Novel Small Antimicrobial Peptides Extracted from Agricultural Wastes Act against Phytopathogens but Not Rhizobacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Time and Place of Research
2.2. Sample Collection
2.3. Preparation of Protein Hydrolysates and Small Peptides (<3 kDa)
2.4. Bacterial Plant Pathogens and Antimicrobial Activity Assays
2.5. Experimental Design and Statistical Analysis
2.6. Peptide Purification by Reverse-Phase Chromatography
2.7. Peptide Purification by Cation Exchange Chromatography
2.8. Peptide Purification by pI-Based Fractionation
2.9. Peptide Synthesis and Determination of Antibacterial Activity
2.10. Study of Peptide–Microbe Interaction Mechanisms
3. Results
3.1. Antibacterial Activity of Peptides Less Than 3 kDa in Size
3.2. Antibacterial Activity after Peptide Purification
3.3. Antibacterial Activity of Small Synthetic Peptides
3.4. Determination of Peptide–Microbe Interaction Mechanisms
4. Discussion
4.1. Preparation of Protein Hydrolysates and Screening of Antibacterial Activity
4.2. Peptide Purification
4.3. Peptide–Microbe Interaction Mechanisms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palmgren, M.G.; Edenbrandt, A.K.; Vedel, S.E.; Andersen, M.M.; Landes, X.; Østerberg, J.T.; Falhof, J.; Olsen, L.I.; Christensen, S.B.; Sandøe, P.; et al. Are we ready for back-to-nature crop breeding? Trends Plant Sci. 2015, 20, 155–164. [Google Scholar] [CrossRef]
- Oerke, E.; Dehne, H.W. Safeguarding production—Losses in major crops and the role of crop protection. Crop Prot. 2004, 23, 275–285. [Google Scholar] [CrossRef]
- Oerke, E. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Vidaver, A.K. Uses of antimicrobials in plant agriculture. Clin. Infect. Dis. 2002, 3, S107–S110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daoubi, M.; Hernandez-Galan, R.; Benharref, A.; Collado, I.G. Screening study of lead compoundds for natural product-based fungicides: Antifungal activity and biotransformation of 6α, 7α-dihydroxy-β-himachalene by Botrytis cinerea. J. Agric. Food Chem. 2005, 53, 6673–6677. [Google Scholar] [CrossRef] [PubMed]
- Enserink, M.; Pamela, J.; Hines, P.J.; Sacha, N.; Vignieri, S.N.; Wigginton, N.S.; Yeston, J.S. The pesticide paradox. Science 2013, 341, 728–729. [Google Scholar] [CrossRef] [Green Version]
- Lucas, J.A. Advances in plant disease and pest management. J. Agric. Sci. 2011, 149, 91–114. [Google Scholar] [CrossRef]
- Gonthier, D.J.; Ennis, K.K.; Farinas, S.; Hsieh, H.Y.; Iverson, A.L.; Batáry, P.; Rudolphi, J.; Tscharntke, T.; Cardinale, B.J.; Perfecto, I. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. R. Soc. B 2014, 281, 1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, J.; Mundt, C.C.; Hoffer, M.H.; McDonald, B.A. Local adaptation and effect of host genotype on the evolution of pathogen: An experimental test in a plant pathosystem. J. Evol. Biol. 2002, 15, 634–647. [Google Scholar] [CrossRef]
