Trait Selection for Yield Improvement in Foxtail Millet (Setaria italica Beauv.) under Climate Change in the North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Experimental Design and Field Management
2.3. Measurements
2.3.1. Crop Growth and Production
2.3.2. Canopy Temperature and Root Sampling
2.3.3. Leaf Area, Leaf Chlorophyll Content and Rate of Water Loss
2.3.4. Weather Factor Monitoring
2.3.5. Calculations
2.4. Data Analysis
3. Results
3.1. Selecting Traits for Improving Yield under Climate Change
3.1.1. The Effects of Weather and Irrigation on Yield
3.1.2. Weather Factors Related to Yield
3.1.3. Climate Change and Trait Selection
3.2. Traits Related to the Yield Improvement of Foxtail Millet under Different Water Supply Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Variety | Pedigree | Regions of Adaption | Year of Release | Year Grown | Yield (t/ha) | Thousand Grain Weight (g) |
---|---|---|---|---|---|---|
Canggu9 | Heng968 × K492 | Hebei | 2018 | 2018 | 5.30 | 2.77 |
Heng1475 | (Henggu12 × Yugu18) × kn2009-2 | Hebei | 2019 | 2017 | 5.22 | 2.60 |
Heng2011-2 | Jigu17 × Henggu15 | Hebei, Jilin | 2018 | 2017 | 5.08 | 2049 |
Henggu13 | Yugu15 × Jigu31 | Hebei, Shandong, Henan, Liaoning, Jilin | 2018 | 2016, 2019 | 6.50 | 2.91 |
Henggu15 | Not clear | Henan, Liaoning, Jilin | 2018 | 2016 | 7.53 | 2.88 |
Henggu16 | Shagu × K721-1 | Henan, Liaoning, Jilin | 2018 | 2017 | 5.40 | 2.68 |
Henggu17 | Shagu × K720-3 | Henan, Liaoning, Jilin | 2018 | 2017 | 5.62 | 2.69 |
Henggu18 | Not clear | Henan, Liaoning, Jilin | 2017 | 3.88 | 2.57 | |
Henggu2018-1 | Henggu11 × Ji0506 | Hebei | 2018 | 2018 | 5.51 | 2.32 |
Henggu2018-2 | Henggu11 × (Hengyan5 × SR3522) | Hebei | 2019 | 2018 | 5.56 | 2.32 |
Henggu2018-3 | (Hengyan5 × SR3522) × M1508 | Hebei | 2019 | 2018 | 4.49 | 2.68 |
Hengsi1 | Not clear | Hebei | 2018 | 2016 | 7.62 | 2.86 |
Jigu22 | Yugu9 × Jigu25 | Hebei, Shandong, Henan | not clear | 2020 | 7.08 | 2.81 |
Jigu168 | Yugu18 × 1310-2 | Hebei, Liaoning, Neimongol, Shaanxi | 2020 | 2020 | 6.37 | 2.99 |
Jigu19 | Ai88 × Qingfenggu | Shanxi, Shandong, Henan, Shaanxi | 2004 | 2016–2020 | 5.48 | 2.49 |
Jigu34 | Not clear | Shanxi, Shandong, Henan, Shaanxi | 2013 | 2016 | 8.59 | 2.94 |
Jigu37 | Not clear | Shanxi, Shandong, Henan, Shaanxi | 2016 | 8.91 | 3.13 | |
Jigu39 | An09-8525 × [An4585 × (Jigu24 × 2010-M1445)] | Hebei, Henan, Shandong, Shanxi, Xinjiang, Beijing, Liaoning, Jilin | 2018 | 2019, 2020 | 7.11 | 3.10 |
Jigu42 | An4585 × (Shi98622 × 1310-2) | Hebei, Henan, Shandong, Xinjiang, Liaoning, Jilin, Neimongol, Shanxi, Shaanxi, Heilongjiang | 2018 | 2018 | 4.00 | 2.48 |
Lvmi16 | Not clear | Not clear | Not clear | 2016 | 7.47 | 3.27 |
Zhonggu10 | Zhonggu2 × Chuang877 | Beijing, Tianjin, Hebei, Shanxi, Neimongol | 2020 | 2020 | 6.92 | 3.05 |
Zhonggu2 | Yugu1 × Ai88 | Beijing, Tianjin, Hebei, Shanxi, Neimongol | 2015 | 2017–2020 | 6.00 | 2.72 |
Zhonggu7 | Not clear | Beijing, Hebei, Henan, Shandong | 2020 | 2017 | 4.26 | 2.31 |
