-5 | 0.300b | 2.88a |
6000-7 | 0.104c | 1.25b |
Trial | Species (Dose Type) | Chi-Square | df | Sig. p | Nagel Kerke Rsquare | Correct Case Classifn | Predictive Variable | Sig. | Exp(B) |
---|---|---|---|---|---|---|---|---|---|
3a | L. multiflorum (multi-pulse) | 159.43 | 3 | <0.001 | 0.730 | 90.7 | Applied Voltage | <0.001 | 0.999 |
Target Energy | <0.001 | 4.348 | |||||||
Leaf Number × Longest Leaf Length | 0.028 | 0.897 | |||||||
3b | L. multiflorum (multi-pulse) Treated Only | 147.25 | 2 | <0.001 | 0.717 | 89.1 | Applied Voltage | <0.001 | 0.199 |
4 | A. powellii (multi-pulse) | 9.180 | 2 | 0.010 | 0.354 | 80.0 | Target Energy | 0.034 | 1.477 |
Stem Diameter | 0.092 | 0.133 | |||||||
5 | S. nigrum (multi-pulse) | 8.565 | 2 | 0.014 | 0.345 | 70.0 | Target Energy | 0.017 | 1.596 |
Trial | Species (Dose Type) | Independent Variable | Dependent Variable | Total n | Kruskal–Wallis H | df | Asymptotic Sig. |
---|---|---|---|---|---|---|---|
4 | A. powellii | Set Total Energy | Stem Diameter 11DAT | 6 | 23.517 | 4 | <0.001 |
(multi-pulse) | ELA Score 11 DAT | 6 | 21.477 | 4 | <0.001 | ||
5 | S. nigrum | Set Total Energy | Stem Diameter 30 DAT | 6 | 16.163 | 4 | 0.003 |
(multi-pulse) | ELA Score 30 DAT | 6 | 15.166 | 4 | 0.004 | ||
Fresh Mass 30 DAT | 6 | 17.250 | 4 | 0.002 | |||
Dry Mass 30 DAT | 6 | 11.677 | 4 | 0.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bloomer, D.J.; Harrington, K.C.; Ghanizadeh, H.; James, T.K. Micro Electric Shocks Control Broadleaved and Grass Weeds. Agronomy 2022, 12, 2039. https://doi.org/10.3390/agronomy12092039
Bloomer DJ, Harrington KC, Ghanizadeh H, James TK. Micro Electric Shocks Control Broadleaved and Grass Weeds. Agronomy. 2022; 12(9):2039. https://doi.org/10.3390/agronomy12092039
Chicago/Turabian StyleBloomer, Daniel J., Kerry C. Harrington, Hossein Ghanizadeh, and Trevor K. James. 2022. "Micro Electric Shocks Control Broadleaved and Grass Weeds" Agronomy 12, no. 9: 2039. https://doi.org/10.3390/agronomy12092039
APA StyleBloomer, D. J., Harrington, K. C., Ghanizadeh, H., & James, T. K. (2022). Micro Electric Shocks Control Broadleaved and Grass Weeds. Agronomy, 12(9), 2039. https://doi.org/10.3390/agronomy12092039