- Sommerhalder, R.J.; McDonald, B.A.; Mascher, F.; Zhan, J.S. Sexual recombinants make a significant contribution to epidemics caused by the wheat pathogen Phaeosphaeria nodorum. Phytopathology 2010, 100, 855–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, J.; McDonald, B.A. Experimental measures of pathogen competition and relative fitness. Annu. Rev. Phytopathol. 2013, 51, 131–153. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Park, E.; Lee, S.W.; Hyun, J.W.; Baek, K.H. Selection of small synthetic antimicrobial peptides inhibiting Xanthomonas citri subsp. citri causing citrus canker. Plant Pathol. J. 2017, 33, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, D.-C.; Zhan, J.-S.; Xie, L.-H. Problems, challenges and future of plant disease management: From an ecological point of view. J. Integr. Agric. 2016, 15, 705–715. [Google Scholar] [CrossRef]
- Park, I.Y.; Cho, J.H.; Kim, K.S.; Kim, Y.B.; Kim, M.S.; Kim, S.C. Helix stability confers salt resistance upon helical antimicrobial peptides. J. Biol. Chem. 2004, 279, 13896–13901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Wang, G. ADP: The antimicrobial peptide database. Nucleic Acids Res. 2004, 32, D590–D592. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.J.; Gallo, R.L. Antimicrobial peptides. Curr. Biol. 2006, 26, R14–R19. [Google Scholar] [CrossRef] [PubMed]
- Powers, J.P.S.; Rosek, A.; Hancock, R.E.W. Structure activity relationship for the β-hairpin cationic antimicrobial peptide polyphemusin I. Biochim. Biophys. Acta Proteins Proteom. 2004, 1698, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Hall, K.N.; Aguilar, M.I. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure. Curr. Top. Med. Chem. 2016, 16, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Hammami, R.B.; Hamida, J.; Vergoten, G.; Fliss, I. PhytAMP: A database dedicated to antimicrobial plant peptides. Nucleic Acids Res. 2008, 37, D963–D968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, Y.J.; Romanowski, E.G.; McDermott, A.M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res. 2005, 30, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Adejumo, I.O.; Adebiyi, O.A. Agricultural Solid Wastes: Causes, Effects, and Effective Management. In Strategies of Sustainable Solid Waste Management; IntechOpen: London, UK, 2015. [Google Scholar] [CrossRef]
- Varma, V.S.; Yadav, J.; Das, S.; Kalamdhad, A.S. Potential of waste carbide sludge addition on earthworm growth and organic matter degradation during vermicomposting of agricultural wastes. Ecol. Eng. 2015, 83, 90–95. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Perkins, D.N.; Pappin, D.J.C.; Creasy, D.M.; Cottrel, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20, 3551–3567. [Google Scholar] [CrossRef]
- Hansen, P.R.; Oddo, A. Fmoc Solid-Phase Peptide Synthesis. Methods Mol. Biol. 2015, 1348, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickardt, C.; Neidhart, S.; Griesbach, C.; Dube, M.; Knauf, U.; Kammerer, D.R.; Carle, R. Optimisation of mild-acidic protein extraction from defatted sunflower (Helianthus annuus L.) meal. Food Hydrocoll. 2009, 23, 1966–1973. [Google Scholar] [CrossRef]
