Adaptation to Climate Change Effects by Cultivar and Sowing Date Selection for Maize in the Northeast China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Weather Data
2.4. APSIM Model Calibration, Validation, and Simulation Scenarios
2.5. Statistical Analysis and Calculations
3. Results
3.1. APSIM Calibration and Validation
3.2. Effects of Cultivar and Sowing Date on Grain Yield
3.3. Relationship between Grain Yield and Its Composition and Climate Factors
3.4. Yield Simulation and Risk Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lee, J.Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C.; Jones, C.; et al. Future global climate: Scenario based projections and near-term information. In Climate Change 2021: The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Gong, D.P.; Gong, W.L. Impacts of Climate Change on Maize Production in Northeast China and Countermeasures. J. Agric. 2020, 10, 35–38. [Google Scholar] [CrossRef]
- Ji, R.P.; Zhang, Y.S.; Jiang, L.X.; Zhang, S.J.; Feng, R.; Chen, P.S.; Wu, J.W.; Mi, N. Effect of climate change on maize production in Northeast China. Geogr. Res. 2012, 31, 290–298. [Google Scholar] [CrossRef]
- Zhao, X.L. Influence of climate change on agriculture in Northeast China in recent 50 years. J. Northeast Agric. Univ. 2010, 41, 144–149. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing climate change adaptation needs for food security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hou, L.; Yang, Y. Analysis on the balance between supply and demand of corn market in China and the availability of international market. Chin. J. Agric. Resour. Reg. Plan. 2021, 42, 126–133. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2020. [Google Scholar]
- Meng, Q.; Hou, P.; Wu, L.; Chen, X.; Cui, Z.; Zhang, F. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Res. 2013, 143, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Han, G.; Zhang, X.; Zhou, G. Climate Change Affects Crop Production and Its Adaptation. Adv. Meteorol. Sci. Technol. 2011, 1, 15–19. [Google Scholar]
- Yin, X.G.; Jabloun, M.; Olesen, J.E.; Öztürk, I.; Wang, M.; Chen, F. Effects of climatic factors, drought risk and irrigation requirement on maize yield in the Northeast Farming Region of China. J. Agric. Sci 2016, 154, 1171–1189. [Google Scholar] [CrossRef]
- Liu, Z.J.; Yang, X.G.; Chen, F.; Wang, E.L. The effects of past climate change on the northern limits of maize planting in Northeast China. Clim. Chang. 2012, 117, 891–902. [Google Scholar] [CrossRef]
- Sanchez, B.; Rasmussen, A.; Porter, J.R. Temperatures and the growth and development of maize and rice: A review. Glob. Chang. Biol. 2014, 20, 408–417. [Google Scholar] [CrossRef]
- Gao, Z.; Feng, H.Y.; Liang, X.G.; Zhang, L.; Lin, S.; Zhao, X.; Shen, S.; Zhou, L.L.; Zhou, S.L. Limits to maize productivity in the North China Plain: A comparison analysis for spring and summer maize. Field Crops Res. 2018, 228, 39–47. [Google Scholar] [CrossRef]
- Chen, C.Q.; Qian, C.R.; Deng, A.X.; Zhang, W.J. Progressive and active adaptations of cropping system to climate change in Northeast China. Eur. J. Agron. 2012, 38, 94–103. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, X.; Xie, R.; Lin, X.; Li, T.; Batchelor, W.D.; Zhao, J.; Zhang, Z.; Sun, S.; Zhang, F.; et al. Prolongation of the grain filling period and change in radiation simultaneously increased maize yields in China. Agric. For. Meteorol. 2021, 308–309, 108573. [Google Scholar] [CrossRef]
