# Development of Enumerative and Binomial Sequential Sampling Plans for Monitoring Lymantria dispar (L.) (Lepidoptera Erebidae) in Mediterranean Oak Forests

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Study Area and Data Collection

#### 2.2. Enumerative Sampling Plan

^{−1}) of 0.10 and 0.25 using the following equation proposed by Karandinos [36]:

^{2}) by a power function as the following equation:

^{2}by the linear regression, which is as follows:

_{n}is the cumulative number of egg masses sampled and n is the total number of sampled trees. Stop lines were then generated by plotting the values of T

_{n}against the correspondent values of n.

#### 2.3. Relationship between Egg Masses Density and Occupied or Infested Trees

#### 2.4. Development of Binomial Sampling Plans

_{1}) and lower (θ

_{2}) boundaries for the decision AT and α (type I) and β (type II) errors, which indicate either the probability of treating when pest density is below the defined AT or the probability of not treating when pest density exceeds the AT, respectively. The θ

_{1}and θ

_{2}were set at 10% above and below the AT, respectively, whereas a value of 0.10 was used for both α and β errors. The validation process was carried out using 500 resampling iterations with replacement, and the minimum sample size was arranged considering the x-axis intercept of the lower stop line.

#### 2.5. Validation of Binomial Sampling Plans

_{2}gives the actual α, whereas the OC value at θ

_{1}gives the actual β [56].

_{i}is the proportion of n datasets represented by dataset i, A

_{i}is the probability of making the correct decision to treat, and D

_{i}is the probability of making the correct decision to not treat.

