Tomato Comprehensive Quality Evaluation and Irrigation Mode Optimization with Biogas Slurry Based on the Combined Evaluation Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Materials
2.3. Experimental Design
2.4. Measurement and Evaluation Methods
2.4.1. Measurement of Tomato Growth
2.4.2. Measurement of Tomato Growth
2.4.3. Tomato Yield and Water Use Efficiency
2.4.4. Evaluation Method
- (1)
- Kendall consistency test
- (2)
- overall difference combination evaluation
2.5. Tomato Comprehensive Quality Evaluation Index System
2.6. Statistical Analysis
3. Results
3.1. Tomato Leaf Area and Dry Matter
3.2. Tomato Yield and Water Use Efficiency
3.3. Tomato Quality
3.4. Comprehensive Nutritional Quality Evaluation
3.5. Nutritional Quality Evaluation Based on an Overall Difference Combination Evaluation Model
3.5.1. Statistical Test for the Nutritional Quality Combination Evaluation Model
3.5.2. Comprehensive Quality Evaluation Based on the Overall Difference Combination Evaluation Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Li, Y.; Wang, L.; Xue, X.; Guo, W.; Xu, F.; Li, Y.; Sun, W.; Chen, F. Comparison of drip fertigation and negative pressure fertigation on soil water dynamics and water use efficiency of greenhouse tomato grown in the North China Plain. Agric. Water Manag. 2017, 184, 1–8. [Google Scholar] [CrossRef]
- Chen, J.; Kang, S.; Du, T.; Qiu, R.; Guo, P.; Chen, R. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agric. Water Manag. 2013, 129, 152–162. [Google Scholar] [CrossRef]
- Toor, R.K.; Savage, G.P.; Heeb, A. Influence of different types of fertilisers on the major antioxidant components of tomatoes. J. Food Compos. Anal. 2006, 19, 20–27. [Google Scholar] [CrossRef]
- Beckles, D.M. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit—ScienceDirect. Postharvest Biol. Technol. 2012, 63, 129–140. [Google Scholar] [CrossRef]
- Sesso, H.D.; Liu, S.; Gaziano, J.M.; Buring, J.E. Dietary lycopene, tomato-based food products and cardiovascular disease in women. J. Nutr. 2003, 133, 2336–2341. [Google Scholar] [CrossRef] [Green Version]
- Agbna, G.H.; Dongli, S.; Zhipeng, L.; Elshaikh, N.A.; Guangcheng, S.; Timm, L.C. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Sci. Hortic. 2017, 222, 90–101. [Google Scholar] [CrossRef]
- Cole, J.C.; Smith, M.W.; Penn, C.J.; Cheary, B.S.; Conaghan, K.J. Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Sci. Hortic. 2016, 211, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Zotarelli, L.; Dukes, M.D.; Scholberg JM, S.; Munoz-Carpena, R.; Icerman, J. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agric. Water Manag. 2009, 96, 1247–1258. [Google Scholar] [CrossRef]
