Effects of Agricultural Management Practices on the Temporal Variability of Soil Temperature under Different Crop Rotations in Bad Lauchstaedt-Germany
Abstract
:1. Introduction
2. Material and Method
2.1. Study Site and Soil Information
2.2. Experimental Design and Crop Management
2.3. Soil Temperature
2.4. Data Analysis
3. Results and Discussion
3.1. Information on Soil Temperature Changes in Different Temporal Courses
3.2. Diurnal Soil Thermal Behavior in the Soil Layers
3.3. Relationship between Air and Soil Temperature
3.4. Temporal Soil Temperature Changes at Sowing and a Day before Harvest Time in Different Soil Layers
3.5. Topsoil Temperature Variation at Different Day Times during Days after Sowing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, R.; Huang, J.-X.; Zhang, C.; Ma, H.-Y.; Zhuo, W.; Chen, Y.-Y.; Zhu, D.-H.; Wu, Q.; Mansaray, L.R. Soil temperature estimation at different depths, using remotely-sensed data. J. Integr. Agric. 2020, 19, 277–290. [Google Scholar] [CrossRef]
- Muñoz-Romero, V.; Lopez-Bellido, L.; Lopez-Bellido, R.J. Effect of tillage system on soil temperature in a rainfed Mediterranean Vertisol. Int. Agrophysics 2015, 29, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Moroizumi, T.; Horino, H. The effects of tillage on soil temperature and soil water. Soil Sci. 2002, 167, 548–559. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, J.; Zhang, Y.; Wu, J.; Zhang, J.; Pan, X.; Gao, C.; Wang, Y.; He, F. Effects of tillage and mulching measures on soil moisture and temperature, photosynthetic characteristics and yield of winter wheat. Agric. Water Manag. 2018, 201, 299–308. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cui, S.; Jagadamma, S.; Zhang, Q. Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis. Soil Tillage Res. 2019, 194, 104292. [Google Scholar] [CrossRef]
- Liu, S.; Li, J.; Zhang, X. Simulations of Soil Water and Heat Processes for No Tillage and Conventional Tillage Systems in Mollisols of China. Land 2022, 11, 417. [Google Scholar] [CrossRef]
- Singh, B. Are Nitrogen Fertilizers Deleterious to Soil Health? Agronomy 2018, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Wang, X.; Yang, J.; Zhao, X.; Ye, X. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields. Sci. Total Environ. 2016, 565, 420–426. [Google Scholar] [CrossRef]
- Lian, Y.; Meng, X.; Yang, Z.; Wang, T.; Ali, S.; Yang, B.; Zhang, P.; Han, Q.; Jia, Z.; Ren, X. Strategies for reducing the fertilizer application rate in the ridge and furrow rainfall harvesting system in semiarid regions. Sci. Rep. Cetacean Res. 2017, 7, 2644. [Google Scholar] [CrossRef] [Green Version]
- Altermann, M.; Rinklebe, J.; Merbach, I.; Körschens, M.; Langer, U.; Hofmann, B. Chernozem—Soil of the Year 2005. J. Plant Nutr. Soil Sci. 2005, 168, 725–740. [Google Scholar] [CrossRef]