## 3. Results

#### 3.1. Spatial Distribution

#### 3.2. Enumerative Sampling Plan

#### 3.3. Relationship between Egg Masses Density and Percentage of Infested Trees

#### 3.4. Binomial Sampling Plan

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Elkinton, J.S.; Liebhold, A.M. Population dynamics of gypsy moth in North America. Annu. Rev. Entomol.
**1990**, 35, 571–596. [Google Scholar] [CrossRef] - Tiberi, R.; Branco, M.; Bracalini, M.; Croci, F.; Panzavolta, T. Cork oak pests: A review of insect damage and management. Ann. For. Sci.
**2016**, 73, 219–232. [Google Scholar] [CrossRef] [Green Version] - Liebhold, A.M.; Elkinton, J.S.; Zhou, C.; Hohn, M.E.; Rossi, R.E.; Boettner, G.H.; Boettner, C.W.; Burnham, C.; McManus, M.L. Regional correlation of gypsy moth (Lepidoptera: Lymantriidae) defoliation with counts of egg masses, pupae, and male moths. Environ. Entomol.
**1995**, 24, 193–203. [Google Scholar] [CrossRef] - Floris, I.; Cocco, A.; Buffa, F.; Mannu, R.; Satta, A. Insect pests of Eucalyptus plantations in Sardinia (Italy). Redia
**2018**, 101, 61–71. [Google Scholar] [CrossRef] - Luciano, P.; Prota, R. Insect pests in Sardinian cork-oak forests. IOBC WPRS Bull.
**1995**, 18, 1–7. [Google Scholar] - Lentini, A.; Mannu, R.; Cocco, A.; Ruiu, P.A.; Cerboneschi, A.; Luciano, P. Long-term monitoring and microbiological control programs against lepidopteran defoliators in the cork oak forests of Sardinia (Italy). Ann. Silvic. Res.
**2020**, 45, 21–30. [Google Scholar] [CrossRef] - Liebhold, A.M.; Gottschalk, K.W.; Mason, D.A.; Bush, R.R. Forest susceptibility to the gypsy moth. J. For.
**1997**, 95, 20–24. [Google Scholar] - Mannu, R.; Cocco, A.; Luciano, P.; Lentini, A. Influence of Bacillus thuringiensis application timing on population dynamics of gypsy moth in Mediterranean cork oak forests. Pest Manag. Sci.
**2020**, 76, 1103–1111. [Google Scholar] [CrossRef] - Cocco, A.; Cossu, A.Q.; Erre, P.; Nieddu, G.; Luciano, P. Spatial analysis of gypsy moth populations in Sardinia using geostatistical and climate models. Agric. For. Entomol.
**2010**, 12, 417–426. [Google Scholar] [CrossRef] - Hlásny, T.; Trombik, J.; Holuša, J.; Lukášová, K.; Grendár, M.; Turčáni, M.; Zúbrik, M.; Tabaković-Tošić, M.; Hirka, A.; Buksha, I.; et al. Multi-decade patterns of gypsy moth fluctuations in the Carpathian Mountains and options for outbreak forecasting. J. Pest Sci.
**2016**, 89, 413–425. [Google Scholar] [CrossRef] - Inoue, M.N.; Suzuki-Ohno, Y.; Haga, Y.; Arai, H.; Sano, T.; Martemyanov, V.V.; Kunimi, Y. Population dynamics and geographical distribution of the gypsy moth, Lymantria dispar, in Japan. For. Ecol. Manag.
**2019**, 434, 154–164. [Google Scholar] [CrossRef] - Muzika, R.M.; Liebhold, A.M. Changes in radial increment of host and nonhost tree species with gypsy moth defoliation. Can. J. For. Res.
**1999**, 29, 1365–1373. [Google Scholar] [CrossRef] - Cambini, A. Valutazione dei danni causati dagli insetti defogliatori alla quercia da sughero. In Proceedings of the Atti del 1 Convegno Regionale del Sughero, Tempio Pausania, Italy, 14–16 October 1971; pp. 327–339. [Google Scholar]
- Luciano, P.; Lentini, A. Ten years of microbiological control program against lepidopterous defoliators in Sardinian cork oak forests. IOBC WPRS Bull.
**2012**, 76, 175–178. [Google Scholar] - Liebhold, A.M.; Halverson, J.A.; Elmes, G.A. Gypsy moth invasion in North America: A quantitative analysis. J. Biogeogr.
**1992**, 19, 513–520. [Google Scholar] [CrossRef] - Tobin, P.C.; Liebhold, A.M.; Roberts, E.A.; Blackburn, L.M. Estimating spread rates of non-native species: The gypsy moth as a case study. In Pest Risk Modelling and Mapping for Invasive Alien Species; Venette, R.C., Ed.; CABI: Wallingford, UK, 2015; pp. 131–144. [Google Scholar]
- Tobin, P.C.; Blackburn, L.M. Slow the Spread: A National Program to Manage the Gypsy Moth; General Technical Report NRS-6.; USDA, Forest Service: Radnor, PA, USA, 2007. [Google Scholar]