Zhonggu8 | Jigu20 × Q31 | Beijing, Hebei, Henan, Shandong | 2020 | 2017 | 5.64 | 2.51 |
Zhonggu18 | Not clear | Beijing, Hebei, Henan, Shandong | 2018 | 2018–2020 | 6.07 | 2.44 |
Year | Sowing Date | Booting Date | Harvest Date |
---|---|---|---|
2016 | 21 June | 4 August | 27 September |
2017 | 19 June | 5 August | 25 September |
2018 | 18 June | 3 August | 23 September |
2019 | 16 June | 4 August | 25 September |
2020 | 23 June | 6 August | 29 September |
Weather Factors | Seasons | Whole Stage | Vegetative Stage | Reproductive Stage |
---|---|---|---|---|
Accumulated temperature (°C) | 2016 | 2508.80 | 1314.70 | 1194.10 |
2017 | 2546.00 | 1350.00 | 1196.00 | |
2018 | 2603.40 | 1396.10 | 1207.30 | |
2019 | 2616.60 | 1408.40 | 1208.20 | |
2020 | 2541.00 | 1312.90 | 1228.10 | |
Minimum temperature (°C) | 2016 | 21.07 | 22.31 | 19.83 |
2017 | 21.46 | 22.77 | 20.20 | |
2018 | 22.30 | 23.92 | 20.69 | |
2019 | 22.06 | 23.70 | 20.41 | |
2020 | 21.60 | 22.16 | 21.03 | |
Maximum temperature (°C) | 2016 | 30.94 | 32.03 | 29.86 |
2017 | 31.40 | 32.90 | 29.94 | |
2018 | 31.70 | 33.81 | 29.66 | |
2019 | 32.04 | 34.50 | 29.58 | |
2020 | 31.07 | 31.80 | 30.34 | |
Diurnal temperature range (°C) | 2016 | 9.87 | 9.72 | 10.02 |
2017 | 9.94 | 10.13 | 9.74 | |
2018 | 9.41 | 9.85 | 8.97 | |
2019 | 9.99 | 10.80 | 9.17 | |
2020 | 9.47 | 9.64 | 9.31 | |
Reference evaporation (mm) | 2016 | 481.38 | 263.91 | 217.47 |
2017 | 514.67 | 292.71 | 221.95 | |
2018 | 511.89 | 296.15 | 215.74 | |
2019 | 493.78 | 288.57 | 205.21 | |
2020 | 487.74 | 281.94 | 205.80 | |
Sunshine duration (hr/d) | 2016 | 6.77 | 6.27 | 7.27 |
2017 | 7.47 | 7.08 | 7.87 | |
2018 | 6.67 | 7.33 | 6.02 | |
2019 | 6.43 | 6.92 | 5.93 | |
2020 | 7.46 | 8.50 | 6.43 | |
Relatively humidity (%) | 2016 | 78.15 | 75.67 | 80.63 |
2017 | 74.68 | 70.12 | 79.24 | |
2018 | 72.88 | 70.06 | 75.69 | |
2019 | 64.82 | 60.14 | 69.49 | |
2020 | 69.82 | 66.22 | 73.41 |
Treatment | Year | Maximum | Minimum | Mean | Coefficient of Variation (%) |
---|---|---|---|---|---|
WW | 2016 | 6.68 | 5.60 | 6.02 | 8.07 |
2017 | 5.64 | 3.89 | 5.01 | 13.06 | |
2018 | 5.56 | 4.00 | 5.01 | 12.49 | |
2019 | 6.60 | 6.22 | 6.41 | 2.89 | |
2020 | 7.36 | 6.37 | 6.95 | 5.23 | |
WS | 2016 | 5.29 | 3.89 | 4.79 | 12.97 |
2017 | 5.23 | 4.04 | 4.43 | 11.78 | |
2018 | 3.67 | 3.30 | 3.50 | 4.26 | |
2019 | 4.86 | 4.11 | 4.57 | 7.75 | |
2020 | 6.19 | 4.76 | 5.77 | 9.50 |
References
- Bala-Ravi, S. Neglected millets that save the poor from starvation. LEISA India 2004, 6, 1–8. [Google Scholar]
- Amadou, I.; Gounga, M.E.; Shi, Y.H.; Le, G.W. Fermentation and heat-moisture treatment induced changes on the physicochemical properties of foxtail millet (Setaria italica) flour. Food Bioprod. Process. 2014, 92, 38–45. [Google Scholar] [CrossRef]
- FAOSTAT (Food and Agriculture Organization Statistics). Available online: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567 (accessed on 20 July 2016).
