Land Use, Temperature, and Nitrogen Affect Nitrous Oxide Emissions in Amazonian Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site, Sampling, and Soil Characteristics
2.2. Experimental Design
- (a)
- Incubation 1
- (b)
- Incubation 2
- (c)
- Incubation 3
2.3. Soil Preparation and Incubation
2.4. N2O Measurements and Soil Analysis
2.5. Data Analysis
3. Results
3.1. Effect of Land Use on N2O Emission
3.2. Effects of Incubation Temperature on N2O Emission
3.3. Effect of Nitrogen Inputs to the Soil on N2O Emission
3.4. Mineral Nitrogen Concentration
4. Discussion
4.1. Effect of Land Use on N2O Emission
4.2. Effects of Temperature on N2O Emission
4.3. Effect of Nitrogen Addition to the Soil on N2O Emission
5. Conclusions
- −
- Nitrous oxide emissions in wet tropical forest soils are lower and are not affected by nitrogen temperature and availability;
- −
- Agricultural soils emit more N2O than forest and pasture soils in the Brazilian Amazon;
- −
- When subjected to a temperature rise to 35 °C, pasture and agricultural soils in the Amazon increase emissions of N2O, reducing production significantly at 40 °C;
- −
- The addition of nitrogen to the soil increases the emission of N2O from pasture and agricultural soils in the Brazilian Amazon;
- −
- The results of this study could be used for modeling N2O in the function of the temperature and N input variation. Moreover, help to develop mitigation strategies regarding soil land use.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gatti, L.V.; Basso, L.S.; Miller, J.B.; Gloor, M.; Domingues, L.G.; Cassol, H.L.G.; Tejada, G.; Aragon, L.E.O.C.; Nobre, C.; Peters, W.; et al. Amazon as a carbon source linked to deforestation and climate change. Nature 2020, 595, 388–408. [Google Scholar] [CrossRef] [PubMed]
- Sonter, L.J.; Herrera, D.; Barrett, D.J.; Galford, G.L.; Moran, C.J.; Soares-Filho, B.S. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Comun. 2017, 8, 1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Hancher, M.; Turubanova, S.A.; Tykavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; Kommareddy, A.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, F.F.; Fulgitini, L.E.; Perrin, R. The cost the forest preservation in the Brazilian Amazon: The “arc od deforestation”. J. Agric. Resour. Econ. 2019, 44, 497–512. [Google Scholar] [CrossRef]
- IPCC. Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories. In Guidelines for National Greenhouse Gas Inventories; Chapter 11; International Panel on Climate Change (IPCC): Geneva, Switzerland, 2019; Volume 4. [Google Scholar]
- Wang, Y.; Guo, J.; Vogt, R.D.; Mulder, J.; Wang, J.; Zang, X. Soil pH as the chief modifier for regional nitrous oxide emission: New evidence and implications for global estimates and mitigation. Glob. Chang. Biol. 2017, 24, e617–e626. [Google Scholar] [CrossRef]
- Almeida, C.T.; Oliveira-Júnior, J.F.; Delgado, R.C.; Cubo, P.; Ramos, M.C. Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. Int. J. Climatol. 2017, 37, 2013–2026. [Google Scholar] [CrossRef]
- Ghazoul, J.; Burivalova, Z.; Garcia-Ulloa, J.; King, L.A. Conceptualizing forest degradation. Trends Ecol. Evol. 2015, 30, 622–632. [Google Scholar] [CrossRef]
- Sun, L.; Sang, C.; Wang, C.; Fan, Z.; Peng, B.; Jiang, P.; Xia, Z. N2O production in the organic and mineral horizons of soil had different responses to increasing temperature. J. Soils Sediments 2019, 19, 3499–3511. [Google Scholar] [CrossRef]