- Ruiu, L.; Mannu, R.; Falchi, G.; Braggio, A.; Luciano, P. Evaluation of different Bacillus thuringiensis sv kurstaki formulations against Lymantria dispar and Malacosoma neustria larvae infesting Quercus suber trees. Redia
**2013**, 96, 27–31. [Google Scholar] - Ruiu, L.; Mannu, R.; Olivieri, M.; Lentini, A. Gypsy moth management with LdMNPV Baculovirus in cork oak forest. Forests
**2021**, 12, 495. [Google Scholar] [CrossRef] - Olivieri, M.; Mannu, R.; Ruiu, L.; Ruiu, P.A.; Lentini, A. Comparative efficacy trials with two different Bacillus thuringiensis serovar kurstaki strains against gypsy moth in Mediterranean cork oak forests. Forests
**2021**, 12, 602. [Google Scholar] [CrossRef] - Sharov, A.A.; Liebhold, A.M.; Roberts, A.E. Methods for monitoring the spread of gypsy moth (Lepidoptera: Lymantriidae) populations in the Appalachian Mountains. J. Econ. Entomol.
**1997**, 90, 1259–1266. [Google Scholar] [CrossRef] - Wilson, R.W., Jr.; Fontaine, G.A. Gypsy moth Handbook: Gypsy Moth Egg Mass Sampling with Fixed- and Variable-Radius Plot; Agricultural Handbook No. 523; USDA: Radnor, PA, USA, 1978. [Google Scholar]
- Wilson, R.W., Jr.; Ivanowsky, W.M.; Talerico, R.L. Direct Evaluation. The Gypsy Moth: Research Toward Integrated Pest Management; Technical Bulletin No. 1584; Doane, C.C., McManus, M.L., Eds.; USDA, Forest Service: Washington, MD, USA, 1981; pp. 34–38. [Google Scholar]
- Luciano, P.; Prota, R. La dinamica di popolazione di Lymantria dispar L. in Sardegna. Indicatori della gradazione ricavati dalle ovideposizioni. Studi Sassar. III
**1981**, 27, 137–160. [Google Scholar] - Liebhold, A.M.; Gottschalk, K.W.; Muzika, R.M.; Montgomery, M.E.; Young, R.; O’Day, K.; Kelley, B. Suitability of North American Tree Species to the Gypsy Moth: A Summary of Field and Laboratory Tests; General Technical Report No. NE-211; USDA, Forest Service: Radnor, PA, USA, 1995. [Google Scholar]
- Mannu, R.; Gilioli, G.; Luciano, P. Occupancy of the territory by Lymantria dispar (L.) (Lepidoptera Erebidae) egg masses as a predictive index of damage. Redia
**2017**, 100, 157–165. [Google Scholar] [CrossRef] - Fraval, A.; Herard, F.; Jarry, M. Methodes d’echantillonage des populations de pontes de L. dispar (Lep.: Lymantriidae) en Mamora (Maroc). Ann. Zool. Ecol. Anim.
**1978**, 10, 267–279. [Google Scholar] - Liebhold, A.M.; Thorpe, K.; Ghent, J.; Lyons, D.B. Gypsy Moth Egg Mass Sampling for Decision Making: A Users’ Guide; Forest Health Protection No. NA-TP-04-94; USDA, Forest Service: Broomall, PA, USA, 1994. [Google Scholar]
- Fleischer, S.J.; Ravlin, F.W.; Reardon, R.C. Implementation of sequential sampling plans for gypsy moth (Lepidoptera: Lymantriidae) egg masses in eastern hardwood forests. J. Econ. Entomol.
**1991**, 84, 1100–1107. [Google Scholar] [CrossRef] - Liebhold, A.; Twardus, D.; Buonaccorsi, J. Evaluation of the timed-walk method of estimating gypsy moth (Lepidoptera: Lymantriidae) egg mass densities. J. Econ. Entomol.
**1991**, 84, 1774–1781. [Google Scholar] [CrossRef] - Luciano, P.; Prota, R. Osservazioni sulla densità di popolazione di Lymantria dispar L. nelle principali aree subericole della Sardegna. Studi Sassar. III
**1982**, 28, 168–179. [Google Scholar] - Kolodny-Hirsch, D.M. Evaluation of methods for sampling gypsy moth (Lepidoptera: Lymantriidae) egg mass populations and development of sequential sampling plans. Environ. Entomol.
