Comparative Response of Mango Fruit towards Pre- and Post-Storage Quarantine Heat Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physiological Parameters
2.1.1. Respiration Rate and Ethylene Production
2.1.2. Fruit Weight Loss
2.1.3. Fruit Firmness
2.1.4. Peel Color
2.2. Biochemical Analysis
Juice pH, Total Soluble Solids, and Titratable Acidity
2.3. Non-Enzymatic Antioxidants
2.3.1. Vitamin C
2.3.2. Total Phenolic Content and Antioxidant Activity
2.4. Enzymatic Antioxidants
2.4.1. Catalase (CAT) Activity
2.4.2. Superoxide Dismutase (SOD) Activity
2.4.3. Peroxidase (POD) Activity
2.5. Statistical Analysis
3. Results
3.1. Ethylene Production and Respiration Rate
3.2. Fruit Weight Loss
3.3. Fruit Firmness
3.4. Peel Color
3.5. Total Soluble Solids, Titratable Acidity, and Juice pH
3.6. Vitamin C, Antioxidant Capacity, and Total Phenolic Contents
3.7. Antioxidative Enzyme Activities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuhn, D.N.; Dillon, N.; Bally, I.; Groh, A.; Rahaman, J.; Warschefsky, E.; Freeman, B.; Innes, D.; Chambers, A.H. Estimation of genetic diversity and relatedness in a mango germplasm collection using SNP markers and a simplified visual analysis method. Sci. Hortic. 2019, 252, 156–168. [Google Scholar] [CrossRef]
- FAO. Global Fruit Production in 2016, by Variety (in Million Metric Tons). Statistica. 2016. Available online: https://www.statista.com/statistics/262266/global-production-of-fresh-fruit/ (accessed on 16 December 2021).
- FAO. Food and Agricultural Organization of United Nations. Available online: http://faostat.fao.org/ (accessed on 22 January 2022).
- GOP. Fruit, Vegetables and Condiments Statistics of Pakistan 2018–2019. 2020. 98p. Available online: http://www.amis.pk/files/Fruit%20&%20Vegetable%20Condiments%20of%20Pakistan%202018-19.pdf (accessed on 17 July 2021).
- Tyagi, S.; Sahay, S.; Imran, M.; Rashmi, K.; Mahesh, S.S. Pre-harvest factors influencing the postharvest quality of fruits: A review. Curr. Appl. Sci. Technol. 2017, 23, 32909. [Google Scholar] [CrossRef]
- Sarker, D.; Rahman, M.; Barman, J. Efficacy of different bagging materials for the control of mango fruit fly. Bangladesh J. Agric. Res. 2009, 34, 165–168. [Google Scholar] [CrossRef]
- Stonehouse, J.; Mahmood, R.; Poswal, A.; Mumford, J.; Baloch, K.N.; Chaudhary, Z.M.; Makhdum, A.H.; Mustafa, G.; Huggett, D. Farm field assessments of fruit flies (Diptera: Tephritidae) in Pakistan: Distribution, damage and control. Crop Prot. 2002, 21, 661–669. [Google Scholar] [CrossRef]
- Aveno, J.L.; Orden, M.E.M. Hot water treatment of mango: A study of four export corporations in the Philippines. Curr. Appl. Sci. Technol. 2004, 4, 53–60. [Google Scholar]
- Shahnawaz, M.; Sheikh, S.A.; Panwar, A.A.; Khaskheli, S.G.; Awan, F.A. Effect of hot water treatment on the chemical, sensorial properties and ripening quality of Chaunsa mango (Mangifera indica L.). J. Basic Appl. Sci. 2012, 8, 328–333. [Google Scholar] [CrossRef]
- Ntsoane, M.L.; Zude-Sasse, M.; Mahajan, P.; Sivakumar, D. Quality assesment and postharvest technology of mango: A review of its current status and future perspectives. Sci. Hortic. 2019, 249, 77–85. [Google Scholar] [CrossRef]
- Jacobi, K.K.; MacRae, E.A.; Hetherington, S.E. Effects of hot air conditioning of ‘Kensington’ mango fruit on the response to hot water treatment. Postharvest Biol. Technol. 2000, 21, 39–49. [Google Scholar] [CrossRef]