- Lay, F.T.; Brugliera, F.; Anderson, M.A. Isolation and Properties of Floral Defensins from Ornamental Tobacco and Petunia. Plant Physiol. 2003, 131, 1283–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniguchi, M.; Kameda, M.; Namae, T.; Ochiai, A.; Saitoh, E.; Tanaka, T. Identification and characterization of multifunctional cationic peptides derived from peptic hydrolysates of rice bran protein. J. Funct. Foods 2017, 34, 287–296. [Google Scholar] [CrossRef]
- Lay, F.T.; Anderson, M.A. Defensins—Components of the Innate Immune System in Plants. Curr. Protein Pept. Sci. 2005, 6, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Broekaert, W.F.; Cammue, B.P.A.; De Bolle, M.F.C.; Thevissen, K.; De Samblanx, G.W.; Osborn, R.W. Antimicrobial peptides from plants. Crit. Rev. Plant Sci. 1997, 16, 297–323. [Google Scholar] [CrossRef]
- Velazquez-Martinez, V.; Valles-Rosales, D.; Rodriguez-Uribe, L.; Holguin, O.; Quintero-Quiroz, J.; Reyes-Jaquez, D.; Rodriguez-Borbon, M.I.; Villagrán-Villegas, L.Y.; Delgado, E. Antimicrobial, shelf-life stability, and effect of maltodextrin and gum arabic on the encapsulation efficiency of sugarcane bagasse bioactive compounds. Foods 2021, 10, 116. [Google Scholar] [CrossRef]
- Mandal, S.M.; Migliolo, L.; Franco, O.L.; Ghosh, A.K. Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation. Peptides 2011, 32, 1741–1747. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Han, M.S.; Ahn, C.Y.; Kim, H.S.; Yoon, B.D.; Oh, H.M. Growth inhibition of bloom-forming cyanobacterium Microcystis aeruginosa by rice straw extract. Lett. Appl. Microbiol. 2006, 43, 307–312. [Google Scholar] [CrossRef]
- Ditsawanon, T.; Parinthawong, N.; Phaonakrob, N.; Roytrakul, S. Protein hydrolysates from agricultural wastes for plant bacterial disease control. IJAT 2022, 18, 479–488. [Google Scholar]
- Scott, E.; Peter, F.; Sander, J. Biomass in the manufacture of industrial products-the use of proteins and amino acids. Appl. Microbiol. Biotechnol. 2007, 75, 751–762. [Google Scholar] [CrossRef] [Green Version]
- Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003, 55, 27–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sani, M.A.; Separovic, F. How Membrane-Active Peptides Get into Lipid Membranes. Acc. Chem. Res. 2017, 49, 1130–1138. [Google Scholar] [CrossRef] [PubMed]
- Otvos, L. Antibacterial peptides and proteins with multiple cellular targets. J. Pept. Sci. 2005, 11, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Casteels, P.; Ampe, C.; Jacobs, F.; Vaeck, M.; Tempst, P. Apidaecins: Antibacterial peptides from honeybees. EMBO J. 1989, 8, 2387–2391. [Google Scholar] [CrossRef]
- Cudic, M.; Otvos, J.L. Intracellular target.ts of antibacterial peptides. Curr. Drug Targets 2002, 3, 101–106. [Google Scholar] [CrossRef]
- Shi, W.; Li, C.; Li, M.; Zong, X.; Han, D.; Chen, Y. Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Appl. Microbiol. Biotechnol. 2016, 100, 5059–5067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.H.; Chen, C.; Jou, M.L.; Lee, A.Y.; Lin, Y.C.; Yu, Y.P.; Huang, W.T.; Wu, S.H. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: Evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res. 2005, 33, 4053–4064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Code | Source | Location (Latitude, Longitude) |