**1986**, 15, 122–127. [Google Scholar] [CrossRef] - Carter, J.N.; Ravlin, F.W.; Fleischer, S.J. Sequential egg mass sampling plans for gypsy moth (Lepidoptera: Lymantriidae) management in urban and suburban habitats. J. Econ. Entomol.
**1994**, 87, 999–1003. [Google Scholar] [CrossRef] - Aronson, J.; Pereira, J.S.; Pausas, J.G. Cork Oak Woodlands on the Edge: Ecology, Adaptive Management, and Restoration; Island Press: Washington, DC, USA, 2009. [Google Scholar]
- Green, R.H. On fixed precision level sequential sampling. Res. Popul. Ecol.
**1970**, 12, 249–251. [Google Scholar] [CrossRef] - Karandinos, M.G. Optimum sample size and comments on some published formulae. Bull. Entomol. Soc. Am.
**1976**, 22, 417–421. [Google Scholar] [CrossRef] - Taylor, L.R. Aggregation, variance and the mean. Nature
**1961**, 189, 732–735. [Google Scholar] [CrossRef] - Cocco, A.; Serra, G.; Lentini, A.; Deliperi, S.; Delrio, G. Spatial distribution and sequential sampling plans for Tuta absoluta (Lepidoptera: Gelechiidae) in greenhouse tomato crops. Pest Manag. Sci.
**2015**, 71, 1311–1323. [Google Scholar] [CrossRef] - Cobain, M.R.D.; Brede, M.; Trueman, C.N. Taylor’s power law captures the effects of environmental variability on community structure: An example from fishes in the North Sea. J. Anim. Ecol.
**2021**, 88, 290–301. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Penca, C.; Hodges, A.C.; Leppla, N.C.; Cottrell, T.E. Analysis of the spatial distribution and development of sequential sampling plans for Heteropteran-associated fruit injury in Florida peaches. J. Econ. Entomol.
**2021**, 114, 1823–1833. [Google Scholar] [CrossRef] [PubMed] - Wilson, L.T. Estimating the abundance and impact of arthropod natural enemies in IPM systems. In Biological Control in Agricultural IPM Systems; Hoy, M.A., Herzog, D.C., Eds.; Academic Press: Orlando, FL, USA, 1985; pp. 303–321. [Google Scholar]
- Southwood, T.R.E.; Henderson, P.A. Ecological Methods; Blackwell Science: Oxford, UK, 2000. [Google Scholar]
- Iwao, S. A new regression method for analyzing the aggregation pattern of animal population. Res. Popul. Ecol.
**1968**, 10, 1–20. [Google Scholar] [CrossRef] - Kuno, E. Sampling and analysis of insect populations. Annu. Rev. Entomol.
**1991**, 36, 285–304. [Google Scholar] [CrossRef] - Morisita, M. Composition of the Is-index. Res. Popul. Ecol.
**1971**, 13, 1–27. [Google Scholar] [CrossRef] - Vinatier, F.; Tixier, P.; Duyck, P.F.; Lescourret, F. Factors and mechanisms explaining spatial heterogeneity: A review of methods for insect populations. Methods Ecol. Evol.
**2011**, 2, 11–22. [Google Scholar] [CrossRef] - Naranjo, S.E.; Hutchinson, W.D. Validation of arthropod sampling plans using a resampling approach: Software and analysis. Am. Entomol.
**1997**, 43, 48–57. [Google Scholar] [CrossRef] - Holt, A.R.; Gaston, K.J.; He, F. Occupancy-abundance relationships and spatial distribution: A review. Basic Appl. Ecol.
**2002**, 3, 1–13. [Google Scholar] [CrossRef] - Gaston, K.J.; Blackburn, T.M.; Lawton, J.H. Interspecific abundance-range size relationships: An appraisal of mechanisms. J. Anim. Ecol.
**1997**, 66, 579–601. [Google Scholar] [CrossRef] [Green Version] - Wald, A. Sequential Analysis; Wiley: New York, NY, USA, 1947. [Google Scholar]
- Onsager, J.A. The rationale of sequential sampling, with emphasis on its use in pest management. USDA Tech. Bull.