- Espreafico, E.M.; Cheney, R.E.; Matteoli, M.; Nascimento, A.; De Camilli, P.V.; Larson, R.E.; Mooseker, M.S. Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J. Cell Biol. 1992, 119, 1541–1557. [Google Scholar] [CrossRef] [Green Version]
- Papoutsis, K.; Mathioudakis, M.M.; Hasperué, J.H.; Ziogas, V. Non-chemical treatments for preventing the postharvest fungal rotting of citrus caused by Penicillium digitatum (green mold) and Penicillium italicum (blue mold). Trends Food Sci. Technol. 2019, 86, 479–491. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, Z.; Wisniewski, M.; Liu, Y.; Liu, J. Ecofriendly hot water treatment reduces postharvest decay and elicits defense response in kiwifruit. Environ. Sci. Pollut. Res. 2015, 22, 15037–15045. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.U.; Hasan, M.U.; Hassan, W.U.; Khan, A.S.; Shah, M.S.; Rajwana, I.A.; Latif, M.; Anwar, R. Postharvest quarantine vapour heat treatment attenuates disease incidence, maintains eating quality and improves bioactive compounds of ‘Gola’ and ‘Surahi’ guava fruits. J. Food Meas. Charact. 2021, 15, 1666–1679. [Google Scholar] [CrossRef]
- Jacobi, K.K.; MacRae, E.A.; Hetherington, S.E. Postharvest heat disinfestation treatments of mango fruit. Sci. Hortic. 2001, 89, 171–193. [Google Scholar] [CrossRef]
- Bambalele, N.L.; Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z. Recent Advances on Postharvest Technologies of Mango Fruit: A Review. Int. J. Fruit Sci. 2021, 21, 565–586. [Google Scholar] [CrossRef]
- Patil, A.S.; Maurer, D.; Feygenberg, O.; Alkan, N. Exploring cold quarantine to mango fruit against fruit fly using artificial ripening. Sci. Rep. 2019, 9, 1948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- Hortwitz, W. Official and Tentative Methods of Analysis; The Association of Official Agricultural Chemists: Washington, DC, USA, 1960; Volume 9, pp. 320–341. [Google Scholar]
- Ruck, J.A. Chemical Methods for Analysis of Fruits and Vegetables; Publication No. 1154; Canada Department of Agriculture: Ottawa, ON, Canada, 1963.
- Razzaq, K.; Khan, A.S.; Malik, A.U.; Shahid, M. Ripening period influences fruit softening and antioxidative system of ‘Samar Bahisht Chaunsa’ mango. Sci. Hortic. 2013, 160, 108–114. [Google Scholar] [CrossRef]
- Ali, S.; Sattar Khan, A.; Ullah Malik, A.; Anwar, R.; Akbar Anjum, M.; Nawaz, A.; Shafique, M.; Naz, S. Combined application of ascorbic and oxalic acids delays postharvest browning of litchi fruits under controlled atmosphere conditions. Food Chem. 2021, 350, 129277. [Google Scholar] [CrossRef]
- Brizzolara, S.; Manganaris, G.A.; Fotopoulos, V.; Watkins, C.B.; Tonutti, P. Primary Metabolism in Fresh Fruits During Storage. Front. Plant Sci. 2020, 11, 80. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P.; Joshi, M. Reduction of chilling injury in ripe Alphonso mango fruit in cold storage by temperature conditioning. Int. J. Food Sci. Technol. 1988, 23, 447–455. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Song, F.; Chen, W.; Zhao, S. Effects of heat treatment on changes of respiration rate and enzyme activity of ivory mangoes during storage. J. Food Process. Preserv. 2017, 41, 12737. [Google Scholar] [CrossRef] [Green Version]
- White, P.J. Recent advances in fruit development and ripening: An overview. J. Exp. Bot. 2002, 53, 1995–2000. [Google Scholar] [CrossRef] [PubMed]
- Montalvo, E.; García, H.S.; Tovar, B.; Mata, M. Application of exogenous ethylene on postharvest ripening of refrigerated ‘Ataulfo’ mangoes. J. Food Sci. Technol. 2007, 40, 1466–1472. [Google Scholar] [CrossRef]