---|---|---|---|
Agricultural wastes | |||
Rice straw | AW1 | Rice farm | Chachoengsao, Thailand (13.6690° N, 101.0891° E) |
Corn cobs | AW2 | Corn farm | Sakaeo, Thailand (13.5035° N, 102.2872° E) |
Corn leaves | AW3 | Corn farm | Sakaeo, Thailand (13.5035° N, 102.2872° E) |
Corn husks | AW4 | Corn farm | Sakaeo, Thailand (13.5035° N, 102.2872° E) |
Sugarcane leaves | AW5 | Sugarcane farm | Sakaeo, Thailand (13.50181° N, 102.2875° E) |
Bagasse | AW6 | Sugarcane farm | Sakaeo, Thailand (13.50181 °N, 102.2875° E) |
Agro-industrial wastes | |||
Fermented soybeans | IW1 | Light soy sauce production | Hi-q Food Products Co., Ltd, Chachoengsao, Thailand (13.7489° N, 100.9518° E) |
Soybean pellet | IW2 | Soybean milk production | market in Chachoengsao, Thailand (13.6924° N, 101.0807° E) |
Peanut seed coat | IW3 | Peanut-based snack production | Mae-Ruay Snack Food Factory Co Ltd, Bangkok, Thailand (13.6557° N, 100.4305° E) |
Coconut residue | IW4 | Coconut milk production | market in Chachoengsao, Thailand (13.6924° N, 101.0807° E) |
Coffee grounds | IW5 | Arabica grounds, the primary coffee industry residue | Rosetta Coffee Shop, Chachoengsao, Thailand (13.6701° N, 101.0562° E) |
Fish residue | IW6 | Fish sauce production | King Mongkut’s University of Technology Thonburi, Thailand (13.5790° N, 100.4418° E) |
Fish residue (rinsed) | IW7 | Fish sauce production (rinsed) | King Mongkut’s University of Technology Thonburi, Thailand (13.5790° N, 100.4418° E) |
pH Interval | Step Voltage Mode | Voltage (V) | Duration (h:min) | kVh |
---|---|---|---|---|
3–10 | 1 Step and hold | 500 | 1:00 (8:00) | 0.5 |
2 Gradient | 1000 | 1:00 | 0.8 | |
3a Gradient | 8000 | 3:00 | 13.5 | |
4a Step and hold | 8000 | 0:46–1:30 | 6.2–12.2 | |
3b Gradient | 10,000 | 3:00 | 16.5 | |
4b Step and hold | 10,000 | 0:20–0:55 | 3.2–9.2 | |
Total | 21.0–27.0 |
Antibacterial Activity Ranking | Inhibitory Percentages against Target Organisms | |||||||
---|---|---|---|---|---|---|---|---|
X. oryzae pv. oryzae | X. citri | P. carotovorum | A. rhizogenes | |||||
1 | 84.90 ± 1.98 a | AW6 | 84.21 ± 0.40 ab | AW6 | 87.06 ± 0.33 ab | AW6 | 65.87 ± 1.58 ab | AW6 |
2 | 79.20 ± 8.73 a | IW3 | 82.30 ± 0.58 abc | IW4 | 81.95 ± 0.75 b | IW4 | 59.28 ± 2.16 bc | IW4 |
3 | 57.61 ± 5.48 b | IW4 | 79.41 ± 0.46 abcd | IW3 | 60.06 ± 0.86 d | IW7 | 57.09 ± 0.69 c | IW5 |
4 | 47.81 ± 12.29 bc | AW1 | 74.07 ± 3.35 bcde | AW1 | 55.93 ± 2.45 de | AW4 | 43.11 ± 2.40 d | AW1 |
5 | 44.50 ± 7.76 bcd | IW7 | 71.62 ± 2.86 cde | AW4 | 55.93 ± 0.25 de | AW1 | 39.92 ± 1.92 d | AW5 |
6 | 42.74 ± 11.70 cde | AW5 | 69.95 ± 0.95 def | AW3 | 54.66 ± 1.01 de | AW3 | 37.92 ± 3.01 de | AW4 |
7 | 40.40 ± 2.68 cde | AW4 | 67.12 ± 2.43 ef | AW5 | 52.74 ± 2.18 e | AW5 | 36.53 ± 2.74 de | AW3 |
8 | 39.20 ± 2.68 cde | AW3 | 66.06 ± 1.72 ef | IW7 | 51.10 ± 1.09 e | IW5 | 29.54 ± 8.50 e | IW7 |
9 | 31.68 ± 3.53 def | AW2 | 59.19 ± 1.66 fg | IW5 | 40.94 ± 0.56 f | AW2 | 14.57 ± 5.02 f | IW2 |
10 | 29.52 ± 2.94 ef | IW5 | 53.17 ± 9.22 gh | AW2 | 37.38 ± 2.89 f | IW2 | 14.37 ± 9.97 f | IW3 |
11 | 19.26 ± 2.11 f | IW2 | 52.10 ± 2.20 gh | IW2 | 28.00 ± 3.63 g | IW6 | 9.18 ± 2.83 fg | AW2 |