**1976**, 1526, 1–19. [Google Scholar] - Binns, M.R.; Nyrop, J.P. Sampling insect populations for the purpose of IPM decision making. Annu. Rev. Entomol.
**1992**, 37, 427–453. [Google Scholar] [CrossRef] - Van der Vliet, L.; Ritz, C. Statistics for Analyzing Ecotoxicity Test Data. In Encyclopedia of Aquatic Ecotoxicology; Férard, J., Blaise, C., Eds.; Springer: New York, NY, USA, 2015; pp. 1081–1096. [Google Scholar]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-response analysis using R. PLoS ONE
**2015**, 10, e0146021. [Google Scholar] [CrossRef] [PubMed] [Green Version] - R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Subramanyam, B.H.; Hagstrum, D.W.; Meagher, R.L.; Burkness, E.C.; Hutchinson, W.D.; Naranjo, S.E. Development and evaluation of sequential sampling plans for Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujidae) infesting farmstored wheat. J. Stored Prod. Res.
**1997**, 33, 321–329. [Google Scholar] [CrossRef] - Burkness, E.C.; Venette, R.C.; O’Rourke, P.K.; Hutchinson, W.D. Binomial sequential sampling for management of aster leafhopper (Homoptera: Cicadellidae) and aster yellows phytoplasma in carrot: Impact of tally threshold on the accuracy of treatment decisions. Environ. Entomol.
**1999**, 28, 851–857. [Google Scholar] [CrossRef] - Liebhold, A.; Luzader, E.; Reardon, R.; Bullard, A.; Roberts, A.; Ravlin, W.; Delost, S.; Spears, B. Use of a geographic information system to evaluate regional treatment effects in a gypsy moth (Lepidoptera: Lymantriidae) management program. J. Econ. Entomol.
**1996**, 89, 1192–1203. [Google Scholar] [CrossRef] - Zhou, G.; Liebhold, A.M. Forecasting gypsy moth defoliation with a geographical information system. Insect Sci.
**1995**, 2, 83–94. [Google Scholar] [CrossRef] - McManus, M.; Csóka, G.Y. History and impact of gypsy moth in North America and comparison to the recent outbreaks in Europe. Acta Silv. Et Lignaria Hung.
**2007**, 3, 47–64. [Google Scholar] - Alalouni, U.; Schädler, M.; Brandl, R. Natural enemies and environmental factors affecting the population dynamics of the gypsy moth. J. Appl. Entomol.
**2013**, 137, 721–738. [Google Scholar] [CrossRef] - Barbosa, P.; Waldvogel, M.; Martinat, P.; Douglass, L.W. Developmental and reproductive performance of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), on selected hosts common to mid-Atlantic and southern forests. Environ. Entomol.
**1983**, 12, 1858–1862. [Google Scholar] [CrossRef] - Milanović, S.; Lazarević, J.; Popović, Z.; Miletić, Z.; Kostić, M.; Radulović, Z.; Karadžić, D.; Vuleta, A. Preference and performance of the larvae of Lymantria dispar (Lepidoptera: Lymantriidae) on three species of European oaks. Eur. J. Entomol.
**2014**, 111, 371–378. [Google Scholar] [CrossRef] [Green Version] - Jones, C.G.; Steininger, M.K.; Luciano, P.; Moore, K.E. Estimating gypsy moth (Lepidoptera: Lymantriidae) fecundity in the field: Comparison of data from North America and Sardinia, Italy. Environ. Entomol.
**1990**, 19, 108–110. [Google Scholar] [CrossRef] - Liebhold, A.M.; Simons, E.E.; Sior, A.; Unger, J.D. Forecasting defoliation caused by gypsy moth from field measurements. Environ. Entomol.
**1993**, 22, 26–32. [Google Scholar] [CrossRef] - Contarini, M.; Luciano, P.; Pilarska, D.; Pilarski, P.; Solter, L.; Huang, W.F.; Georgiev, G. Survey of pathogens and parasitoids in late instar Lymantria dispar larval populations in Sardinia, Italy. Bull. Insectol.
**2013**, 66, 51–58. [Google Scholar] - Soto, A.; Ohlenschläeger, F.; García-Marí, F. Distribution and sampling of the whiteflies Aleurothrixus floccosus, Dialeurodes citri, and Parabemisia myricae (Homoptera: Aleyrodidae) in citrus in Spain. J. Econ. Entomol.
**2002**, 95, 167–173. [Google Scholar] [CrossRef]