- Horton, R.; Wierenga, P.J.; Nielsen, D.R. Evaluation of Methods for Determining the Apparent Thermal Diffusivity of Soil Near the Surface. Soil Sci. Soc. Am. J. 1983, 47, 25–32. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Zhan, M.-J.; Xia, L.; Zhan, L.; Wang, Y. Recognition of Changes in Air and Soil Temperatures at a Station Typical of China’s Subtropical Monsoon Region (1961–2018). Adv. Meteorol. 2019, 2019, 6927045. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Kim, Y.; Lee, K.; Kim, D. Development of a Shallow-Depth Soil Temperature Estimation Model Based on Air Temperatures and Soil Water Contents in a Permafrost Area. Appl. Sci. 2020, 10, 1058. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Feng, S. A Daily Soil Temperature Dataset and Soil Temperature Climatology of the Contiguous United States. J. Appl. Meteorol. 2003, 42, 1139–1156. [Google Scholar] [CrossRef]
- Fang, X.; Luo, S.; Lyu, S. Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960–2014. Theor. Appl. Climatol. 2019, 135, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Pokladníková, H.; RožnovSký, J.; STředa, T. Evaluation of soil temperatures at agroclimatological station Pohořelice. Soil Water Res. 2008, 3, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Florides, G.A.; Kalogirou, S.A. Annual ground temperature measurements at various depths. In Proceedings of the CLIMA 2005, Lausanne, Switzerland, 9–12 October 2005. [Google Scholar]
- Dec, D.; Dörner, J.; Horn, R. Effect of soil management on their thermal properties. J. Soil Sci. Plant Nutr. 2009, 9, 26–39. [Google Scholar] [CrossRef]
- Awe, G.O.; Reichert, J.M.; Wendroth, O.O. Temporal variability and covariance structures of soil temperature in a sugarcane field under different management practices in southern Brazil. Soil Tillage Res. 2015, 150, 93–106. [Google Scholar] [CrossRef]
- Singh, R.K.; Sharma, R.V. Numerical analysis for ground temperature variation. Geotherm. Energy 2017, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Xiong, Y.-C.; Li, F.-M.; Wang, R.-Y.; Qiang, S.-C.; Yao, T.-F.; Mo, F. Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agric. Water Manag. 2012, 104, 68–78. [Google Scholar] [CrossRef]
- Zapata, D.; Rajan, N.; Mowrer, J.; Casey, K.; Schnell, R.; Hons, F. Long-term tillage effect on with-in season variations in soil conditions and respiration from dryland winter wheat and soybean cropping systems. Sci. Rep. 2021, 11, 2344. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Hu, K.; Qin, W.; Zuo, Q.; Zhang, Y. Modelling the effect of mulching on soil heat transfer, water movement and crop growth for ground cover rice production system. Field Crops Res. 2017, 201, 97–107. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H.; Reeder, R.C. Soil Thermal Conductivity Effects of Density, Moisture, Salt Concentration, and Organic Matter. Soil Sci. Soc. Am. J. 2000, 64, 1285–1290. [Google Scholar] [CrossRef]
- Sharratt, B.S. Corn stubble height and residue placement in the northern US Corn Belt: Part I. Soil physical environment during winter. Soil Tillage Res. 2002, 64, 243–252. [Google Scholar] [CrossRef]