- Djioua, T.; Charles, F.; Lopez-Lauri, F.; Filgueiras, H.; Coudret, A.; Freire, M., Jr.; Ducamp-Collin, M.-N.; Sallanon, H. Improving the storage of minimally processed mangoes (Mangifera indica L.) by hot water treatments. Postharvest Biol. Technol. 2009, 52, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Narayana, C.; Pal, R.; Roy, S. Effect of pre-storage treatments and temperature regimes on shelf-life and respiratory behaviour of ripe Baneshan mango. J. Food Sci. Technol. 1996, 33, 79–82. [Google Scholar]
- Ali, Z.M.; Chin, L.-H.; Lazan, H. A comparative study on wall degrading enzymes, pectin modifications and softening during ripening of selected tropical fruits. Plant Sci. 2004, 167, 317–327. [Google Scholar] [CrossRef]
- Gonzalez-Aguilar, G.A.; Celis, J.; Sotelo-Mundo, R.R.; De La Rosa, L.A.; Rodrigo-Garcia, J.; Alvarez-Parrilla, E. Physiological and biochemical changes of different fresh-cut mango cultivars stored at 5 °C. Int. J. Food Sci. Technol. 2008, 43, 91–101. [Google Scholar] [CrossRef]
- Robles-Sánchez, R.; Islas-Osuna, M.; Astiazarán-García, H.; Vazquez-Ortiz, F.; Martín-Belloso, O.; Gorinstein, S.; González-Aguilar, G. Quality index, consumer acceptability, bioactive compounds, and antioxidant activity of fresh-cut “Ataulfo” mangoes (Mangifera indica L.) as affected by low-temperature storage. J. Food Sci. 2009, 74, 126–134. [Google Scholar] [CrossRef]
- Bakar, M.A.; Abdullah, A.; Rahim, N.; Yazid, H.; Saad, F.; Ahmad, K. Development of ripeness indicator for quality assessment of harumanis mango by using image processing technique. IOP Conf. Ser. Mater. Sci. Eng. 2020, 932, 012087. [Google Scholar] [CrossRef]
- De Oliveira, K.Á.R.; da Conceição, M.L.; de Oliveira, S.P.A.; Lima, M.d.S.; de Sousa Galvão, M.; Madruga, M.S.; Magnani, M.; de Souza, E.L. Postharvest quality improvements in mango cultivar Tommy Atkins by chitosan coating with Mentha piperita L. essential oil. J. Hortic. Sci. Biotechnol. 2020, 95, 260–272. [Google Scholar] [CrossRef]
- George, D.S.; Razali, Z.; Santhirasegaram, V.; Somasundram, C. Effects of ultraviolet light (UV-C) and heat treatment on the quality of fresh-cut Chokanan mango and Josephine pineapple. J. Food Sci. 2015, 80, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Bal, E. Effect of postharvest UV-C treatments on quality attributes of fresh fig. Bulg. J. Agric. Sci. 2012, 18, 191–196. [Google Scholar]
- Anthon, G.E.; LeStrange, M.; Barrett, D.M. Changes in pH, acids, sugars and other quality parameters during extended vine holding of ripe processing tomatoes. J. Sci. Food Agric. 2011, 91, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Barua, G.; Mondal, M. Chemical changes in mango as influenced by different postharvest treatments. J. Bangladesh Agric. Univ. 2004, 2, 47–53. [Google Scholar]
- Rodríguez Pleguezuelo, C.; Durán Zuazo, V.; Muriel Fernández, J.; Franco Tarifa, D. Physico-chemical quality parameters of mango (Mangifera indica L.) fruits grown in a Mediterranean subtropical climate (SE Spain). J. Food Sci. 2012, 14, 365–374. [Google Scholar]
- Vicente, A.R.; Manganaris, G.A.; Darre, M.; Ortiz, C.M.; Sozzi, G.O.; Crisosto, C.H. Compositional Determinants of Fruit and Vegetable Quality and Nutritional Value. In Postharvest Handling, 4th ed.; Florkowski, W.J., Banks, N.H., Shewfelt, R.L., Prussia, S.E., Eds.; Academic Press: San Diego, CA, USA, 2022; pp. 565–619. [Google Scholar]