**Figure 1.**Sample sizes (

**A**,

**B**) and sequential stop lines (

**C**,

**D**) for the assessment of Lymantria dispar egg mass density on cork oak trees using Green’s method at D = 0.25 (

**A**,

**C**) and D = 0.10 (

**B**,

**D**).

**Figure 2.**Validation of enumerative sampling plans to assess the infestation of Lymantria dispar on cork oak trees, based on Green’s plan showing actual precision levels (

**A**,

**B**) and sample sizes (

**C**,

**D**) calculated at a fixed level of 0.25 (

**A**,

**C**) and 0.10 (

**B**,

**D**). Dotted lines indicate the desired precision levels of 0.10 (

**A**) and 0.20 (

**B**).

**Figure 3.**Relationship between the cumulative number of Lymantria dispar egg masses and the percentage of occupied (with one or more egg masses) and infested (with three or more egg masses) trees. Linear regressions were fitted separately for each phase of gypsy moth population development: progradation (

**A**,

**D**), culmination (

**B**,

**E**), retrogradation (

**C**,

**F**).

**Figure 4.**Decision stop lines for binomial sequential sampling plans of trees occupied (

**A**) or infested (

**B**) by Lymantria dispar in Mediterranean cork oak forests. Binomial plans were obtained from resampling validation analysis based on action thresholds of 58.5% (

**A**) and 40.1% (

**B**) of infested sample units, α and β = 0.1 and a tally threshold of 1 egg mass per tree (

**A**) or 3 egg masses per tree (

**B**).

**Table 1.**Dispersion indices for Lymantria dispar egg masses on cork oak trees in Sardinia (Italy) in 1999–2010.

Stage | Dataset (n) | Pest Density Range (Egg Masses/Tree) | Taylor’s Power Law | |||
---|---|---|---|---|---|---|

ln(a) ± SEM | a | b ± SEM | R^{2} | |||

Overall | 547 | 0.05–59.4 | 1.16 ± 0.04 | 3.18 | 1.45 ± 0.02 | 0.90 |

Progradation | 181 | 0.07–38.2 | 1.15 ± 0.06 | 3.15 | 1.45 ± 0.04 | 0.88 |

Culmination | 174 | 0.20–59.4 | 0.95 ± 0.11 | 2.61 | 1.51 ± 0.04 | 0.88 |

Retrogradation | 192 | 0.01–45.1 | 1.22 ± 0.05 | 3.42 | 1.42 ± 0.03 | 0.91 |

**Table 2.**Validation of Green’s sequential sampling plan based on resampling approach at fixed-precision levels of 0.25 and 0.10.

Pest Density Range (Egg Masses/Tree) | Dataset (n) | Fixed-Precision Level = 0.25 | Fixed-Precision Level = 0.10 | ||
---|---|---|---|---|---|

Mean Precision (Range) | Mean Sample Size (Range) | Mean Precision (Range) | Mean Sample Size (Range) | ||

1.02–40.55 | 55 | 0.183 (0.040–0.395) | 27.3 (10–52) | 0.190 (0.040–0.433) | 164.7 (41–315) |

**Table 3.**Results of linear regression analyses aimed at exploring the relationship between the number of Lymantria dispar egg masses (y) and the percentage of occupied (i.e., trees with 1 or more egg masses) or infested (i.e., trees with 3 or more egg masses) trees (x). Linear regressions were fitted separately for each phase of gypsy moth population development.

Model | Stage | n | Equation | R^{2} | F | p |
---|---|---|---|---|---|---|

Egg mass density~% of occupied trees | Progradation | 181 | ln(y) = 1.9284x − 0.8952 | 0.77 | 602.5 | <0.001 |

Culmination | 174 | ln(y) = 2.1276x − 0.8466 | 0.74 | 490.8 | <0.001 | |

Retrogradation | 192 | ln(y) = 1.9350x − 0.8733 | 0.81 | 789.9 | <0.001 | |

Egg mass density~% of infested trees | Progradation | 181 | ln(y) = 4.1957x − 2.9113 | 0.82 | 842.7 | <0.001 |

Culmination | 174 | ln(y) = 4.0853x − 3.0704 | 0.88 | 1310.6 | <0.001 | |

Retrogradation | 192 | ln(y) = 4.3744x − 2.7541 | 0.86 | 1134.3 | <0.001 |

**Table 4.**Comparison of operation characteristics (OC value) and probabilities of correct (A and D) and incorrect (B and C) control decisions for sequential binomial sampling plans for cork oak trees occupied (AT = 58.5%) or infested (AT = 40.1%) by Lymantria dispar in progradation, culmination, and retrogradation phases.

