Mixture Composition Influenced the Biomass Yield and Nutritional Quality of Legume–Grass Pastures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Material
2.2. Soil Characteristics and Weather Description
2.3. Experimental Design and Field Management
2.4. Sampling and Measurement
2.4.1. Sampling and Measurement
2.4.2. Biomass Yield
2.4.3. Legume/Grass Biomass Yield Proportions
2.4.4. Nutritional Quality Analysis
2.5. Statistical Analysis
3. Results
3.1. Mixture Composition Influenced the Biomass Yield of Legume-Grass Mixtures
3.2. Grasses Showed Less Biomass Yield Proportion in the Second Year Compared to Legumes
3.3. Mixture Composition Influenced the Nutritional Quality of Legume-Grass Mixtures
3.4. Correlation Analysis
4. Discussion
4.1. Mixture Composition Influenced the Biomass Yield of Legume-Grass Mixtures
4.2. Grasses Biomass Yield Decreased with Increased in Establishment Time
4.3. Mixture Composition Influenced the Nutritional Quality of Legume-Grass Mixtures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marquard, E.; Weigelt, A.; Temperton, V.M.; Roscher, C.; Schumacher, J.; Buchmann, N.; Fischer, M.; Weisser, W.W.; Schmid, B. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 2009, 90, 3290–3302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finn, J.A.; Kirwan, L.; Connolly, J.; Sebastià, M.T.; Helgadottir, A.; Baadshaug, O.H.; Bélanger, G.; Black, A.; Brophy, C.; Collins, R.P. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. J. Appl. Ecol. 2013, 50, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Favre, J.R.; Castiblanco, T.M.; Combs, D.K.; Wattiaux, M.A.; Picasso, V.D. Forage nutritive value and predicted fiber digestibility of Kernza intermediate wheatgrass in monoculture and in mixture with red clover during the first production year. Anim. Feed Sci. Technol. 2019, 258, 114298. [Google Scholar] [CrossRef]
- Picasso, V.D.; Brummer, E.C.; Liebman, M.; Dixon, P.M.; Wilsey, B.J. Crop species diversity affects productivity and weed suppression in perennial polycultures under two management strategies. Crop Sci. 2008, 48, 331–342. [Google Scholar] [CrossRef]
- Sanderson, M.; Skinner, R.; Barker, D.; Edwards, G.; Tracy, B.; Wedin, D. Plant species diversity and management of temperate forage and grazing land ecosystems. Crop Sci. 2004, 44, 1132–1144. [Google Scholar] [CrossRef]
- Yachi, S.; Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 1999, 96, 1463–1468. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D. Plant diversity and composition: Effects on productivity and nutrient dynamics of experimental grasslands. In Biodiversity and Ecosystem Functioning: Synthesis and Perspectives; Tilman, D., Knops, J., Wedin, D., Reich, P., Eds.; Oxford University Press: Oxford, UK, 2002; p. 21. [Google Scholar]
- Cong, W.-F.; Suter, M.; Lüscher, A.; Eriksen, J. Species interactions between forbs and grass-clover contribute to yield gains and weed suppression in forage grassland mixtures. Agric. Ecosyst. Environ. 2018, 268, 154–161. [Google Scholar] [CrossRef]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.-F.; Rees, R.; Peyraud, J.-L. Potential of legume-based grassland–livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef]