- Farina, V.; Gentile, C.; Sortino, G.; Gianguzzi, G.; Palazzolo, E.; Mazzaglia, A. Tree-ripe mango fruit: Physicochemical characterization, antioxidant properties and sensory profile of six Mediterranean-grown cultivars. Agronomy 2020, 10, 884. [Google Scholar] [CrossRef]
- Igwemmar, N.; Kolawole, S.; Imran, I. Effect of heating on vitamin C content of some selected vegetables. J. Consum. Prot. Food Saf. 2013, 2, 209–212. [Google Scholar] [CrossRef]
- Alothman, M.; Bhat, R.; Karim, A. UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innov. Food Sci. Emerg. Technol. 2009, 10, 512–516. [Google Scholar] [CrossRef]
- Ma, X.; Wu, H.; Liu, L.; Yao, Q.; Wang, S.; Zhan, R.; Xing, S.; Zhou, Y. Polyphenolic compounds and antioxidant properties in mango fruits. Sci. Hortic. 2011, 129, 102–107. [Google Scholar] [CrossRef]
- Capanoglu, E. The potential of priming in food production. Trends Food Sci. Technol. 2010, 21, 399–407. [Google Scholar] [CrossRef]
- Mayani, J.; Patel, N.; Dev Raj, P.B.; Tandel, Y.; Chhatrola, H. Effect of hot water dip treatment physico-chemical and sensory quality of Mango (CV. Kesar). Int. J. Chem. Stud. 2017, 5, 220–227. [Google Scholar] [CrossRef]
- EL-Eryan, E.E. Improving tommy atkins mango resistance to chilling injury during cold storage and marketing. J. Plant Prod. 2020, 11, 563–573. [Google Scholar] [CrossRef]
- Sogi, D.; Siddiq, M.; Roidoung, S.; Dolan, K. Total phenolics, carotenoids, ascorbic acid, and antioxidant properties of fresh-cut mango (Mangifera indica L., cv. Tommy Atkin) as affected by infrared heat treatment. J. Food Sci. 2012, 77, C1197–C1202. [Google Scholar] [CrossRef] [PubMed]
- Galani, J.H.Y.; Patel, J.S.; Patel, N.J.; Talati, J.G. Storage of fruits and vegetables in refrigerator increases their phenolic acids but decreases the total phenolics, anthocyanins and vitamin C with subsequent loss of their antioxidant capacity. Antioxidants 2017, 6, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niranjana, P.; Gopalakrishna, K.; Sudhakar, D.; Madhusudhan, B. Effect of pre-cooling and heat treatment on antioxidant enzymes profile of mango and banana. Afr. J. Food, Agric. Nutr. Dev. 2009, 9, 45097. [Google Scholar] [CrossRef] [Green Version]
- Sala, J.M. Involvement of oxidative stress in chilling injury in cold-stored mandarin fruits. Postharvest Biol. Technol. 1998, 13, 255–261. [Google Scholar] [CrossRef]
- Díaz-Corona, D.A.; López-López, M.E.; Ayón-Reyna, L.E.; López-Velázquez, J.G.; López-Zazueta, B.A.; Vega-García, M.O. Impact of hot water-calcium on the activity of cell wall degrading and antioxidant system enzymes in mango stored at chilling temperature. Food Chem. 2020, 44, 13286. [Google Scholar] [CrossRef]
- Wang, S.Y.; Jiao, H. Changes in oxygen-scavenging systems and membrane lipid peroxidation during maturation and ripening in blackberry. J. Agric. Food Chem. 2001, 49, 1612–1619. [Google Scholar] [CrossRef]
- Nagamani, J.; Shivashankara, K.; Roy, T. Role of oxidative stress and the activity of ethylene biosynthetic enzymes on the formation of spongy tissue in ‘Alphonso’ mango. J. Food Sci. Technol. 2010, 47, 295–299. [Google Scholar] [CrossRef] [Green Version]
- Ziaebrahimi, L.; Khavari-Nejad, R.; Fahimi, H.; Nejadsatari, T. Effects of aqueous eucalyptus extracts on seed germination, seedling growth and activities of peroxidase and polyphenoloxidase in three wheat cultivar seedlings (Triticum aestivum L.). Pak. J. Biol. Sci. 2007, 10, 3415–3419. [Google Scholar] [CrossRef] [Green Version]