- Cheng, M.H.; Wang, H.D.; Fan, J.L.; Xiang, Y.Z.; Tang, Z.J.; Pei, S.Z.; Zeng, H.L.; Zhang, C.; Dai, Y.L.; Li, Z.J.; et al. Effects of nitrogen supply on tomato yield, water use efficiency and fruit quality: A. global meta-analysis. Sci. Hortic. 2021, 290, 110553. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Sun, S.Q.; Hu, C.W.; Zhang, H.; Xu, j.; Ping, L.F. Performance of three microalgal strains in biogas slurry purification and biogas upgrade in response to various mixed light-emitting diode light wavelengths. Bioresour. Technol. 2015, 187, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.M.; Chang, Z.Z.; Ye, X.M.; Ma, Y.; Zhu, J. Physical and chemical characteristics of anaerobically digested slurry from large-scale biogas project in Jiangsu Province. Trans. CSAE 2011, 27, 291–296, (In Chinese with English abstract). [Google Scholar]
- Aditi, G.; Satyawati, S.; Ashwani, K.; Parvaiz, A.; Mohammed, N. Enhancing Nutritional Contents of Lentinus sajor-caju Using Residual Biogas Slurry Waste of Detoxified Mahua Cake Mixed with Wheat Straw. Front. Microbiol. 2016, 172, 43–56. [Google Scholar]
- Yan, C.; Zhu, L.D.; Wang, Y.X. Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities, and photoperiods. Appl. Energy 2016, 178, 9–18. [Google Scholar] [CrossRef]
- Xu, Z.M.; Wang, Z.; Gao, Q.; Wang, L.L.; Chen, L.L.; Li, Q.G.; Jiang, J.J.; Ye, H.J.; Wang, D.S.; Yang, P. Influence of irrigation with microalgae-treated biogas slurry on agronomic trait, nutritional quality, oxidation resistance, and nitrate and heavy metal residues in Chinese cabbage. J. Environ. Manag. 2019, 244, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.B.; Luo, X.P.; Song, C.F.; Zhang, M.X.; Shan, S.D. Concentrated biogas slurry enhanced soil fertility and tomato quality. Acta Agric. Scand. 2010, 60, 262–268. [Google Scholar] [CrossRef]
- Zheng, J.; Li, X.Y.; Zhang, Y.N.; Zhang, P.A.; Wang, J. Effects of Digestate Application on Tomato Growth, Yield, Quality, and Soil Nitrogen Content via Integrated Hole Irrigation. J. Biobased Mater. Bioenergy 2019, 13, 620–634. [Google Scholar] [CrossRef]
- Zheng, J.; Pan, Z.P.; Ma, J.; Wang, Y.; Yan, F. Animal Based Biogas Digestate Application Frequency Effects on Growth and Water—Nitrogen use Efficiency in Tomato. Int. J. Agric. Biol. 2019, 22, 748–756. [Google Scholar]
- Zheng, J.; Zhang, P.A.; Zhu, C.Y.; Ma, J. Tomato Nutritional Quality Indexes under Various Biogas Slurry and Irrigation Schemes. Int. J. Agric. Biol. 2019, 22, 1271–1278. [Google Scholar]
- Nikkhah, A.; Firouzi, S.; Assad, M.E.H.; Ghnimi, S. Application of analytic hierarchy process to develop a weighting scheme for life cycle assessment of agricultural production. Sci. Total Environ. 2019, 665, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Kang, S.Z.; Du, T.S.; Li, F.S.; Qiu, R.J. Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agric. Water Manag. 2011, 98, 1228–1238. [Google Scholar] [CrossRef]
- Zhen, Z.; Yin, J.; Wu, J.B.; Zhang, H.B. Comprehensive evaluation of water and fertilizer application for Lycium barbarum L. based on AHP and entropy weight method. J. Drain. Irrig. Mach. Eng. 2021, 39, 712–719. (In Chinese) [Google Scholar]