- Ashworth, A.J.; Toler, H.D.; Allen, F.L.; Augé, R.M. Global meta-analysis reveals agro-grassland productivity varies based on species diversity over time. PLoS ONE 2018, 13, e0200274. [Google Scholar] [CrossRef] [Green Version]
- Miyazawa, K.; Takeda, M.; Murakami, T.; Murayama, T. Dual and triple intercropping: Potential benefits for annual green manure production. Plant Prod. Sci. 2014, 17, 194–201. [Google Scholar] [CrossRef]
- Duffy, J.E.; Godwin, C.M.; Cardinale, B.J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 2017, 549, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Fraser, L.H.; Pither, J.; Jentsch, A.; Sternberg, M.; Zobel, M.; Askarizadeh, D.; Bartha, S.; Beierkuhnlein, C.; Bennett, J.A.; Bittel, A. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 2015, 349, 302–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooper, D.U.; Chapin, F., III; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.; Loreau, M.; Naeem, S. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Li, W.; Knops, J.M.; Brassil, C.E.; Lu, J.; Qi, W.; Li, J.; Liu, M.; Chang, S.; Li, W. Functional group dominance and not productivity drives species richness. Plant Ecol. Divers. 2016, 9, 141–150. [Google Scholar] [CrossRef]
- Roman, K.; Barwicki, J.; Rzodkiewicz, W.; Dawidowski, M. Evaluation of Mechanical and Energetic Properties of the Forest Residues Shredded Chips during Briquetting Process. Energies 2021, 14, 3270. [Google Scholar] [CrossRef]
- Deak, A.; Hall, M.; Sanderson, M.; Archibald, D. Production and nutritive value of grazed simple and complex forage mixtures. Agron. J. 2007, 99, 814–821. [Google Scholar] [CrossRef] [Green Version]
- Khalsa, J.; Fricke, T.; Weigelt, A.; Wachendorf, M. Effects of species richness and functional groups on chemical constituents relevant for methane yields from anaerobic digestion: Results from a grassland diversity experiment. Grass Forage Sci. 2014, 69, 49–63. [Google Scholar] [CrossRef]
- Ergon, Å.; Kirwan, L.; Fystro, G.; Bleken, M.A.; Collins, R.P.; Rognli, O.A. Species interactions in a grassland mixture under low nitrogen fertilization and two cutting frequencies. II. Nutritional quality. Grass Forage Sci. 2017, 72, 333–342. [Google Scholar] [CrossRef]
- Kirwan, L.; Lüscher, A.; Sebastià, M.T.; Finn, J.A.; Collins, R.; Porqueddu, C.; Helgadottir, A.; Baadshaug, O.H.; Brophy, C.; Coran, C. Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J. Ecol. 2007, 95, 530–539. [Google Scholar] [CrossRef]
- Suter, M.; Connolly, J.; Finn, J.A.; Loges, R.; Kirwan, L.; Sebastià, M.T.; Lüscher, A. Nitrogen yield advantage from grass–legume mixtures is robust over a wide range of legume proportions and environmental conditions. Glob. Chang. Biol. 2015, 21, 2424–2438. [Google Scholar] [CrossRef] [Green Version]