- Cardoso, A.S.; Junqueira, J.B.; Reis, R.A.; Ruggieri, A.C. How do greenhouse gas emissions vary with biofertilizer type and soil temperature and moisture in a tropical grassland? Pedosphere 2020, 30, 607–617. [Google Scholar] [CrossRef]
- Lai, T.V.; Farquharson, R.; Denton, M.D. High soil temperatures alter the rates of nitrification, denitrification and associated emissions of N2O. J. Soils Sediments 2019, 19, 2176–2189. [Google Scholar] [CrossRef]
- Raposo, E.; Brito, L.F.; Janusckiewicz, E.R.; Oliveira, L.F.; Versuti, J.; Assumpção, F.M.; Cardoso, A.S.; Siniscalchi, D.; Delevaatti, L.M.; Malheiros, E.B.; et al. Greenhouse gases emissions from tropical grasslands affected by nitrogen fertilizer management. Agron. J. 2020, 112, 4666–4680. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.; Wang, D.; Heenan, M.; Xu, Z. Short-term responses of soil nitrogen mineralization, nitrification and desnitrification to prescribed burning in a suburban forest ecosystem of subtropical Australia. Sci. Total Environ. 2018, 642, 879–886. [Google Scholar] [CrossRef]
- Figueiredo, C.C.; Oliveira, A.D.; Santos, I.L.; Ferreira, E.A.B.; Malaquias, J.V.; Sá, M.A.C.; Carvalho, A.M.; Santos-Júnior, J.D.G. Relationships between soil organic matter pools and nitrous oxide emissions of agroecosystems in the Brazilian Cerrado. Sci. Total Environ. 2018, 618, 1572–1582. [Google Scholar] [CrossRef]
- Ribeiro, K.; Sousa Neto, E.R.; Carvalho Junior, J.A.; Lima, J.R.S.; Menezes, R.S.C.; Duarte Neto, P.J.; Guerra, G.S.; Ometto, J.P.H.B. Land cover changes and greenhouse gas emissions in two different soil covers in the Brazilian Caatinga. Sci. Total Environ. 2016, 571, 1048–1057. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, C.; Costantini, A.; Alavres, C.R.; Alves, B.J.R.; Jantalia, C.P.; Martelloto, E.; Urquiaga, S. Soil nitrous oxide emissions under different management practices in the semiarid region of the Argentinian Pampas. Nutr. Cycl. Agroecosyst. 2012, 94, 209–220. [Google Scholar] [CrossRef]
- Verchot, L.V.; Davidson, E.A.; Cattânio, J.H.; Ackerman, I.L.; Erickson, H.E.; Keller, M. Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia. Global Biogeochem. Cycles 1999, 13, 31–46. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Koppen’s climate classification map for Brazil. Meteorol. Zeitschift 2013, 22, 711–728. [Google Scholar] [CrossRef]
- USDA. Soil Survey Manual, 18th ed.; USDA-United States Department of Agriculture: Washington, DC, USA, 2017. [Google Scholar]
- Cardoso, A.S.; Quintana, B.G.; Janusckiewicz, E.R.; Brito, L.F.; Morgado, E.S.; Reis, R.A.; Ruggieri, A.C. N2O emissions from urine-treated tropical soil: Effects of soil moisture and compaction, urine composition, and dung addition. Catena 2017, 157, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Moraghan, J.T.; Buresh, R.J. Chemical reduction of nitrite and nitrous oxide by ferrous iron. Soil Sci. Soc. Am. J. 1977, 41, 47–50. [Google Scholar] [CrossRef]
- Forster, J.C. Soil nitrogen. In Methods in Applied Soil Microbiology and Biochemistry, 1st ed.; Alef, K., Nannipieri, P., Eds.; Academic Press: London, UK, 1995; pp. 79–87. [Google Scholar]
- Doane, T.A.; Horwath, W.R. Spectrophotometric determination of nitrate with a single reagent. Anal. Lett. 2003, 36, 2713–2722. [Google Scholar] [CrossRef]
- Marengo, J.A.; Souza, C.M., Jr.; Thonicke, K.; Burton, C.; Halladay, K.; Betts, R.A.; Alves, L.A.; Soares, W.R. Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and Trends. Front. Earth Sci. 2018, 6, 228. [Google Scholar] [CrossRef]
- Castle, L.; Macedo, M. Large-scale degradation of Amazonian fresh water Ecosystem. Glob. Chang. Biol. 2016, 22, 990–1007. [Google Scholar] [CrossRef]