AT ^{1} | TT ^{2} | Stage | Dataset (n) | OC ^{3} | Actual α ^{4} | Actual β ^{5} | ASN (range) ^{6} | A ^{7} | D ^{8} | A + D ^{9} | B ^{10} | C ^{11} | B + C ^{12} |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|

58.9 | 1 | Progradation | 181 | 0.496 | 0.093 | 0.091 | 31.4 (8–93) | 0.425 | 0.354 | 0.779 | 0.188 | 0.033 | 0.221 |

Culmination | 174 | 0.503 | 0.089 | 0.089 | 26.9 (11–98) | 0.787 | 0.098 | 0.885 | 0.006 | 0.109 | 0.115 | ||

Retrogradation | 192 | 0.505 | 0.092 | 0.096 | 27.4 (8–95) | 0.415 | 0.409 | 0.824 | 0.016 | 0.160 | 0.176 | ||

40.1 | 3 | Progradation | 181 | 0.488 | 0.098 | 0.090 | 42.1 (17–199) | 0.387 | 0.519 | 0.906 | 0.072 | 0.022 | 0.094 |

Culmination | 174 | 0.509 | 0.091 | 0.099 | 35.3 (17–212) | 0.770 | 0.196 | 0.966 | 0.023 | 0.011 | 0.034 | ||

Retrogradation | 192 | 0.486 | 0.101 | 0.092 | 42.4 (17–193) | 0.409 | 0.508 | 0.917 | 0.021 | 0.062 | 0.083 |

^{1}Action thresholds (%).

^{2}Tally threshold: minimum number of egg masses necessary to classify a tree either as occupied (1) or infested (3) by L. dispar.

^{3}Probability of not treating when the pest population density reaches the AT.

^{4}Probability of treating when the pest density is below the AT (type I error).

^{5}Probability of not treating when the pest density is above the AT (type II error)

^{. 6}Number of samples required to make a pest control decision (i.e., to treat or not to treat).

^{7}Correct decision to treat.

^{8}Correct decision not to treat.

^{9}Overall probability of making a correct pest control decision (i.e., to treat or not to treat).

^{10}Incorrect decision to treat.

^{11}Incorrect decision not to treat.

^{12}Overall probability of making an incorrect pest control decision (i.e., to treat or not to treat).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mannu, R.; Olivieri, M.; Cocco, A.; Lentini, A.
Development of Enumerative and Binomial Sequential Sampling Plans for Monitoring *Lymantria dispar* (L.) (Lepidoptera Erebidae) in Mediterranean Oak Forests. *Agronomy* **2022**, *12*, 1501.
https://doi.org/10.3390/agronomy12071501

**AMA Style**

Mannu R, Olivieri M, Cocco A, Lentini A.
Development of Enumerative and Binomial Sequential Sampling Plans for Monitoring *Lymantria dispar* (L.) (Lepidoptera Erebidae) in Mediterranean Oak Forests. *Agronomy*. 2022; 12(7):1501.
https://doi.org/10.3390/agronomy12071501

**Chicago/Turabian Style**

Mannu, Roberto, Maurizio Olivieri, Arturo Cocco, and Andrea Lentini.
2022. "Development of Enumerative and Binomial Sequential Sampling Plans for Monitoring *Lymantria dispar* (L.) (Lepidoptera Erebidae) in Mediterranean Oak Forests" *Agronomy* 12, no. 7: 1501.
https://doi.org/10.3390/agronomy12071501