- Peeters, A.; Parente, G.; Le Gall, A. Temperate legumes: Key-species for sustainable temperate mixtures. In Sustainable Grassland Productivity; Grassland Science in Europe; Artes Gráficas Marcipa: Badajoz, Spain, 2006. [Google Scholar]
- Ghosh, P.; Manna, M.; Bandyopadhyay, K.; Tripathi, A.; Wanjari, R.; Hati, K.; Misra, A.; Acharya, C.; Subba Rao, A. Interspecific interaction and nutrient use in soybean/sorghum intercropping system. Agron. J. 2006, 98, 1097–1108. [Google Scholar] [CrossRef]
- Nyfeler, D.; Huguenin-Elie, O.; Frossard, E.; Lüscher, A. Regulation of symbiotic nitrogen fixation in grass-clover mixtures. In Sustainable Grassland Productivity; Artes Gráficas Marcipa: Badajoz, Spain, 2006. [Google Scholar]
- Ojeda, J.J.; Caviglia, O.P.; Agnusdei, M.G.; Errecart, P.M. Forage yield, water-and solar radiation-productivities of perennial pastures and annual crops sequences in the south-eastern Pampas of Argentina. Field Crops Res. 2018, 221, 19–31. [Google Scholar] [CrossRef]
- Khatiwada, B.; Acharya, S.N.; Larney, F.J.; Lupwayi, N.Z.; Smith, E.G.; Islam, M.A.; Thomas, J.E. Benefits of mixed grass–legume pastures and pasture rejuvenation using bloat-free legumes in western Canada: A review. Can. J. Plant Sci. 2020, 100, 463–476. [Google Scholar] [CrossRef]
- Bhandari, K.B.; West, C.P.; Acosta-Martinez, V. Assessing the role of interseeding alfalfa into grass on improving pasture soil health in semi-arid Texas High Plains. Appl. Soil Ecol. 2020, 147, 103399. [Google Scholar] [CrossRef]
- Louarn, G.; Pereira-Lopès, E.; Fustec, J.; Mary, B.; Voisin, A.-S.; de Faccio Carvalho, P.C.; Gastal, F. The amounts and dynamics of nitrogen transfer to grasses differ in alfalfa and white clover-based grass-legume mixtures as a result of rooting strategies and rhizodeposit quality. Plant Soil 2015, 389, 289–305. [Google Scholar] [CrossRef]
- Aponte, A.; Samarappuli, D.; Berti, M.T. Alfalfa–grass mixtures in comparison to grass and alfalfa monocultures. Agron. J. 2019, 111, 628–638. [Google Scholar] [CrossRef]
- Bi, Y.; Zhou, P.; Li, S.; Wei, Y.; Xiong, X.; Shi, Y.; Liu, N.; Zhang, Y. Interspecific interactions contribute to higher forage yield and are affected by phosphorus application in a fully-mixed perennial legume and grass intercropping system. Field Crops Res. 2019, 244, 107636. [Google Scholar] [CrossRef]
- Mulder, C.P.; Bazeley-White, E.; Dimitrakopoulos, P.G.; Hector, A.; Scherer-Lorenzen, M.; Schmid, B. Species evenness and productivity in experimental plant communities. Oikos 2004, 107, 50–63. [Google Scholar] [CrossRef]
- Nyfeler, D.; Huguenin-Elie, O.; Suter, M.; Frossard, E.; Connolly, J.; Lüscher, A. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J. Appl. Ecol. 2009, 46, 683–691. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Brink, G.; Stout, R.; Ruth, L. Grass–legume proportions in forage seed mixtures and effects on herbage yield and weed abundance. Agron. J. 2013, 105, 1289–1297. [Google Scholar] [CrossRef] [Green Version]
- Bao, S. Soil Agrochemical Analysis; China Agricultural Press: Beijing, China, 2000; Volume 67, p. 72. [Google Scholar]