- Mondal, K.; Malhotra, S.P.; Jain, V.; Singh, R. Oxidative stress and antioxidant systems in Guava (Psidium guajava L.) fruits during ripening. Physiol. Mol. Biol. Plants 2009, 15, 327–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatments | Time of HT Application | Days at 12 °C + Days at 25 °C | ||
---|---|---|---|---|
TSS (%) | ||||
At Harvest (0 d at 12 °C) | Post-harvest Storage (21 d at 12 °C) | 0 d + 6 d | 21 d + 1 d | |
Control | 12.53 ± 0.62 c | 13.40 ± 0.52 cd | 17.60 ± 0.20 b | D |
HWT | 14.34 ± 0.46 c | 17.50 ± 0.23 b | 20.40 ± 0.65 a | D |
VHT | 13.60 ± 0.66 c | 12.10 ± 0.76 d | 19.33 ± 0.68 a | D |
TA (%) | ||||
Control | 1.27 ± 0.33 a | 0.35 ± 0.03 b | 0.17 ± 0.02 b | D |
HWT | 0.98 ± 0.07 a | 0.33 ± 0.00 b | 0.22 ± 0.01 b | D |
VHT | 0.98 ± 0.11 a | 0.33 ± 0.03 b | 0.43 ± 0.09 b | D |
Juice pH | ||||
Control | 3.23 ± 0.01 b | 3.87 ± 0.04 a | 3.91 ± 0.02 c | D |
HWT | 3.32 ± 0.02 b | 3.99 ± 0.02 a | 4.68 ± 0.08 b | D |
VHT | 3.29 ± 0.03 b | 3.91 ± 0.04 a | 4.95 ± 0.04 a | D |
Treatments | Time of QHT Application | Days at 12 °C + Days at 25 °C | ||
---|---|---|---|---|
VC (mg 100 g−1) | ||||
At Harvest (0 d at 12 °C) | Post-harvest Storage (21 d at 12 °C) | 0 d + 6 d | 21 d + 1 d | |
Control | 25.65 ± 1.18 c | 3.90 ± 0.30 g | 12.50 ± 0.44 f | D |
HWT | 37.59 ± 0.58 a | 4.20 ± 0.30 g | 14.32 ± 0.04 e | D |
VHT | 27.90 ± 0.00 b | 2.40 ± 0.30 h | 16.87 ± 0.39 d | D |
AC (% Inhibition) | ||||
Control | 86.18 ± 0.29 c–e | 89.14 ± 0.08 a | 87.83 ± 0.29 a–c | D |
HWT | 87.02 ± 0.57 b–d | 84.72 ± 0.95 e | 88.01 ± 0.49 ab | D |
VHT | 85.42 ± 00.49 de | 86.14 ± 0.95 b–e | 86.47 ± 0.21 b–d | D |
TPC (GAE mg 100 g−1) | ||||
Control | 49.31 ± 2.05 e | 100.94 ± 3.69 a | 43.57 ± 2.21 e | D |
HWT | 102.18 ± 1.35 a | 88.15 ± 5.48 b | 44.58 ± 4.52 e | D |
VHT | 77.76 ± 1.08 c | 84.81 ± 2.24 bc | 65.28 ± 0.84 d | D |
Treatments | Time of QHT Application | Days at 12 °C + Days at 25 °C | ||
---|---|---|---|---|
SOD (U mg−1 of Protein) | ||||
At Harvest (0 d at 12 °C) | Post-harvest Storage (21 d at 12 °C) | 0 d + 6 d | 21 d + 1 d | |
Control | 49.60 ± 4.83 c | 103.81 ± 6.24 a | 32.80 ± 1.23 de | D |
HWT | 28.89 ± 0.55 de | 89.71 ± 5.62 b | 33.99 ± 0.93 d | D |
VHT | 21.39 ± 0.33 e | 84.21 ± 5.07 b | 36.65 ± 0.66 d | D |
POD (U mg−1 of protein) | ||||
Control | 65.95 ± 2.82 d | 0.24 ± 0.05 e | 88.74 ± 3.87 c | D |
HWT | 91.96 ± 1.91 c | 0.43 ± 0.14 e | 223.46 ± 1.80 a | D |
VHT | 103.96 ± 2.83 b | 0.30 ± 0.03 e | 94.23 ± 3.50 c | D |
CAT (U mg−1 of protein) | ||||
Control | 6.26 ± 0.06 ab | 3.25 ± 0.14 de | 6.48 ± 0.53 a | D |
HWT | 5.11 ± 0.06 bc | 4.82 ± 1.11 c | 2.32 ± 0.03 e | D |
VHT | 4.19 ± 0.06 cd | 4.03 ± 0.03 cd | 5.07 ± 0.27 c | D |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, S.; Fu, H.; Ali, A.; Nadeem, A.; Amin, M.; Razzaq, K.; Ullah, S.; Rajwana, I.A.; Nayab, S.; Ziogas, V.; et al. Comparative Response of Mango Fruit towards Pre- and Post-Storage Quarantine Heat Treatments. Agronomy 2022, 12, 1476. https://doi.org/10.3390/agronomy12061476
Javed S, Fu H, Ali A, Nadeem A, Amin M, Razzaq K, Ullah S, Rajwana IA, Nayab S, Ziogas V, et al. Comparative Response of Mango Fruit towards Pre- and Post-Storage Quarantine Heat Treatments. Agronomy. 2022; 12(6):1476. https://doi.org/10.3390/agronomy12061476
Chicago/Turabian StyleJaved, Saqib, Huimin Fu, Amjad Ali, Atif Nadeem, Muhammad Amin, Kashif Razzaq, Sami Ullah, Ishtiaq A. Rajwana, Shafa Nayab, Vasileios Ziogas, and et al. 2022. "Comparative Response of Mango Fruit towards Pre- and Post-Storage Quarantine Heat Treatments" Agronomy 12, no. 6: 1476. https://doi.org/10.3390/agronomy12061476