- Huddell, A.; Neil, C.; Santos, L.M.; Cerri, C.E.P.; Menge, D. Nitric and nitrous oxide fluxes from intensifying crop agriculture in the seasonally dry tropical Amazon–Cerrado border region. Agric. Ecosyst. Environ. 2021, 4, e20169. [Google Scholar] [CrossRef]
- Sapkota, T.K.; Khanam, F.; Mathivanan, G.P.; Vetter, S.; Hussain, S.G.; Pilat, A.L.; Shahrin, S.; Hossain, M.K.; Sarker, N.R.; Krupnik, T. Quantifying opportunities for greenhouse gas emissions mitigation using big data from smallholder crop and livestock farmers across Bangladesh. Sci. Total Environ. 2021, 786, 147344. [Google Scholar] [CrossRef] [PubMed]
- Lyianage, A.; Grace, P.R.; Scheer, C.; Pink, D.; Ranwala, S.; Rowlings, D.W. Carbon limits non-linear response of nitrous oxide (N2O) to increasing N inputs in a highly-weathered tropical soil in Sri Lanka. Agric. Ecosyst. Environ. 2020, 292, 106808. [Google Scholar] [CrossRef]
- Wachiye, S.; Merbold, L.; Vesala, T.; Rime, J.; Rasanen, M.; Laitner, S.; Pellikka, P. Soil greenhouse gas emissions under different land-use types in savanna ecosystems of Kenya. Biogeosciences 2020, 17, 2149–2167. [Google Scholar] [CrossRef] [Green Version]
- Albirich, K.; Rammer, W.; Turner, M.G.; Ratajczak, Z.; Braziunas, K.H.; Hansen, W.D.; Seidl, R. Simulating forest resilience: A review. Glob. Ecol. Biogeogr. 2020, 29, 2082–2096. [Google Scholar] [CrossRef]
- Peri, P.L.; López, D.R.; Rusch, V.; Rusch, G.; Rosas, Y.M.; Pastur, G.M. State and transition model approach in native forests of Southern Patagonia (Argentina): Linking ecosystem services, thresholds and resilience. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Meurer, K.H.E.; Franko, U.; Stange, C.F.; Rosa, J.D.; Madari, B.E.; Jungkunst, H.F. Direct nitrous oxide (N2O) fluxes from soils under different land use in Brazil—A critical review. Environ. Res. Lett. 2016, 11, 023001. [Google Scholar] [CrossRef]
- Corrêa, D.C.C.; Cardoso, A.S.; Ferreira, M.R.; Siniscalchi, D.; Toniello, A.D.; Lima, G.C.; Reis, R.A.; Ruggieri, A.C. Are CH4, CO2, and N2O emissions from soil affected by the sources and doses of nin warm-season pasture? Atmosphere 2021, 12, 697. [Google Scholar] [CrossRef]
- Sato, J.H.; Carvalho, A.M.; Figueiredo, C.C.; Coser, T.R.; Sousa, T.T.; Vilela, L.; Marchão, R.L. Nitrous oxide fluxes in a Brazilian clayey oxisol after 24 years of integrated crop-livestock management. Nutr. Cycl. Agroecosyst. 2017, 108, 55–68. [Google Scholar] [CrossRef]
- Abalos, M.; Orbe, C.; Kinnison, D.E.; Plummer, D.; Oman, L.D.; Jockel, P.; Morgenstern, O.; Garcia, R.R.; Zeng, G.; Stone, K.A.; et al. Future trends in stratosphere-to-troposphere transport in CCMI models. Atmos. Chem. Phys. 2020, 20, 6883–6901. [Google Scholar] [CrossRef]
- Mazzetto, A.M.; Barneze, A.S.; Feigl, B.J.; Van Groeningen, J.W.; Oenema, O.; Cerri, C.C. Temperature and moisture affect methane and nitrous oxide emission from bovine manure patches in tropical conditions. Soil Biol. Biochem. 2014, 76, 242–248. [Google Scholar] [CrossRef]
- Cardoso, A.S.; Brito, L.F.; Janusckiewicz, E.R.; Morgado, E.S.; Barbero, R.P.; Korckeck, J.F.W.; Reis, R.A.; Ruggieri, A.C. Impact of grazing intensity and seasons on greenhouse gas emissions in tropical grassland. Ecosystems 2016, 20, 845–859. [Google Scholar] [CrossRef]
- Jantalia, C.P.; Santos, H.P.; Urquiaga, S.; Boddey, R.M.; Alves, B.J.R. Fluxes of nitrous oxide from soil under different crop rotations and tillage systems in the South of Brazil. Nutr. Cycl. Agroecosyst. 2008, 82, 161–173. [Google Scholar] [CrossRef]