- Bremner, J.M. Nitrogen-total. In Methods of Soil Analysis: Part 3 Chemical Methods; Soil Science Society of America: Madison, WI, USA, 1996; Volume 5, pp. 1085–1121. [Google Scholar]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.V.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Sanderson, M.A. Stability of production and plant species diversity in managed grasslands: A retrospective study. Basic Appl. Ecol. 2010, 11, 216–224. [Google Scholar] [CrossRef]
- Sturludóttir, E.; Brophy, C.; Belanger, G.; Gustavsson, A.M.; Jørgensen, M.; Lunnan, T.; Helgadóttir, Á. Benefits of mixing grasses and legumes for herbage yield and nutritive value in Northern Europe and Canada. Grass Forage Sci. 2014, 69, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Wendling, M.; Büchi, L.; Amossé, C.; Jeangros, B.; Walter, A.; Charles, R. Specific interactions leading to transgressive overyielding in cover crop mixtures. Agric. Ecosyst. Environ. 2017, 241, 88–99. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Tong, C.; Wu, Y. Effect of root interaction on nodulation and nitrogen fixation ability of alfalfa in the simulated alfalfa/triticale intercropping in pots. Sci. Rep. 2020, 10, 4269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heshmati, S.; Tonn, B.; Isselstein, J. White clover population effects on the productivity and yield stability of mixtures with perennial ryegrass and chicory. Field Crops Res. 2020, 252, 107802. [Google Scholar] [CrossRef]
- Loreau, M.; Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 2001, 412, 72–76. [Google Scholar] [CrossRef]
- Polley, H.W.; Collins, H.P.; Fay, P.A. Biomass production and temporal stability are similar in switchgrass monoculture and diverse grassland. Biomass Bioenergy 2020, 142, 105758. [Google Scholar] [CrossRef]
- Bork, E.W.; Gabruck, D.T.; McLeod, E.M.; Hall, L.M. Five-year forage dynamics arising from four legume–grass seed mixes. Agron. J. 2017, 109, 2789–2799. [Google Scholar] [CrossRef]
- Kramer, K.J.; Kagan, I.A.; Lawrence, L.M.; Goff, B.M.; Smith, S.R. Water-soluble carbohydrates of cool-season grasses: Prediction of concentrations by near-infrared reflectance spectroscopy and evaluation of effects of genetics, management, and environment. J. Equine Vet. Sci. 2020, 90, 103014. [Google Scholar] [CrossRef]
- Jensen, K.B.; Harrison, P.; Chatterton, N.J.; Bushman, B.S.; Creech, J.E. Seasonal trends in nonstructural carbohydrates in cool-and warm-season grasses. Crop Sci. 2014, 54, 2328–2340. [Google Scholar] [CrossRef]
Month | Average Temperature (°C) | Average Rainfall (mm) | ||||
---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | |
January | 7.58 | 5.97 | 6.67 | 16.00 | 3.40 | 5.20 |
February | 10.05 | 7.67 | 7.44 | 2.90 | 1.40 | 14.00 |
March | 13.84 | 15.48 | 13.01 | 10.60 | 25.80 | 27.60 |
April | 15.47 | 18.42 | 19.29 | 24.10 | 69.30 | 44.60 |
May | 21.43 | 23.31 | 20.23 | 62.40 | 121.70 | 146.30 |
June | 22.25 | 13.51 | 23.75 | 151.67 | 235.10 | 6.60 |