- Liu, H.; Li, H.H.; Ning, H.F.; Zhang, X.X.; Li, S.; Pang, J.; Wang, G.H.; Sun, J.S. Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato. Agric. Water Manag. 2019, 226, 105787. [Google Scholar] [CrossRef]
- Luo, H.; Li, F.S. Tomato yield, quality and water use efficiency under different drip fertigation strategies. Sci. Hortic. 2018, 235, 181–188. [Google Scholar] [CrossRef]
- Yuan, L. Study on Effeets of Irrigation, Nitrogen Supply on Tomato Growth, Development and Quality in Solar Greenhouse. Master’s Thesis, China Agricultural University, Beijing, China, 2004. (In Chinese with English abstract). [Google Scholar]
- Hong, X. Combination Evaluation Model of Tomato Yield Quality Environment Effect and ITS. Response to Water and Fertilizer in Greenhouse. Master’s Thesis, Northwest A&F University, Xianyang, China, 2018. [Google Scholar]
- Dusmatova, D.E.; Bobakulov, M.K.; Turgunov, K.K.; Mukhamatkhanova, R.F.; Uzbekov, V.V.; Gildenast, H.; Englert, U.; Sham’yanov, I.D.; Tashkhojaev, B.; Bruskov, V.P.; et al. Guaianolides from Tanacetopsis karataviensis. Nat. Prod. Res. 2019, 37, 124–132. [Google Scholar]
- Wang, X.; Duan, Q.Q. Improved AHP–TOPSIS model for the comprehensive risk evaluation of oil and gas pipelines. Pet. Sci. 2019, 16, 1479–1492. [Google Scholar] [CrossRef] [Green Version]
- Rasool, G.; Guo, X.P.; Wang, Z.C.; Ali, M.U.; Chen, S.; Zhang, S.X.; Wu, Q.J.; Ullah, M.S. Coupling fertigation and buried straw layer improves fertilizer use efficiency, fruit yield, and quality of greenhouse tomato. Agric. Water Manag. 2020, 239, 106239. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, F.; Fan, X.; Wang, Y.; Hou, X.; He, Q. Optimal irrigation and nitrogen application amounts for spring maize based on evaluation model in study soil area in Ningxia. Trans. Chin. Soc. Agric. Mach. 2020, 51, 258–265. [Google Scholar]
- Li, L.; Xu, L.; Wang, P.; Qi, X.; Wang, L. Summer Maize Yield Forecasting Based on Leaf Area Index. Trans. Chin. Soc. Agric. Mach. 2020, 51, 205–215. [Google Scholar]
- Hu, T.; He, Q.; Hong, X.; Liu, J.; Li, H.; Feng, P.; Yang, S.H. Response of tomato yield-quality evaluated by fuzzy Borda combined model to irrigation and fertilization supply. Trans. CSAE 2019, 35, 142–151, (In Chinese with English abstract). [Google Scholar]
- Chen, G.H.; Li, M.J. The research on the comprehensive evaluation method integration based on method set. Chin. J. Manag. Sci. 2004, 12, 102–106, (In Chinese with English abstract). [Google Scholar]
- Abubaker, J.; Risberg, K.; Pell, M. Biogas residues as fertilizers–Effects on wheat growth and soil microbial activities. Appl. Energy 2012, 99, 126–134. [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.C.; Ridoutt, B.G.; Wang, X.C.; Ren, P.A. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rahman, S.M.E.; Oh, D.H.; Ra, C. Effects of biogas slurry on the production and quality of maize fodder. Turk. J. Agric. For. 2018, 34, 91–99. [Google Scholar]