- Hou, X.; Li, R. Interactive effects of autumn tillage with mulching on soil temperature, productivity and water use efficiency of rainfed potato in loess plateau of China. Agric. Water Manag. 2019, 224, 105747. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Sun, H.; Zhang, X. Effects of different cultivation practices on soil temperature and wheat spike differentiation. Cereal Res. Commun. 2009, 37, 575–584. [Google Scholar] [CrossRef]
Soil Parameters | Soil Depth (cm) | |||
---|---|---|---|---|
5 | 45 | 90 | 180 | |
Organic carbon (%) | 2.1 | 1 | 0.2 | 0.1 |
Bulk density (g cm−3) | 1.36 | 1.38 | 1.49 | 1.79 |
Particle density (g cm−3) | 2.65 | 2.65 | 2.67 | 2.67 |
Field capacity (Vol. %) | 32.9 | 30.0 | 28.5 | 18.9 |
Permanent wilting point (Vol. %) | 16.9 | 18.1 | 9.1 | 12.9 |
Saturated hydraulic conductivity (mm d−1) | 355.0 | 355.0 | 355.0 | 353.0 |
Crops | Sowing Date | Harvest Date |
---|---|---|
Spring Rape | March 2014 | August 2014 |
Winter Wheat | October 2014 | July 2015 |
Winter Barley | September 2015 | Jun 2016 |
Winter Rape | September 2016 | April 2017 |
Spring Rape | April 2017 | August 2017 |
Plot Design | Management Factor 2 (N-Fertilization) | ||
---|---|---|---|
Conventional | Reduced | ||
Management factor 1 (Tillage) | Conventional | P1N1 | P1N0 |
Reduced | P0N1 | P0N0 |
Treatments | Depth (cm) | Amplitude (°C) | Phase Shift (rad) | Phase Shift (day) | Taverage (°C) | Time Lag (day) |
---|---|---|---|---|---|---|
2014 | ||||||
Air | 8.4 | −1.8 | 104 | 11.2 | 196 | |
P0N0 | 5 | 9.5 | −1.8 | 104 | 11.8 | 196 |
45 | 8.8 | −1.9 | 110 | 11.7 | 202 | |
90 | 6.5 | −2.1 | 124 | 11.4 | 213 | |
180 | 4.8 | −2.4 | 138 | 11.3 | 230 | |
P0N1 | 5 | 8.8 | −1.8 | 106 | 11.3 | 197 |
45 | 8.2 | −1.9 | 111 | 11.3 | 203 | |
90 | 6.3 | −2.1 | 122 | 11.2 | 214 | |
180 | 4.7 | −2.4 | 139 | 11.2 | 230 | |
P1N0 | 5 | 9.5 | −1.8 | 104 | 11.7 | 196 |
45 | 8.1 | −1.9 | 111 | 11.6 | 202 | |
90 | 6.2 | −2.2 | 125 | 11.3 | 216 | |
180 | 4.5 | −2.4 | 139 | 11.1 | 231 | |
P1N1 | 5 | 9.0 | −1.8 | 104 | 11.4 | 196 |
45 | 8.0 | −2.0 | 113 | 11.3 | 204 | |
90 | 5.9 | −2.2 | 128 | 11.3 | 220 | |
180 | 4.5 | −2.4 | 141 | 11.0 | 232 | |
2015 | ||||||
Air | 8.0 | −1.8 | 102 | 10.8 | 193 | |
P0N0 | 5 | 9.4 | −1.8 | 102 | 11.3 | 193 |
45 | 8.3 | −1.9 | 109 | 10.9 | 200 | |
90 | 6.1 | −2.2 | 127 | 10.6 | 218 | |
180 | 4.6 | −2.5 | 144 | 10.6 | 235 | |
P0N1 | 5 | 8.8 | −1.8 | 102 | 10.7 | 194 |
45 | 8.0 | −1.9 | 109 | 10.5 | 200 | |
90 | 5.9 | −2.2 | 126 | 10.5 | 217 | |
180 | 4.8 | −2.5 | 143 | 10.5 | 234 | |
P1N0 | 5 | 9.0 | −1.8 | 103 | 11.0 | 194 |
45 | 7.8 | −1.9 | 113 | 10.8 | 204 | |
90 | 6.0 | −2.2 | 128 | 10.6 | 219 | |
180 | 4.5 | −2.5 | 145 | 10.6 | 236 | |
P1N1 | 5 | 8.3 | −1.8 | 102 | 10.6 | 193 |
45 | 7.8 | −1.9 | 110 | 10.5 | 201 | |
90 | 5.8 | −2.2 | 128 | 10.5 | 220 | |
180 | 4.5 | −2.5 | 145 | 10.4 | 236 | |
2016 | ||||||
Air | 9.5 | −1.8 | 106 | 10.5 | 197 | |
P0N0 | 5 | 11.0 | −1.8 | 106 | 11.5 | 197 |
45 | 9.6 | −2.0 | 115 | 11.1 | 206 | |
90 | 7.3 | −2.3 | 132 | 11.0 | 223 | |
180 | 5.4 | −2.5 | 146 | 11.0 | 237 | |
P0N1 | 5 | 10.4 | −1.9 | 108 | 10.9 | 199 |
45 | 9.4 | −2.0 | 116 | 10.9 | 207 | |
90 | 7.4 | −2.3 | 134 | 10.7 | 225 | |
180 | 5.7 | −2.5 | 143 | 10.7 | 234 | |