- Koch, D.W. Foxtail Millet: Management for Supplemental and Emergency Forage; B-1122.3; Cooperative Extension Service; University of Wyoming: Laramie, WY, USA, 2002. [Google Scholar]
- Liu, T.; Ye, N.; Song, T.; Cao, Y.; Gao, B.; Zhang, D.; Zhu, F.; Chen, M.; Zhang, Y.; Xu, W.; et al. Rhizosheath formation and involvement in foxtail millet (Setaria italica) root growth under drought stress. J. Integr. Plant Biol. 2019, 61, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Li, Z.; Wang, Q.; Pan, J.; Garrell, A.K.; Liu, M.; Guan, Y.; Zhou, W.; Liu, W. Comparative proteomic investigation of drought responses in foxtail millet. BMC Plant Biol. 2018, 18, 315. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Zhao, W.; Fu, J.; Liu, Y.; Chen, M.; Zhou, Y.; Ma, Y.; Xu, Z.; Xi, Y. Genome-wide analysis of cdpk family in foxtail millet and determination of SiCDPK24 functions in drought stress. Front. Plant Sci. 2018, 9, 651. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.; Tripathi, D.K.; Chauhan, D.; Kumar, N.; Singh, G. Paradigms of climate change impacts on some major food sources of the world: A review on current knowledge and future prospects. Agric. Ecosyst. Environ. 2016, 216, 356–373. [Google Scholar] [CrossRef]
- Howden, S.M.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.; Qin, D.; Manning, M.; Marquis, M.; Averyt, K.; Tignor, M.M.B.; Miller, H.L., Jr. Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Resende, R.T.; Piepho, H.P.; Siva-Junior, B.O.; Silva, F.F.; Resende, M.D.V.; Grattapaglia, D. Enviromics in breeding: Applications and perspectives on envirotypic-assisted selection. Theor. Appl. Genet. 2020, 134, 95–112. [Google Scholar] [CrossRef]
- Crossa, J.; Fritsche-Neto, R.; Montesinos-Lopez, O.A.; Costa-Neto, G.; Dreisigacker, S.; Montesinos-Lopez, A.; Bentley, R.A. The modern plant breeding triangle: Optimizing the use of genomics, phenomics, and enviromics data. Front. Plant Sci. 2021, 12, 651480. [Google Scholar] [CrossRef]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. Food security and food production systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 485–533. [Google Scholar] [CrossRef] [Green Version]
- Jalihal, C.; Srinivasan, J.; Chakraborty, A. Modulation of Indian monsoon by water vapor and cloud feedback over the past 22,000 years. Nat. Commun. 2019, 10, 5701. [Google Scholar] [CrossRef] [Green Version]
- Krishna, S.S.; Reddy, Y.A.N.; Kumar, R.L.R. Assessment of traits for grain yield under drought in finger millet. Plant Physiol. Rep. 2021, 26, 84–94. [Google Scholar] [CrossRef]
- Robin, S.; Pathan, M.S.; Courtois, B.; Lafitte, R.; Carandang, S.; Lanceras, S.; Amante, M.; Nguyen, T.H.; Li, Z. Mapping osmotic adjustment in an advanced back-cross inbred population of rice. Theor. Appl. Genet. 2003, 107, 1288–1296. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.; Stark, J.C.; Tanveer, A.; Mustafa, T. Use of canopy temperature measurements as a screening tool for drought tolerance in spring wheat. J. Agron. Crop Sci. 1999, 182, 231–237. [Google Scholar] [CrossRef]
- Talebi, R. Evaluation of chlorophyll content and canopy temperature as indicators for drought tolerance in durum wheat (triticum durum desf.). Aust. J. Basic Appl. Sci. 2011, 5, 1457–1462. [Google Scholar] [CrossRef]
- Vadez, V.; Hash, T.; Bidinger, R.F.; Kholova, J., II. 1.5 Phenotyping pearl millet for adaptation to drought. Front. Physiol. 2012, 3, 386. [Google Scholar] [CrossRef] [Green Version]
- Porter, J.R.; Gawith, M. Temperatures and the growth and development of wheat: A review. Eur. J. Agron. 1999, 10, 23–36. [Google Scholar] [CrossRef]