- Cordovil, C.; Varennes, A.D.; Pinto, R.; Fernandes, R.C. Changes in mineral nitrogen, soil organic matter fractions and microbial community level physiological profiles after application of digested pig slurry and compost from municipal organic wastes to burned soils. Soil Biol. Biochem. 2011, 43, 845–852. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Corell, M.; Moriana, A.; Mapelli-Brahm, P.; Hernanz, D.; Stinco, C.R.; Beltrán-Sinchiguano, E.; Meléndez-Martínez, A. Study of commercial quality parameters, sugars, phenolics, carotenoids and plastids in different tomato varieties. Food Chem. 2019, 277, 480–489. [Google Scholar] [CrossRef] [Green Version]
- Cristina, G.; Camelin, E.; Tommasi, T.; Fino, D.; Pugliese, M. Anaerobic digestates from sewage sludge used as fertilizer on a poor alkaline sandy soil and on a peat substrate: Effects on tomato plants growth and on soil properties. J. Environ. Manag. 2020, 269, 110767. [Google Scholar] [CrossRef]
- Brunetti, G.; Traversa, A.; Mastro, F.D.; Cocozza, C. Short term effects of synergistic inorganic and organic fertilization on soil properties and yield and quality of plum tomato. Sci. Hortic. 2019, 252, 342–347. [Google Scholar] [CrossRef]
- Barideh, R.; Besharat, S.; Rezaverdinejad, V. Effects of partial root-zone irrigation on the water use efficiency and root water and nitrate uptake of corn. Water 2018, 10, 526. [Google Scholar] [CrossRef] [Green Version]
Treatments | Fertilizer or Digestate Application | Irrigation Level |
---|---|---|
CF1 | Chemical fertilizer | W1 |
CF2 | W2 | |
CF3 | W3 | |
T1 | biogas slurry: water, 1:4 | W1 |
T2 | W2 | |
T3 | W3 | |
T4 | biogas slurry: water, 1:6 | W1 |
T5 | W2 | |
T6 | W3 | |
T7 | biogas slurry: water, 1:8 | W1 |
T8 | W2 | |
T9 | W3 |
Treatments | Leaf Area/(cm2) | Leaf Area Index | Aboveground Biomass/(g) | Root Weight/(g) | Main Root Length/(cm) | Root/Shoot |
---|---|---|---|---|---|---|
CF1 | 6512.39 ± 373.91 g | 3.62 | 163.48 ± 9.76 d | 6.67 ± 0.08 de | 46.92 ± 0.40 b | 0.0408 ± 0.003 |
CF2 | 7693.52 ± 445.72 f | 4.27 | 179.27 ± 11.16 bcd | 6.83 ± 0.08 cd | 45.61 ± 0.29 cd | 0.0381 ± 0.004 |
CF3 | 7804.35 ± 369.48 ef | 4.34 | 184.13 ± 10.01 bc | 6.96 ± 0.09 abcd | 44.97 ± 0.61 d | 0.0378 ± 0.003 |
T1 | 8253.87 ± 428.79 def | 4.59 | 185.14 ± 7.71 bc | 6.85 ± 0.09 bcd | 46.32 ± 0.24 bc | 0.0370 ± 0.002 |
T2 | 9030.43 ± 266.30 ab | 5.02 | 195.89 ± 9.56 ab | 7.15 ± 0.13 ab | 45.05 ± 0.18 d | 0.0365 ± 0.002 |
T3 | 9304.99 ± 322.72 a | 5.17 | 211.05 ± 12.18 a | 7.26 ± 0.12 a | 44.75 ± 0.42 d | 0.0344 ± 0.002 |
T4 | 7063.45 ± 303.56 g | 3.92 | 174.29 ± 8.42 cd | 6.71 ± 0.05 de | 47.03 ± 0.06 b | 0.0385 ± 0.003 |
T5 | 8596.06 ± 184.64 bcd | 4.78 | 186.79 ± 11.90 bc | 6.93 ± 0.09 bcd | 45.95 ± 0.25 bcd | 0.0371 ± 0.003 |
T6 | 8902.54 ± 275.95 abc | 4.95 | 188.56 ± 10.64 bc | 7.09 ± 0.13 abc | 45.12 ± 0.49 d | 0.0376 ± 0.002 |
T7 | 6895.26 ± 387.05 g | 3.83 | 163.43 ± 7.14 d | 6.39 ± 0.11 e | 48.15 ± 0.25 a | 0.0391 ± 0.002 |