July | 25.57 | 26.71 | 24.07 | 288.56 | 357.80 | 294.30 |
August | 26.83 | 26.85 | 25.10 | 66.34 | 84.90 | 32.00 |
September | 22.63 | 21.99 | 20.41 | 144.50 | 109.50 | 205.20 |
October | 17.54 | 16.94 | 18.39 | 45.50 | 37.10 | 8.50 |
November | 12.12 | 11.50 | 11.24 | 9.30 | 10.50 | 13.00 |
December | 7.83 | 5.65 | 7.66 | 5.40 | 4.10 | 2.90 |
Mixture | Species | Seeding Rate (kg/ha)/Mixed Ratio (%) | |
---|---|---|---|
L:G 5:5 | L:G 4:6 | ||
A1 | Orchardgrass | 3.75/25 | 4.50/30 |
Tall fescue | 9.38/25 | 11.25/30 | |
White clover | 3.75/50 | 3.00/40 | |
A2 | Orchardgrass | 3.75/25 | 4.50/30 |
Tall fescue | 9.38/25 | 11.25/30 | |
Alfalfa | 11.25/50 | 9.00/40 | |
B1 | Orchardgrass | 3.75/25 | 4.50/30 |
Tall fescue | 9.38/25 | 11.25/30 | |
Alfalfa | 5.62/25 | 4.50/20 | |
White clover | 1.86/25 | 1.50/20 | |
B2 | Orchardgrass | 3.75/25 | 4.50/30 |
Tall fescue | 9.38/25 | 11.25/30 | |
White clover | 1.86/25 | 1.50/20 | |
Red clover | 3.75/25 | 3.00/20 | |
C1 | Orchardgrass | 2.50/16.70 | 3.00/20 |
Perennial ryegrass | 3.01/16.70 | 3.60/20 | |
Tall fescue | 6.26/16.70 | 7.50/20 | |
Alfalfa | 5.62/25 | 4.50/20 | |
White clover | 1.86/25 | 1.50/20 | |
C2 | Orchardgrass | 2.50/16.70 | 3.00/20 |
Perennial ryegrass | 3.01/16.70 | 3.60/20 | |
Tall fescue | 6.26/16.70 | 7.50/20 | |
White clover | 1.86/25 | 1.50/20 | |
Red clover | 3.75/25 | 3.00/20 | |
D | Orchardgrass | 2.50/16.70 | 3.00/20 |
Perennial ryegrass | 3.01/16.70 | 3.60/20 | |
Tall fescue | 6.25/16.67 | 7.50/20 | |
Alfalfa | 3.75/16.67 | 2.99/13.30 | |
White clover | 1.25/16.67 | 0.99/13.30 | |
Red clover | 2.50/16.67 | 1.99/13.30 |
Variable | Biomass Yield | ||
---|---|---|---|
df | Type III Sum of Squares | F | |
Between-subjects source | |||
Mixture | 6 | 169.20 *** | 97.40 |
Ratio | 1 | 0.01 | 0.04 |
Mixture × Ratio | 6 | 13.69 *** | 7.88 |
Error | 28 | 8.107 | |
Within-subjects source | |||
Year | 1 | 59.67 *** | 135.55 |
Mixture × Year | 6 | 31.56 *** | 11.94 |
Ratio × Year | 1 | 0.12 | 0.27 |
Mixture × Ratio × year | 6 | 10.47 ** | 3.96 |
Error | 28 | 12.327 |
Year | Cuttings | L:G 5:5 | L:G 4:6 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Legume–Grass Mixtures | |||||||||||||||
A1 | A2 | B1 | B2 | C1 | C2 | D | A1 | A2 | B1 | B2 | C1 | C2 | D | ||
2018 | First cut | 4.45 abcBC | 3.72 cdeD | 3.81 bcdCD | 4.54 abAB | 4.86 aA | 3.09 deE | 3.92 bcCD | 3.75 bcdBC | 3.85 bcdBC | 3.04 eC | 3.98 bcB | 5.22 aA | 4.54 abAB | 4.86 aA |
Second cut | 3.25 deD | 4.58 bB | 3.88 cC | 4.03 bcC | 3.74 cdC | 3.66 cdeCD | 5.12 aA | 3.25 deB | 4.51 bA | 3.15 eB | 4.02 bcA | 4.25 bcA | 4.47 bA | 4.20 bcA | |
Third cut | 2.89 gC | 4.29 bcAB | 4.37 bcA | 3.95 bcdAB | 3.92 bcdAB | 2.92 gC | 3.57 defBC | 3.01 egDE | 5.51 aA | 4.45 bB | 3.76 cdeC | 3.26 efgD | 2.74 gE | 2.94 gDE | |
Sum | 10.60 dB | 12.60 bA | 12.08 bA | 12.53 bA | 12.52 bA | 9.68 dB | 12.62 bA | 10.01 dD | 13.88 aA | 10.65 cdCD | 11.77 bcBC | 12.73 bAB | 11.76 bcBC | 12.01 bB | |
2019 | First cut | 3.39 cdeCD | 4.24 bA | 3.46 cdeCD | 2.97 eD | 3.91 bcAB | 3.43 cdeCD | 3.62 cdBC | 3.08 deC | 5.76 aA | 3.14 deC | 3.50 cdeBC | 3.15 deC | 3.10 deC | 3.72 cB |