- Gao, Z.; Feng, H.-Y.; Liang, X.-G.; Lin, S.; Zhao, X.; Shen, S.; Du, X.; Cui, Y.-H.; Zhou, S.-L. Adjusting the sowing date of spring maize did not mitigate against heat stress in the North China Plain. Agric. For. Meteorol. 2021, 298–299, 108274. [Google Scholar] [CrossRef]
- Yan, P.; Tao, Z.Q.; Chen, Y.Q.; Zhang, X.P.; Sui, P. Spring Maize Kernel Number and Assimilate Supply Responses to High-Temperature Stress under Field Conditions. Agron. J. 2017, 109, 1433–1442. [Google Scholar] [CrossRef]
- Li, Y.T.; Xu, W.W.; Ren, B.Z.; Zhao, B.; Zhang, J.W.; Liu, P.; Zhang, Z.S. High temperature reduces photosynthesis in maize leaves by damaging chloroplast ultrastructure and photosystem II. J. Agron. Crop. Sci. 2020, 206, 548–564. [Google Scholar] [CrossRef]
- Allan, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Holzworth, D.; Huth, N.I.; Fainges, J.; Brown, H.; Zurcher, E.; Cichota, R.; Verrall, S.; Herrmann, N.I.; Zheng, B.; Snow, V. APSIM Next Generation: Overcoming challenges in modernising a farming systems model. Environ. Model. Softw. 2018, 103, 43–51. [Google Scholar] [CrossRef]
- Holzworth, D.P.; Huth, N.I.; de Voil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Twine, T.E.; Bryant, J.J.; Richter, K.T.; Bernacchi, C.J.; McConnaughay, K.D.; Morris, S.J.; Leakey, A.D. Impacts of elevated CO2 concentration on the productivity and surface energy budget of the soybean and maize agroecosystem in the Midwest USA. Glob. Chang. Biol. 2013, 19, 2838–2852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Q.F.; Wang, H.F.; Yan, P.; Pan, J.X.; Lu, D.J.; Cui, Z.L.; Zhang, F.S.; Chen, X.P. Designing a new cropping system for high productivity and sustainable water usage under climate change. Sci. Rep. 2017, 7, 41587. [Google Scholar] [CrossRef]
- Yang, H.S.; Dobermann, A.; Lindquist, J.L.; Walters, D.T.; Arkebauer, T.J.; Cassman, K.G. Hybrid-maize—A maize simulation model that combines two crop modeling approaches. Field Crops Res. 2004, 87, 131–154. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, J.Z.; Wagner, M.J. Data Mining and Machine Learning: Fundamental Concepts and Algorithms; Cambridge University: Cambridge, UK, 2020. [Google Scholar]
- Ma, L.; Ahuja, L.R.; Saseendran, S.A.; Malone, R.W.; Green, T.R.; Nolan, B.T.; Bartling, P.N.S.; Flerchinger, G.N.; Boote, K.J.; Hoogenboom, G. A Protocol for Parameterization and Calibration of RZWQM2 in Field Research. In Methods of Introducing System Models into Agricultural Research; Advances in Agricultural Systems Modeling Series; American Society of Agronomy, Inc.: Madison, WI, USA, 2011. [Google Scholar]
- Gao, J.; Liu, Z.; Zhao, B.; Dong, S.T.; Liu, P.; Zhang, J.W. Shade stress decreased maize grain yield, dry matter, and nitrogen accumulation. Agron. J. 2020, 112, 2768–2776. [Google Scholar] [CrossRef]
- Gao, Z.; Sun, L.; Ren, J.H.; Liang, X.G.; Shen, S.; Lin, S.; Zhao, X.; Chen, X.M.; Wu, G.; Zhou, S.L. Detasseling increases kernel number in maize under shade stress. Agric. For. Meteorol. 2020, 280, 107811. [Google Scholar] [CrossRef]
- Wang, J.; Shi, K.; Lu, W.P.; Lu, D.L. Effects of Post-silking Shading Stress on Enzymatic Activities and Phytohormone Contents During Grain Development in Spring Maize. J. Plant Growth Regul. 2020, 40, 1060–1073. [Google Scholar] [CrossRef]
- Li, L.C.; Yao, N.; Li, Y.; Liu, D.L.; Wang, B.; Ayantobo, O.O. Future projections of extreme temperature events in different sub-regions of China. Atmos. Res. 2019, 217, 150–164. [Google Scholar] [CrossRef]