T8 | 8354.75 ± 240.26 cde | 4.64 | 175.20 ± 9.25 cd | 6.64 ± 0.10 de | 46.98 ± 0.44 b | 0.0379 ± 0.02 |
T9 | 8528.61 ± 152.79 bcd | 4.74 | 183.33 ± 8.88 bc | 6.82 ± 0.10 cd | 45.93 ± 0.37 bcd | 0.0372 ± 0.002 |
P (biogas slurry) | <0.001 | na | 0.010 | <0.001 | <0.001 | 0.160 |
P (Irrigation) | <0.001 | na | 0.015 | <0.001 | <0.001 | 0.202 |
P (biogas slurry × Irrigation) | 0.351 | na | 0.972 | 0.990 | 0.960 | 0.974 |
Treatments | External Quality | Taste Quality | Nutrition Quality | Storage Quality | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Weight of Single Fresh Fruit /(g) | Fruit Shape Index | Soluble Sugar/% | Titratable Acid/% | Sugar/Acid Ratio | Soluble Solids/% | Vitamin C /(mg/100 g) | Soluble Protein/(mg/g) | Lycopene/(mg/kg) | Fruit Water Content/% | Fruit Hardness /(kg/cm2) | |
CF1 | 148.62 ± 5.65 d | 0.91 | 1.94 ± 0.14 g | 0.23 ± 0.02 f | 8.53 ± 0.11 | 5.25 ± 0.07 d | 17.92 ± 0.74 g | 0.77 ± 0.05 e | 20.1 ± 0.95 h | 87.4 ± 0.50 e | 7.28 ± 0.22 a |
CF2 | 150.69 ± 7.81 d | 0.90 | 2.62 ± 0.12 e | 0.25 ± 0.03 def | 10.40 ± 0.55 | 5.35 ± 0.09 cd | 18.65 ± 0.08 fg | 0.89 ± 0.05 d | 22.5 ± 1.15 fg | 88.7 ± 0.35 d | 6.35 ± 0.18 g |
CF3 | 155.35 ± 5.29 cd | 0.78 | 3.15 ± 0.15 c | 0.30 ± 0.03 abc | 10.48 ± 0.29 | 5.75 ± 0.12 a | 19.97 ± 0.59 de | 0.97 ± 0.04 cd | 21.3 ± 0.95 gh | 89.6 ± 0.26 cd | 6.95 ± 0.17 bcd |
T1 | 158.21 ± 5.51 bcd | 0.81 | 3.78 ± 0.10 a | 0.35 ± 0.03 a | 10.97 ± 0.32 | 5.43 ± 0.08 bcd | 19.08 ± 057 ef | 0.92 ± 0.03 d | 27.7 ± 1.20 bc | 87.4 ± 0.75 e | 6.53 ± 0.08 fg |
T2 | 171.12 ± 7.51 a | 0.91 | 3.42 ± 0.10 b | 0.32 ± 0.01 ab | 10.72 ± 0.13 | 5.75 ± 0.13 bc | 22.46 ± 0.57 ab | 1.11 ± 0.04 a | 29.5 ± 1.15 ab | 89.7 ± 0.62 bcd | 7.05 ± 0.09 abc |
T3 | 173.95 ± 7.15 a | 0.89 | 2.79 ± 0.15 de | 0.27 ± 0.04 cdef | 10.74 ± 0.81 | 5.39 ± 0.14 cd | 23.05 ± 0.52 a | 1.125 ± 0.05 a | 26.2 ± 2.54 bc | 90.7 ± 0.6 b | 6.45 ± 0.15 fg |
T4 | 165.23 ± 5.45 abc | 0.85 | 3.10 ± 0.12 c | 0.31 ± 0.02 abc | 10.04 ± 0.20 | 5.50 ± 0.11 bc | 21.54 ± 0.68 bc | 1.06 ± 0.09 abc | 30.2 ± 0.95 a | 89.5 ± 0.82 cd | 6.65 ± 0.08 ef |
T5 | 166.54 ± 3.98 ab | 0.84 | 2.58 ± 0.15 e | 0.27 ± 0.03 cdef | 9.62 ± 0.45 | 5.35 ± 0.10 cd | 18.57 ± 0.68 fg | 0.89 ± 0.05 d | 24.7 ± 1.51 def | 90.4 ± 0.56 bc | 6.53 ± 0.11 fg |
T6 | 165.84 ± 4.32 ab | 0.86 | 2.98 ± 0.18 cd | 0.29 ± 0.02 bcd | 10.19 ± 0.15 | 5.48 ± 0.12 bc | 20.83 ± 0.50 cd | 1.08 ± 0.08 ab | 24.3 ± 0.92 def | 90.2 ± 0.56 bc | 6.85 ± 0.13 de |
T7 | 168.63 ± 4.59 ab | 0.85 | 3.028 ± 0.13 cd | 0.27 ± 0.02 cdef | 11.19 ± 0.33 | 5.31 ± 0.11 cd | 18.76 ± 0.57 fg | 1.09 ± 0.07 ab | 25.8 ± 1.15 cde | 88.9 ± 0.56 d | 7.14 ± 0.11 ab |
T8 | 165.28 ± 3.43 abc | 0.82 | 2.31 ± 0.08 f | 0.24 ± 0.02 ef | 9.47 ± 0.37 | 5.57 ± 0.12 ab | 18.38 ± 0.55 fg | 1.13 ± 0.04 a | 26.6 ± 1.21 cd | 91.8 ± 0.75 a | 6.3 ± 0.14 g |
T9 | 149.08 ± 3.85 d | 0.91 | 2.86 ± 0.14 d | 0.29 ± 0.02 bcde | 9.99 ± 0.28 | 5.45 ± 0.12 bcd | 20.01 ± 0.38 de | 0.99 ± 0.07 bcd | 23.7 ± 1.15 ef | 89.6 ± 0.56 bcd | 6.79 ± 0.11 de |