12 | 0.74 ± 3.17 g | IW6 | 44.85 ± 13.37 h | IW6 | 7.89 ± 1.48 h | IW3 | 5.39 ± 7.83 gh | IW6 |
13 | −7.35 ± 17.30 g | IW1 | −7.09 ± 7.73 j | IW1 | 1.85 ± 11.24 i | IW1 | 0.20 ± 2.42 h | IW1 |
kanamycin | 82.91 ± 9.35 a | 85.35 ± 0.61 a | 89.05 ± 0.33 a | 63.87 ± 5.23 abc | ||||
ampicillin | 90.83 ± 0.52 a | 4.12 ± 13.30 i | 74.48 ± 0.25 c | 70.26 ± 3.40 a |
Peptide Samples from Each Purification Step | Inhibitory Percentage against Bacterial Plant Pathogens | |||
---|---|---|---|---|
X. oryzae pv. oryzae | X. citri | P. carotovorum | A. rhizogenes | |
After reverse-phase chromatography | ||||
AW1 UBR | 44.57 ± 16.00 b | 54.91 ± 1.08 b | 20.74 ± 1.38 e | 19.22 ± 3.37 c |
AW1 BR | 12.19 ± 3.01 c | 10.81 ± 0.63 c | −3.24 ± 0.9 g | −0.26 ± 5.82 d |
AW6 UBR | 59.73 ± 9.76 ab | 59.04 ± 0.29 ab | 64.68 ± 0.73 b | 64.25 ± 10.47 a |
AW6 BR | 6.60 ± 1.30 c | 1.30 ± 2.47 c | −2.56 ± 1.47 g | −0.10 ± 3.47 d |
IW3 UBR | 51.41 ± 16.88 ab | 55.18 ± 1.53 ab | 24.86 ± 4.65 d | 33.31 ± 4.73 b |
IW3 BR | 8.18 ± 3.13 c | 5.21 ± 1.10 c | 1.78 ± 3.12 f | −2.82 ± 1.65 d |
IW4 UBR | 43.00 ± 10.76 b | 49.53 ± 3.64 b | 24.20 ± 1.75 de | 33.48 ± 4.22 b |
IW4 BR | 4.95 ± 6.25 c | 2.96 ± 4.68 c | 2.85 ± 2.26 f | 4.34 ± 1.40 d |
kanamycin | 55.47 ± 10.21 ab | 61.56 ± 0.19 ab | 68.64 ± 0.83 a | 68.33 ± 0.77 a |
ampicillin | 63.29 ± 2.51 a | 63.75 ± 1.19 a | 31.29 ± 1.39 c | 34.72 ± 1.36 b |
After cation exchange chromatography | ||||
AW1 UBR-UBC | 1.47 ± 5.63 c | 3.26 ± 3.83 d | 9.71 ± 1.54 cd | 2.62 ± 2.05 de |
AW6 UBR-UBC | 0.65 ± 0.81 cd | 1.03 ± 4.09 de | 6.03 ± 4.54 de | 5.83 ± 4.87 cd |
AW6 UBR-BC | 7.32 ± 13.43 b | 9.21 ± 0.97 c | 18.21 ± 3.06 b | 7.26 ± 2.48 c |
IW3 UBR-UBC | −0.61 ± 1.93 cd | −6.51 ± 1.22 f | 1.61 ± 8.87 ef | −4.44 ± 8.72 g |
IW3 UBR-BC | −3.84 ± 6.80 d | −1.66 ± 3.10 e | 2.19 ± 2.49 ef | 0.65 ± 2.08 ef |
IW4 UBR-UBC | −0.60 ± 3.88 cd | 0.51 ± 4.69 de | 11.05 ± 2.05 c | 0.75 ± 1.76 ef |
IW4 UBR-BC | −0.55 ± 1.86 cd | −2.81 ± 4.93 ef | 0.97 ± 1.80 f | −1.62 ± 0.18 fg |
kanamycin | 55.32 ± 0.96 a | 48.12 ± 0.47 b | 66.01 ± 1.63 a | 54.32 ± 1.28 a |
ampicillin | 58.54 ± 1.18 a | 52.95 ± 3.43 a | 22.40 ± 4.63 b | 24.65 ± 0.62 b |
After off-gel fractionation | ||||
AW6 UBR-BC well 1 | −5.16 | N/A | 1.71 | N/A |
AW6 UBR-BC well 2 | 1.89 | N/A | −4.47 | N/A |
AW6 UBR-BC well 3 | 0.61 | N/A | −2.67 | N/A |
AW6 UBR-BC well 4 | 5.43 | N/A | −3.08 | N/A |
AW6 UBR-BC well 5 | 6.96 | N/A | −5.20 | N/A |
AW6 UBR-BC well 6 | 9.76 | N/A | −4.43 | N/A |
AW6 UBR-BC well 7 | 11.21 | N/A | −1.75 | N/A |
AW6 UBR-BC well 8 | −0.73 | N/A | −7.98 | N/A |
AW6 UBR-BC well 9 | 3.65 | N/A | −3.41 | N/A |
AW6 UBR-BC well 10 | 3.50 | N/A | −9.08 | N/A |
AW6 UBR-BC well 11 | −7.64 | N/A | −3.06 | N/A |
AW6 UBR-BC well 12 | −11.35 | N/A | −6.58 | N/A |
AW6 UBR-BC well 13 | 0.08 | N/A | 11.42 | N/A |
AW6 UBR-BC well 14 | −5.50 | N/A | −2.23 | N/A |
AW6 UBR-BC well 15 | −4.13 | N/A | −4.91 | N/A |
AW6 UBR-BC well 16 | −7.09 | N/A | −3.95 | N/A |
AW6 UBR-BC well 17 | 0.50 | N/A | −4.70 | N/A |
AW6 UBR-BC well 18 | 4.65 | N/A | −6.96 | N/A |
kanamycin | 46.82 | N/A | 59.57 | N/A |
ampicillin | 50.35 | N/A | 39.07 | N/A |