- Smith, S.; De Smet, I. Root system architecture: Insights from Arabidopsis and cereal crops. In: Philosophical Transactions of the Royal Society of London. Biol. Sci. 2012, 367, 1441–1452. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhang, T.; Li, C.; Bai, G. Genetic diversity and classification of cytoplasm of Chinese elite foxtail millet [Setaria italica (L.) P. Beauv.] germplasm. Crop Sci. 2014, 54, 659–666. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Panhwar, R.B.; Liu, J.; Gong, X.; Liang, J.; Minxuan, L.I.U.; Lu, P.; Gao, X.; Feng, B. Morphological diversity and correlation analysis of phenotypes and quality traits of proso millet (Panicum miliaceum L.) core collections. J. Integr. Agric. 2019, 18, 958–969. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for computing crop water requirements. In FAO Irrigation and Drainage 56; FAO: Rome, Italy, 1998; Volume 300. [Google Scholar]
- Zhang, W.; Diao, X.; Jia, G.; Liu, B.; Wang, B.; Zhi, H.; Pang, J. National Agriculture Standards of P.R. of China: Technical Cose of Practice for Identification of Drought Resistance Varieties in Foxtail Millet; China Agriculture Press: Beijing, China, 2021; NY/T 3851-2021. [Google Scholar]
- Qu, Y.; Zhou, Y.; Chao, G.; Zhang, P.; Song, H.; Feng, B. Water use efficiency of foxtail millet (Panicum italicum L.) under climate change conditions in Northwest regions of China. Agrociencia 2016, 50, 665–676. [Google Scholar]
- Guo, D.; Chen, C.; Guo, P.; Yuan, X.; Xing, X.; Ma, X. College of wat evaluation of AquaCrop model for foxtail millet (setaria italica) growth and water use with plastic film mulching and no mulching under different weather conditions. Water 2018, 10, 836. [Google Scholar] [CrossRef] [Green Version]
- Ojo, O.I.; Olaniyan, A.O.; Gbadegesin, A.S.; Ilunga, M.F. Assessment of Climatic Variability Effect on Millet Production and Yield. In Handbook of Climate Change Resilience, 1st ed.; Filho, L.W., Ed.; Springer: Cham, Switzerland, 2020; pp. 1269–1289. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Perumal, R.; Ciampitti, I.A.; Gupta, S.K.; Prasad, P.V.V. Quantifying pearl millet response to high temperature stress: Thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. Plant Cell Environ. 2018, 41, 993–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanjana Reddy, P.; Satyavathi, C.T.; Khandelwal, V.; Patil, H.T.; Gupta, P.C.; Sharma, L.D.; Mungra, K.D.; Singh, S.P.; Narasimhulu, R.; Bhadarge, H.H.; et al. Performance and stability of pearl millet varieties for grain yield and micronutrients in arid and semi-arid regions of India. Front Plant Sci. 2021, 12, 670201. [Google Scholar] [CrossRef] [PubMed]
- Kumara, C.D.; Bantilan, C.; Rajalaxmi, A.; Rai, K.N.; Yadav, O.P.; Gupta, S.K.; Singh, P.N. Development and Diffusion of Pearl Millet Improved Cultivars in India: Impact on Growth and Yield Stability; ICRISAT: Patancheru, India, 2014. [Google Scholar] [CrossRef]
- Gu, J.; Zhou, Z.; Li, Z.; Chen, Y.; Wang, Z.; Zhang, H. Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. Field Crops Res. 2017, 200, 58–70. [Google Scholar] [CrossRef]
- Faye, A.; Sine, B.; Chopart, J.-L.; Grondin, A.; Lucas, M.; Diedhiou, A.G.; Pascal, G.; Laurent, C.; Doohong, M.; Alain, A.; et al. Development of a model estimating root length density from root impacts on a soil profile in pearl millet (Pennisetum glaucum (L.) R. Br). Application to measure root system response to water stress in field conditions. PLoS ONE 2019, 14, e0214182. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.H.; Talukder, M.S.U. Increasing water productivity in crop production—A synthesis. Agric. Water Manag. 2008, 95, 1201–1213. [Google Scholar] [CrossRef]