- Wu, D.; Dong, W.; Oenema, O.; Wan, G.Y.; Trebs, I.; Hu, C. N2O consumption by low-nitrogen soil and its regulation by water and oxygen. Soil Biol. Biochem. 2017, 60, 165–172. [Google Scholar] [CrossRef]
- Ri, X.; Prentice, C.; Spahni, R.; Niu, H.S. Modelling terrestrial nitrous oxide emissions and implications of climate feedback. New Phytol. 2012, 196, 472–488. [Google Scholar] [CrossRef]
- Cui, P.; Fan, F.; Yin, C.; Song, A.; Huang, P.; Tang, Y.; Zhu, P.; Peng, C.; Li, T.; Wakelin, S.A.; et al. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil Biol. Biochem. 2016, 93, 131–141. [Google Scholar] [CrossRef]
- Parra, J.L.; Pulido, M.; Fondón, C.L.; Schnabel, S. How do soil moisture and vegetation cover influence soil temperature in drylands of Mediterranean regions? Water 2018, 10, 1747. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, J.; Dai, S.; Sun, Y.; Chen, J.; Cai, Z.; Zhang, J.; Muller, C. Temperature effects on N2O production pathways in temperate forest soils. Sci. Total Environ. 2019, 691, 1127–1136. [Google Scholar] [CrossRef]
- Taylor, A.; Giguere, A.; Zoebelein, C.; Myrold, D.D.; Bottomley, P.J. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria. ISME J. 2017, 11, 896–908. [Google Scholar] [CrossRef]
- Grant, R.F.; Pattey, E. Temperature sensitivity of N2O emissionsfrom fertilized agricultural soils: Mathematical modeling in ecosys. Glob. Biogeochem. Cycles 2008, 22, GB4019. [Google Scholar] [CrossRef]
- Dai, Z.; Yu, M.; Chen, H.; Zhto, H.; Huang, Y.; Su, W.; Xia, F.; Chang, S.; Brookes, P.C.; Dahlgren, R.A.; et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Glob. Chang. Biol. 2020, 26, 5267–5276. [Google Scholar] [CrossRef]
- Guntinãs, M.E.; Leirós, M.C.; Trasar-Cepeda, C.; Sotes, F.G. Effects of moisture ana temperature on net soil nitrogen mineralization: A laboratory study. Eur. J. Soil Biol. 2012, 48, 73–80. [Google Scholar] [CrossRef]
- Zinn, Y.L.; Marrenjo, G.J.; Silva, C.A. Soil C:N ratios are unresponsive to land use change in Brazil: A comparative analysis. Agric. Ecosyst. Environ. 2018, 255, 62–72. [Google Scholar] [CrossRef]
- Krauss, M.; Ruser, R.; Muller., T.; Hansen., S.; Mader, P.; Gattinger, A. Impact of reduced tillage on greenhouse gas emissions and soil carbon stock in an organic grass-clover ley-winter wheat cropping sequence. Agric. Ecosyst. Environ. 2017, 239, 324–333. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J. Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant Soil Environ. 2016, 62, 250–255. [Google Scholar] [CrossRef]
- Klein, C.A.M.; Weerden, T.J.C.D.; Lo, J.; Cameron, K.C.; Di, H.J. A review of plant options for mitigating nitrous oxide emissions from pasture-based systems. N. Z. J. Agric. Res. 2020, 63, 29–43. [Google Scholar] [CrossRef]
- Lessa, A.C.R.; Madari, B.; Walls, D.S.; Boddey, R.M.; Urquiaga, S.; Jantalia, C.P.; Alves, B.J.R. Bovine urine and dung deposited on Brazilian savannah pastures contribute differently to direct and indirect soil nitrous oxide emissions. Agric. Ecosyst. Environ. 2014, 190, 104–111. [Google Scholar] [CrossRef]
- Cardoso, A.S.; Oliveira, S.C.; Janusckiewicz, E.R.; Brito, L.F.; Morgado, E.S.; Reis, R.A.; Ruggieri, A.C. Seasonal effects on ammonia, nitrous oxide, and methane emissions for beef cattle excreta and urea fertilizer applied to a tropical pasture. Soil Tillage Res. 2019, 194, 104341. [Google Scholar] [CrossRef]
- Signor, D.; Cerri, C.E.P. Nitrous oxide emissions in agricultural soils: A review. Pesq. Agropec. Trop. 2013, 43, 322–338. [Google Scholar] [CrossRef]