- Lin, Y.; Feng, Z.; Wu, W.; Yang, Y.; Zhou, Y.; Xu, C. Potential Impacts of Climate Change and Adaptation on Maize in Northeast China. Agron. J. 2017, 109, 1476–1490. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, Z.; Luo, Y.; Cao, J.; Li, Z. Optimizing genotype-environment-management interactions for maize farmers to adapt to climate change in different agro-ecological zones across China. Sci. Total Environ. 2020, 728, 138614. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Huang, Y. Estimating the impacts of warming trends on wheat and maize in China from 1980 to 2008 based on county level data. Int. J. Clim. 2013, 33, 699–708. [Google Scholar] [CrossRef]
- Bristow, K.L.; Campbell, G.S. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric. For. Meteorol. 1984, 31, 159–166. [Google Scholar] [CrossRef]
- Fang, X.; Cheng, Z.; Jiang, H.; Chen, Z.; Qiu, D.; Luo, X. Effects of reduced solar radiation on photosynthetic physiological characteristics and accumulation of secondary and micro elements in paddy rice. Chin. J. Appl. Ecol. 2021, 32, 1345–1351. [Google Scholar] [CrossRef]
- Muchow, R.C.; Sinclair, T.R.; Bennett, J.M. Temperature and Solar Radiation Effects on Potential Maize Yield across Locations. Agron. J. 1990, 82, 338–343. [Google Scholar] [CrossRef]
- Yang, Y.S.; Xu, W.J.; Hou, P.; Liu, G.Z.; Liu, W.M.; Wang, Y.H.; Zhao, R.L.; Ming, B.; Xie, R.Z.; Wang, K.R.; et al. Improving maize grain yield by matching maize growth and solar radiation. Sci. Rep. 2019, 9, 3635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Q.; Miao, C.; Hanel, M.; Borthwick, A.G.L.; Duan, Q.; Ji, D.; Li, H. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ. Int. 2019, 128, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Baum, M.E.; Licht, M.A.; Huber, I.; Archontoulis, S.V. Impacts of climate change on the optimum planting date of different maize cultivars in the central US Corn Belt. Eur. J. Agron. 2020, 119, 126101. [Google Scholar] [CrossRef]
- Zhu, P.; Zhuang, Q.; Archontoulis, S.V.; Bernacchi, C.; Muller, C. Dissecting the nonlinear response of maize yield to high temperature stress with model-data integration. Glob. Chang. Biol. 2019, 25, 2470–2484. [Google Scholar] [CrossRef] [PubMed]
- Schauberger, B.; Archontoulis, S.; Arneth, A.; Balkovic, J.; Ciais, P.; Deryng, D.; Elliott, J.; Folberth, C.; Khabarov, N.; Muller, C.; et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 2017, 8, 13931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Cai, X. Climate change impacts on global agricultural water deficit. Geophys. Res. Lett. 2013, 40, 1111–1117. [Google Scholar] [CrossRef]
- Burchfield, E.; Matthews-Pennanen, N.; Schoof, J.; Lant, C. Changing yields in the Central United States under climate and technological change. Clim. Chang. 2019, 159, 329–346. [Google Scholar] [CrossRef]
- Choudhury, A.K.; Molla, M.S.H.; Zahan, T.; Sen, R.; Biswas, J.C.; Akhter, S.; Ishtiaque, S.; Ahmed, F.; Maniruzaman, M.; Hossain, M.B.; et al. Optimum Sowing Window and Yield Forecasting for Maize in Northern and Western Bangladesh Using CERES Maize Model. Agronomy 2021, 11, 635. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, X.; Wang, E.; Chen, S.; Shao, L.; Qin, W. Assessing the contribution of weather and management to the annual yield variation of summer maize using APSIM in the North China Plain. Field Crops Res. 2016, 194, 94–102. [Google Scholar] [CrossRef]
- Zhao, J.F.; Li, N.; Hou, Y.Y.; Zhang, Y.; Xu, J.W.; Pu, F.Y.; Pan, Z.H.; Guo, J.P. Evaluation of Response of Spring Maize Production to Climate Change in the Eight Provinces of Northern China Based on APSIM Model. Chin. J. Agrometeorol. 2018, 39, 108–118. [Google Scholar] [CrossRef]