Treatments | Principal Component Analysis | Grey Correlation Method | Membership Function Analysis Method | The TOPSIS Model Based on Combination Weighting | Overall Difference Combination Evaluation Model | |||||
---|---|---|---|---|---|---|---|---|---|---|
Evaluation Value | Ranking | Evaluation Value | Ranking | Evaluation Value | Ranking | Evaluation Value | Ranking | Evaluation Value | Ranking | |
CF1 | 2.1911 | 12 | 0.6127 | 12 | 0.1531 | 12 | 0.1461 | 12 | −1.7634 | 12 |
CF2 | 2.2494 | 11 | 0.6422 | 11 | 0.2866 | 11 | 0.3032 | 11 | −1.1372 | 11 |
CF3 | 2.3036 | 9 | 0.7147 | 8 | 0.5063 | 7 | 0.4964 | 7 | −0.2128 | 7 |
T1 | 2.3338 | 8 | 0.7691 | 4 | 0.4813 | 6 | 0.6183 | 3 | 0.1583 | 6 |
T2 | 2.5106 | 2 | 0.8943 | 1 | 0.8497 | 1 | 0.8467 | 1 | 1.7971 | 1 |
T3 | 2.5190 | 1 | 0.8126 | 2 | 0.6654 | 2 | 0.6286 | 4 | 1.0076 | 2 |
T4 | 2.4586 | 3 | 0.7952 | 3 | 0.6384 | 3 | 0.7002 | 2 | 0.8649 | 3 |
T5 | 2.3759 | 7 | 0.6601 | 10 | 0.3764 | 10 | 0.3305 | 10 | −0.6196 | 10 |
T6 | 2.4117 | 4 | 0.7485 | 6 | 0.5904 | 4 | 0.5743 | 6 | 0.3715 | 4 |
T7 | 2.3944 | 5 | 0.7533 | 5 | 0.5387 | 5 | 0.5087 | 5 | 0.1873 | 5 |
T8 | 2.3962 | 6 | 0.7073 | 7 | 0.4578 | 8 | 0.3822 | 9 | −0.2367 | 8 |
T9 | 2.2829 | 10 | 0.6982 | 9 | 0.4611 | 9 | 0.4677 | 8 | −0.4160 | 9 |
Pearson Correlation Coefficient | Principal Component Analysis | Grey Correlation Method | Membership Function Analysis Method | The TOPSIS Model Based on Combination Weighting | Mean Value |
---|---|---|---|---|---|
Principal component analysis | 0.860 | 0.891 | 0.800 | 0.850 | |
Grey correlation method | 0.860 | 0.965 | 0.970 | 0.932 | |
Membership function analysis method | 0.891 | 0.965 | 0.958 | 0.938 | |
The TOPSIS model based on combination weighting | 0.800 | 0.970 | 0.958 | 0.909 | |
Overall difference combination evaluation model | 0.918 | 0.984 | 0.989 | 0.967 | 0.965 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Qi, X.; Shi, C.; Yang, S.; Wu, Y. Tomato Comprehensive Quality Evaluation and Irrigation Mode Optimization with Biogas Slurry Based on the Combined Evaluation Model. Agronomy 2022, 12, 1391. https://doi.org/10.3390/agronomy12061391
Zheng J, Qi X, Shi C, Yang S, Wu Y. Tomato Comprehensive Quality Evaluation and Irrigation Mode Optimization with Biogas Slurry Based on the Combined Evaluation Model. Agronomy. 2022; 12(6):1391. https://doi.org/10.3390/agronomy12061391
Chicago/Turabian StyleZheng, Jian, Xingyun Qi, Cong Shi, Shaohong Yang, and You Wu. 2022. "Tomato Comprehensive Quality Evaluation and Irrigation Mode Optimization with Biogas Slurry Based on the Combined Evaluation Model" Agronomy 12, no. 6: 1391. https://doi.org/10.3390/agronomy12061391
APA StyleZheng, J., Qi, X., Shi, C., Yang, S., & Wu, Y. (2022). Tomato Comprehensive Quality Evaluation and Irrigation Mode Optimization with Biogas Slurry Based on the Combined Evaluation Model. Agronomy, 12(6), 1391. https://doi.org/10.3390/agronomy12061391