- Xie, B.; Gu, J.; Yu, J.; Han, G.; Zheng, X.; Xu, Y.; Lin, H. Effects of N fertilizer on soil N2O emissions and CH4 uptake: A two-year study in an apple orchard in -eastern China. Atmosphere 2017, 8, 181. [Google Scholar] [CrossRef] [Green Version]
Land Use | pH | OM | P * | Ca | Mg | K | Al | H | %V | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CaCl2 | g dm−3 | mg dm−3 | mmolC dm−3 | % | ||||||||
Forest | 4.3 | 23 | 10 | 4 | 2 | 0.3 | 14 | 38 | 10 | 67 | 11 | 22 |
Pasture | 4.8 | 10 | 1 | 12 | 4 | 1.0 | 0 | 23 | 42 | 81 | 4 | 15 |
Agriculture | 4.7 | 13 | 11 | 17 | 5 | 0.5 | 1 | 26 | 46 | 78 | 5 | 17 |
Land Use | Temperature (°C) | Average | Model of Regression | R2 | |||
---|---|---|---|---|---|---|---|
25 | 30 | 35 | 40 | ||||
Forest | −0.2 b | −0.2 b | 16.4 | −3.6 | 3.1 | Y = 3.1 | - |
Pasture | 7.6 b | 270.2 a | 137.6 | 4.0 | 104.9 | Y = −4.0X² + 254.7X − 3863.0 | 84 |
Agriculture | 230.4 a | 176.2 a | 108.6 | 5.2 | 130.1 | Y = −14.9X + 613.2 | 98 |
Average | 79.3 | 148.7 | 87.5 | 1.9 |
Land Use | Nitrogen in Soil (kg N ha−1) | Average | Model of Regression | R2 | |||
---|---|---|---|---|---|---|---|
0 | 90 | 180 | 270 | ||||
Forest | 4.8 | 7.4 | 12.0 b | 35.8 b | 15.0 | Y = 15.0 | - |
Pasture | 20.4 | 67.8 | 215.4 a | 323.2 a | 156.7 | Y = 1.2X − 1.7 | 97 |
Agriculture | 15.6 | 36.6 | 196.2 a | 263.4 a | 127.9 | Y = 1.0X − 7.5 | 93 |
Average | 13.6 | 37.3 | 141.2 | 207.5 |
Land Use | |||
---|---|---|---|
Forest | Pasture | Agriculture | |
Initial | |||
Ammonium | 22.6 | 32.1 | 11.1 |
Nitrate | 0.3 | 1.6 | 1.4 |
Incubation 1 | |||
Ammonium | 38.4 | 28.7 | 17.7 |
Nitrate | 0.6 | 2.4 | 2.4 |
Incubation 2 | |||
Ammonium 25 °C | 30.0 | 22.5 | 18.0 |
Nitrate 25 °C | 0.3 | 0.4 | 0.3 |
Ammonium 30 °C | 26.3 | 23.1 | 15.1 |
Nitrate 30 °C | 0.3 | 0.5 | 0.3 |
Ammonium 35 °C | 25.3 | 27.1 | 14.8 |
Nitrate 35 °C | 2.3 | 0.6 | 2.1 |
Ammonium 40 °C | 23.7 | 13.5 | 15.6 |
Nitrate 40 °C | 1.4 | 1.5 | 1.5 |
Incubation 3 | |||
Ammonium 0 kg N | 12.2 | 7.8 | 7.5 |
Nitrate 0 kg N | 2.3 | 8.3 | 6.9 |
Ammonium 90 kg N | 20.4 | 10.1 | 7.5 |
Nitrate 90 kg N | 2.4 | 11.8 | 14.2 |
Ammonium 180 kg N | 25.2 | 14.2 | 20.5 |
Nitrate 180 kg N | 1.9 | 12.5 | 7.1 |
Ammonium 270 kg N | 43.4 | 26.1 | 37.3 |
Nitrate 270 kg N | 2.8 | 6.2 | 4.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lage Filho, N.M.; Cardoso, A.d.S.; Azevedo, J.C.d.; Faturi, C.; da Silva, T.C.; Domingues, F.N.; Ruggieri, A.C.; Reis, R.A.; do Rêgo, A.C. Land Use, Temperature, and Nitrogen Affect Nitrous Oxide Emissions in Amazonian Soils. Agronomy 2022, 12, 1608. https://doi.org/10.3390/agronomy12071608
Lage Filho NM, Cardoso AdS, Azevedo JCd, Faturi C, da Silva TC, Domingues FN, Ruggieri AC, Reis RA, do Rêgo AC. Land Use, Temperature, and Nitrogen Affect Nitrous Oxide Emissions in Amazonian Soils. Agronomy. 2022; 12(7):1608. https://doi.org/10.3390/agronomy12071608
Chicago/Turabian StyleLage Filho, Nauara M., Abmael da S. Cardoso, Jorge C. de Azevedo, Cristian Faturi, Thiago C. da Silva, Felipe N. Domingues, Ana C. Ruggieri, Ricardo A. Reis, and Aníbal C. do Rêgo. 2022. "Land Use, Temperature, and Nitrogen Affect Nitrous Oxide Emissions in Amazonian Soils" Agronomy 12, no. 7: 1608. https://doi.org/10.3390/agronomy12071608
APA StyleLage Filho, N. M., Cardoso, A. d. S., Azevedo, J. C. d., Faturi, C., da Silva, T. C., Domingues, F. N., Ruggieri, A. C., Reis, R. A., & do Rêgo, A. C. (2022). Land Use, Temperature, and Nitrogen Affect Nitrous Oxide Emissions in Amazonian Soils. Agronomy, 12(7), 1608. https://doi.org/10.3390/agronomy12071608