Second cut | 2.07 gD | 4.01 abA | 3.23 deB | 2.90 efBC | 3.86 bcA | 2.67 fC | 3.77 bcA | 2.65 fC | 4.41 aA | 2.65 fC | 2.92 efBC | 3.48 cdB | 3.04 defBC | 3.47 cdB | |
Third cut | 1.33 hE | 4.92 aA | 3.57 cdeBC | 2.68 gD | 3.69 cdBC | 4.03 bcB | 3.39 defC | 1.46 hD | 4.42 bA | 3.08 fgC | 3.12 efgC | 3.88 cB | 3.19 efC | 3.23 defC | |
Sum | 6.80 hE | 13.17 bA | 10.27 defC | 8.55g D | 11.46 cB | 10.13 defC | 10.79 cdBC | 7.20 hD | 14.59 aA | 8.87 gC | 9.54 efgBC | 10.52 cdeB | 9.34 fgC | 10.43 deB | |
2-year mean | 8.70 hF | 12.89 bA | 11.17 deC | 10.54 efD | 11.99 cB | 9.90 fgE | 11.70 cdBC | 8.60 hE | 14.24 aA | 9.76 gD | 10.66 eC | 11.63 cdB | 10.55 efC | 11.22 deBC |
Seeding Ratio | Mixture | Nutritional Parameters | ||||
---|---|---|---|---|---|---|
CP | WSC | NDF | ADF | RFV | ||
L:G 5:5 | A1 | 1.83 efgD | 0.54 defCD | 5.35 bcdB | 2.77 gD | 125.97 dC |
A2 | 2.30 bA | 0.75 abcA | 5.68 abcAB | 3.49 abcAB | 138.64 bcB | |
B1 | 2.24 bcAB | 0.49 defD | 5.15 cdeBC | 3.21 cdeBC | 149.02 aA | |
B2 | 2.18 bcdAB | 0.50 defCD | 6.05 aA | 3.36 bcdAB | 131.08 cdC | |
C1 | 2.06 bcdBC | 0.63 bcdB | 6.03 aA | 3.64 abA | 128.66 dC | |
C2 | 1.42 hE | 0.57 cdeBC | 4.69 eC | 2.94 efgCD | 126.15 dC | |
D | 1.93 defCD | 0.76 abcA | 6.13 aA | 3.59 abcA | 127.78 dC | |
L:G 4:6 | A1 | 1.59 ghD | 0.51 defCD | 4.95 deB | 2.86 fgD | 125.51 dC |
A2 | 2.57 aA | 0.72 abcAB | 6.03 aA | 3.85 aA | 146.57 aA | |
B1 | 1.91 defBC | 0.36 fD | 4.81 deB | 3.00 defCD | 138.79 bcAB | |
B2 | 2.02 cdeB | 0.45 efCD | 5.63 abcA | 3.29 bcdBC | 130.63 cdBC | |
C1 | 1.87 efBC | 0.77 abA | 6.17 aA | 3.87 aA | 126.38 dC | |
C2 | 1.67 fghCD | 0.85 aA | 5.83 abA | 3.55 abcAB | 124.16 dC | |
D | 1.86 efBC | 0.67 bcdBC | 5.72 abcA | 3.49 abcAB | 130.32 cdBC | |
Mixture (M) | *** | *** | *** | *** | *** | |
Ratio (R) | NS | NS | NS | * | NS | |
M × R | ** | * | ** | * | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahir, M.; Li, C.; Zeng, T.; Xin, Y.; Chen, C.; Javed, H.H.; Yang, W.; Yan, Y. Mixture Composition Influenced the Biomass Yield and Nutritional Quality of Legume–Grass Pastures. Agronomy 2022, 12, 1449. https://doi.org/10.3390/agronomy12061449
Tahir M, Li C, Zeng T, Xin Y, Chen C, Javed HH, Yang W, Yan Y. Mixture Composition Influenced the Biomass Yield and Nutritional Quality of Legume–Grass Pastures. Agronomy. 2022; 12(6):1449. https://doi.org/10.3390/agronomy12061449
Chicago/Turabian StyleTahir, Muhammad, Changhua Li, Tairu Zeng, Yafen Xin, Chen Chen, Hafiz Hassan Javed, Wenyu Yang, and Yanhong Yan. 2022. "Mixture Composition Influenced the Biomass Yield and Nutritional Quality of Legume–Grass Pastures" Agronomy 12, no. 6: 1449. https://doi.org/10.3390/agronomy12061449
APA StyleTahir, M., Li, C., Zeng, T., Xin, Y., Chen, C., Javed, H. H., Yang, W., & Yan, Y. (2022). Mixture Composition Influenced the Biomass Yield and Nutritional Quality of Legume–Grass Pastures. Agronomy, 12(6), 1449. https://doi.org/10.3390/agronomy12061449