Peptide No. | Protein Accession Number | Protein Name | Peptide Sequence | Inhibitory Percentage | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Plant Pathogens | PGPRs | |||||||||
X. oryzae pv. oryzae | X. citri | Pectobacterium carotovorum | A. rhizogenes | B. subtilis | Pseudomonas aeruginosa | Pseudomonas fluorescens | ||||
1 | A0A059Q0V8 | Uncharacterized protein | PQLAVF | 6.66 ± 0.24 | 4.86 ± 0.18 | −1.80 ± 0.02 | 1.70 ± 0.02 | 7.60 ± 0.11 | 24.26 ± 0.37 | 7.44 ± 0.32 |
2 | A0A5N5XU21 | ATP-binding cassette domain-containing protein | VQLMNSL | −13.28 ± 1.21 | −9.09 ± 0.71 | 12.78 ± 6.18 | 16.92 ± 3.54 | −3.96 ± 0.50 | 24.69 ± 0.62 | 0.43 ± 0.03 |
3 | A0A678TAJ2 | Tr-type G domain-containing protein (Fragment) | TAMPRL | 3.27 ±0.08 | 9.87 ± 0.37 | 6.18 ± 0.13 | 4.29 ± 0.07 | 8.92 ± 0.31 | 25.81 ± 0.49 | −10.14 ± 0.06 |
4 | A0A1B2URG1 | NAD(P)H-quinone oxidoreductase subunit 2, chloroplastic (EC 7.1.1.-) | ISSTSL | 1.07 ± 0.02 | 6.63 ± 0.18 | 6.91 ± 0.08 | 2.73 ± 0.00 | 9.00 ± 0.23 | 26.03 ± 0.47 | −7.22 ± 0.20 |
5 | A0A2H4YIU1 | Expansin | MDRFL | 7.29 ± 0.20 | 4.57 ± 0.19 | 0.81 ± 0.01 | −2.47 ± 0.02 | 5.54 ± 0.08 | 26.22 ± 0.82 | 6.30 ± 0.25 |
6 | Q8GT31 | Phytocalpain (EC 3.4.22.17) (Fragment) | RVTGRDAL | 3.62 ± 0.13 | 10.72 ± 0.35 | 6.33 ± 0.11 | 0.22 ± 0.00 | 10.63 ± 0.02 | 29.08 ± 0.12 | −4.03 ± 0.06 |
7 | A0A059Q1W5 | Cation/H (+) antiporter | SIAGVTSYL | −2.13 ± 0.02 | −0.59 ± 0.01 | 0.59 ± 0.01 | −4.25 ± 0.05 | 9.42 ± 0.20 | 33.13 ± 0.76 | −7.00 ± 0.08 |
8 | A0A6B9MSZ0_9POAL | Tetraspanin-18 | VMAAGL | −2.96 ± 0.13 | 0.27 ± 0.01 | 0.27 ± 0.01 | −4.15 ± 0.05 | 5.46 ± 0.02 | 29.73 ± 0.57 | −5.10 ± 0.03 |
Bacterial Plant Pathogen | Peptide No. | Peptide Sequence |
---|---|---|
X. oryzae pv. oryzae | 1 | PQLAVF |
X. oryzae pv. oryzae | 5 | MDRFL |
P. carotovorum | 2 | VQLMNSL |
A. rhizogenes | 2 | VQLMNSL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ditsawanon, T.; Roytrakul, S.; Phaonakrop, N.; Charoenlappanit, S.; Thaisakun, S.; Parinthawong, N. Novel Small Antimicrobial Peptides Extracted from Agricultural Wastes Act against Phytopathogens but Not Rhizobacteria. Agronomy 2022, 12, 1841. https://doi.org/10.3390/agronomy12081841
Ditsawanon T, Roytrakul S, Phaonakrop N, Charoenlappanit S, Thaisakun S, Parinthawong N. Novel Small Antimicrobial Peptides Extracted from Agricultural Wastes Act against Phytopathogens but Not Rhizobacteria. Agronomy. 2022; 12(8):1841. https://doi.org/10.3390/agronomy12081841
Chicago/Turabian StyleDitsawanon, Thitiporn, Sittiruk Roytrakul, Narumon Phaonakrop, Sawanya Charoenlappanit, Siriwan Thaisakun, and Nonglak Parinthawong. 2022. "Novel Small Antimicrobial Peptides Extracted from Agricultural Wastes Act against Phytopathogens but Not Rhizobacteria" Agronomy 12, no. 8: 1841. https://doi.org/10.3390/agronomy12081841
APA StyleDitsawanon, T., Roytrakul, S., Phaonakrop, N., Charoenlappanit, S., Thaisakun, S., & Parinthawong, N. (2022). Novel Small Antimicrobial Peptides Extracted from Agricultural Wastes Act against Phytopathogens but Not Rhizobacteria. Agronomy, 12(8), 1841. https://doi.org/10.3390/agronomy12081841