Site | BD 1 (g cm−3) | TN (%) | TP (%) | TK (%) | TOC (%) | pH |
---|---|---|---|---|---|---|
Keshan, North | 1.01–1.17 | 0.10–0.21 | 0.11–0.17 | 2.76–2.88 | 2.11–4.11 | 6.90–7.00 |
Gongzhuling, Central | 1.26–1.38 | 0.06–0.12 | 0.04–0.08 | 2.31–2.37 | 1.21–2.39 | 6.82–7.04 |
Shenyang, South | 1.34–1.35 | 0.06–0.10 | 0.02–0.04 | 1.53–1.86 | 0.75–1.52 | 6.70–6.90 |
Station | Latitude | Longitude | Plant Density (Plants m−2) | Cultivar 1 | Sowing Date 2 |
---|---|---|---|---|---|
Keshan, North | 48°2′ N | 125°52′ E | 7.5 | SS: Keyu17 (1111 °C d) | I: May 5 |
MS: Keyu18 (1131 °C d) | II: May 15 | ||||
LS: Keyu19 (1153 °C d) | III: May 25 | ||||
Gongzhuling, Central | 43°31′ N | 125°18′ E | 7.5 | SS: Xinxin1 (1559 °C d) | I: Apr. 22 |
MS: Fuin985 (1653 °C d) | II: May 4 | ||||
LS: Shenyu21 (1743 °C d) | III: May 16 | ||||
Shenyang, South | 41°48′ N | 123°25′ E | 6.0 | SS: Zhengdan958 (1607 °C d) | I: Apr. 20 |
MS: Xianyu335 (1678 °C d) | II: May 5 | ||||
LS: Shenyu21 (1743 °C d) | III: May 20 |
Climate Variable 1 | Morphogenesis Stage 2 | Flowering Stage | Grain-Filling Stage | Whole Growth Stage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grain Yield | Kernel Number | 1000-Kernel Weight | Grain Yield | Kernel Number | 1000-Kernel Weight | Grain Yield | Kernel Number | 1000-Kernel Weight | Grain Yield | Kernel Number | 1000-Kernel Weight | |
Tmax | −0.02 ns | −0.06 ns | −0.13 * | −0.06 ns | 0.00 ns | 0.00 ns | −0.03 ns | −0.06 ns | 0.24 *** | −0.02 ns | −0.19 ** | 0.21 ** |
Tmin | −0.14 * | −0.14 * | −0.21 ** | 0.04 ns | −0.02 ns | 0.12 ns | −0.14 * | −0.12 ns | 0.09 ns | −0.26 *** | −0.35 *** | −0.05 ns |
HSD | −0.02 ns | 0.05 ns | −0.05 ns | −0.26 *** | 0.03 ns | −0.11 ns | −0.15 * | 0.01 ns | 0.19 * | −0.24 *** | 0.07 ns | 0.01 ns |
∆T | 0.25 *** | 0.20 ** | 0.14 * | −0.19 ** | 0.02 ns | −0.17 ** | 0.26 *** | 0.15 * | 0.17 ** | 0.27 *** | 0.28 *** | 0.11 ns |
RD | 0.22 *** | 0.31 *** | 0.13 * | 0.07 ns | −0.06 ns | −0.23 ** | 0.21 ** | 0.13 * | −0.21 ** | 0.32 *** | 0.23 *** | −0.11 ns |
Precipitation | 0.26 *** | 0.04 ns | 0.02 ns | 0.13 * | −0.19 ** | 0.16 * | 0.19 ** | 0.01 ns | −0.07 ns | 0.29 *** | 0.06 ns | −0.02 ns |
SRAD | 0.30 *** | 0.46 *** | 0.20 ** | −0.13 * | −0.00 ns | 0.09 ns | 0.38 *** | 0.24 *** | 0.18 ** | 0.41 *** | 0.50 *** | 0.25 *** |
GDD | 0.25 *** | 0.44 *** | −0.15 * | −0.03 ns | −0.01 ns | 0.04 ns | 0.12 ns | 0.07 ns | 0.11 ns | 0.31 *** | 0.45 *** | −0.02 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Dong, L.; Cao, Y.; Lyu, Y.; Shao, X.; Wang, Y.; Wang, L. Adaptation to Climate Change Effects by Cultivar and Sowing Date Selection for Maize in the Northeast China Plain. Agronomy 2022, 12, 984. https://doi.org/10.3390/agronomy12050984
Han X, Dong L, Cao Y, Lyu Y, Shao X, Wang Y, Wang L. Adaptation to Climate Change Effects by Cultivar and Sowing Date Selection for Maize in the Northeast China Plain. Agronomy. 2022; 12(5):984. https://doi.org/10.3390/agronomy12050984
Chicago/Turabian StyleHan, Xiangfei, Lina Dong, Yujun Cao, Yanjie Lyu, Xiwen Shao, Yongjun Wang, and Lichun Wang. 2022. "Adaptation to Climate Change Effects by Cultivar and Sowing Date Selection for Maize in the Northeast China Plain" Agronomy 12, no. 5: 984. https://doi.org/10.3390/agronomy12050984
APA StyleHan, X., Dong, L., Cao, Y., Lyu, Y., Shao, X., Wang, Y., & Wang, L. (2022). Adaptation to Climate Change Effects by Cultivar and Sowing Date Selection for Maize in the Northeast China Plain. Agronomy, 12(5), 984. https://doi.org/10.3390/agronomy12050984