Weather Factors | GY (Well-Watered) | GY (Water-Stressed) | ||||
---|---|---|---|---|---|---|
WhS | VS | RS | WhS | VS | RS | |
AT | −0.697 * | −0.843 ** | −0.212 | −0.471 | −0.109 | −0.499 |
Tmin | −0.609 | −0.809 ** | −0.273 | −0.468 | −0.279 | −0.457 |
Tmax | −0.637 * | −0.774 ** | −0.152 | −0.366 | −0.029 | −0.492 |
DTR | −0.225 | −0.434 | 0.103 | 0.008 | 0.231 | −0.229 |
ET0 | −0.434 | −0.517 | −0.258 | −0.294 | −0.084 | −0.411 |
Shr | −0.157 | −0.219 | −0.075 | −0.183 | 0.035 | −0.264 |
RH | 0.608 | 0.532 | 0.513 | −0.008 | −0.279 | 0.277 |
ITr | GY | PDW/Plant | TGW | AGR | HI | LA | ChlC | CanopyT | RWL | |
---|---|---|---|---|---|---|---|---|---|---|
WW | GY | 0.405 * | 0.745 ** | −0.729 ** | 0.054 | 0.563 ** | 0.374 * | 0.365 * | −0.311 | |
DRI | −0.151 | 0.008 | −0.194 | 0.309 | 0.320 | −0.316 | 0.198 | −0.366 ** | 0.095 | |
WS | GY | 0.495 ** | 0.629 ** | 0.171 | 0.430 * | 0.530 ** | −0.006 | −0.029 | −0.505 ** | |
DRI | 0.354 | 0.347 | −0.038 | 0.074 | 0.552 ** | −0.233 | 0.085 | −0.365 * | −0.059 |
ITr | Trait | Direct Effect | Indirect Effect through | |||
---|---|---|---|---|---|---|
TGW | AGR | PDW/Plant | HI | |||
WW | TGW | 0.274 | - | 0.403 | 0.073 | −0.021 |
AGR | −0.632 | −0.175 | - | 0.081 | −0.005 | |
PDW/plant | 0.535 | 0.037 | −0.096 | - | 0.058 | |
HI | 0.221 | −0.006 | 0.013 | −0.174 | - | |
WS | PDW/Plant | LA | DRI | ChlC | ||
PDW/plant | 0.725 | - | −0.213 | 0.096 | −0.113 | |
LA | 0.696 | −0.222 | - | −0.064 | 0.120 | |
DRI | 0.276 | 0.252 | −0.162 | - | −0.012 | |
ChlC | −0.228 | 0.360 | −0.368 | 0.108 | - |
Treatment | Water Productivity | Grain Yield | Drought Resistance Index | ||||
---|---|---|---|---|---|---|---|
Upper Soil | Middle Soil | Deep Soil | |||||
Water- stressed | Root density | upper soil | −0.804 ** | 0.633 * | 0.218 | ||
middle soil | 0.350 | −0.454 | −0.348 | ||||
deep soil | 0.430 | 0.288 | 0.128 | ||||
Grain yield | −0.826 ** | −0.799 ** | 0.745 * | ||||
Drought resistance index | −0.440 | −0.499 | 0.398 | ||||
Well- watered | Root density | upper soil | −0.722 * | 0.519 | 0.271 | ||
middle soil | 0.096 | −0.512 | −0.211 | ||||
deep soil | −0.003 | −0.160 | 0.553 | ||||
Grain yield | −0.592 | −0.006 | 0.789 ** | ||||
Drought resistance index | 0.234 | −0.097 | 0.380 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Wang, B.; Liu, B.; Chen, Z.; Lu, G.; Ge, Y.; Bai, C. Trait Selection for Yield Improvement in Foxtail Millet (Setaria italica Beauv.) under Climate Change in the North China Plain. Agronomy 2022, 12, 1500. https://doi.org/10.3390/agronomy12071500
Zhang W, Wang B, Liu B, Chen Z, Lu G, Ge Y, Bai C. Trait Selection for Yield Improvement in Foxtail Millet (Setaria italica Beauv.) under Climate Change in the North China Plain. Agronomy. 2022; 12(7):1500. https://doi.org/10.3390/agronomy12071500
Chicago/Turabian StyleZhang, Wenying, Bianyin Wang, Binhui Liu, Zhaoyang Chen, Guanli Lu, Yaoxiang Ge, and Caihong Bai. 2022. "Trait Selection for Yield Improvement in Foxtail Millet (Setaria italica Beauv.) under Climate Change in the North China Plain" Agronomy 12, no. 7: 1500. https://doi.org/10.3390/agronomy12071500
APA StyleZhang, W., Wang, B., Liu, B., Chen, Z., Lu, G., Ge, Y., & Bai, C. (2022). Trait Selection for Yield Improvement in Foxtail Millet (Setaria italica Beauv.) under Climate Change in the North China Plain. Agronomy, 12(7), 1500. https://doi.org/10.3390/agronomy12071500