P1N0 | 5 | 10.8 | −1.9 | 107 | 11.4 | 199 |
45 | 9.2 | −2.0 | 117 | 11.2 | 208 | |
90 | 7.2 | −2.3 | 132 | 11.0 | 224 | |
180 | 5.4 | −2.5 | 147 | 11.0 | 239 | |
P1N1 | 5 | 10.2 | −1.9 | 109 | 10.7 | 200 |
45 | 9.7 | −2.0 | 117 | 10.6 | 208 | |
90 | 7.4 | −2.2 | 130 | 10.5 | 221 | |
180 | 5.3 | −2.5 | 146 | 10.5 | 238 | |
2017 | ||||||
Air | 9.0 | −1.6 | 95 | 10.6 | 186 | |
P0N0 | 5 | 10.0 | −1.7 | 100 | 11.0 | 191 |
45 | 9.0 | −1.9 | 109 | 10.7 | 200 | |
90 | 6.7 | −2.2 | 126 | 10.6 | 217 | |
180 | 5.0 | −2.4 | 141 | 10.5 | 232 | |
P0N1 | 5 | 9.8 | −1.7 | 100 | 10.8 | 191 |
45 | 9.0 | −1.9 | 109 | 10.7 | 200 | |
90 | 6.7 | −2.2 | 125 | 10.5 | 217 | |
180 | 5.2 | −2.4 | 139 | 10.5 | 231 | |
P1N0 | 5 | 9.9 | −1.7 | 100 | 11.0 | 191 |
45 | 8.4 | −2.0 | 113 | 10.7 | 204 | |
90 | 6.5 | −2.2 | 128 | 10.5 | 219 | |
180 | 4.8 | −2.5 | 142 | 10.5 | 233 | |
P1N1 | 5 | 9.4 | −1.8 | 103 | 10.7 | 195 |
45 | 8.8 | −1.9 | 110 | 10.6 | 202 | |
90 | 6.5 | −2.2 | 126 | 10.6 | 217 | |
180 | 5.0 | −2.4 | 141 | 10.6 | 232 |
Crop/Year | Unit | P0N0 | P0N1 | P1N0 | P1N1 | ||||
---|---|---|---|---|---|---|---|---|---|
Grain | Straw | Grain | Straw | Grain | Straw | Grain | Straw | ||
spring rape/2014 | dt/ha 91% DM | 12.4 | 14.5 | 17.6 | 26.4 | 15.4 | 24.2 | 16.5 | 32.5 |
winter wheat/2015 | dt/ha 86% DM | 65.6 | 44.9 | 106.4 | 85.2 | 69.7 | 43.4 | 113.7 | 89.9 |
spring barley/2016 | dt/ha 86% DM | 47.1 | 11.0 | 58.3 | 15.9 | 58.0 | 16.2 | 84.8 | 25.2 |
spring rape/2017 | dt/ha 91% DM | 74.0 | NA | 66.5 | NA | 63.2 | NA | 62.9 | NA |
P0N0 | ||||||||
---|---|---|---|---|---|---|---|---|
5 cm | 45 cm | 90 cm | 180 cm | |||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Spring | 11.1 | 4.3 | 9.9 | 3.8 | 8.6 | 2.5 | 8.3 | 1.6 |
Summer | 20.4 | 1.3 | 19.1 | 1.0 | 16.4 | 1.1 | 14.5 | 1.2 |
Autumn | 11.3 | 4.8 | 11.9 | 4.1 | 13.0 | 2.8 | 13.5 | 1.8 |
Winter | 2.4 | 1.4 | 3.1 | 1.2 | 5.4 | 1.2 | 7.4 | 1.2 |
P0N1 | ||||||||
Spring | 10.6 | 4.0 | 9. 7 | 3.6 | 8.8 | 2.5 | 8.3 | 1.7 |
Summer | 19.3 | 1.5 | 18.5 | 1.1 | 16.4 | 1.1 | 14.5 | 1.2 |
Autumn | 10.6 | 4.7 | 11.4 | 4.0 | 13.0 | 2.8 | 13.4 | 1.9 |
Winter | 2.1 | 1.6 | 3 | 1.4 | 5.5 | 1.3 | 7.3 | 1.3 |
P1N0 | ||||||||
Spring | 11.0 | 4.1 | 9.6 | 3.5 | 8.5 | 2.4 | 8.2 | 1.5 |
Summer | 20.1 | 1.6 | 18.5 | 1.1 | 16.1 | 1.1 | 14.1 | 1.2 |
Autumn | 11.3 | 4.9 | 12.2 | 3.8 | 13.0 | 2.7 | 13.4 | 1.7 |
Winter | 2.3 | 1.6 | 3.6 | 1.3 | 5.5 | 1.2 | 7.5 | 1.2 |
P1N1 | ||||||||
Spring | 10.3 | 3.8 | 9.7 | 3.5 | 8.7 | 2.4 | 8.1 | 1.6 |
Summer | 18.7 | 1.8 | 18.3 | 1.3 | 16.0 | 1.3 | 14.0 | 1.2 |
Autumn | 10.4 | 4.8 | 11.6 | 4.1 | 13.1 | 2.8 | 13.2 | 1.8 |
Winter | 2.0 | 1.6 | 3.1 | 1.3 | 5.7 | 1.2 | 7.1 | 1.2 |
Treatments | Depth (cm) | Equations | p | R2 |
---|---|---|---|---|
P0N0 | 5 | Ts = 0.73 + 0.99Tair | *** | 0.95 |
45 | Ts = 2.6 + 0.8Tair | *** | 0.89 | |
90 | Ts = 5 + 0.56Tair | *** | 0.88 | |
180 | Ts = 6.7 + 0.41Tair | *** | 0.87 | |
P0N1 | 5 | Ts = 0.86 + 0.93Tair | *** | 0.93 |
45 | Ts = 2.3 + 0.8Tair | *** | 0.91 | |
90 | Ts = 5.1 + 0.56Tair | *** | 0.88 | |
180 | Ts = 6.5 + 0.42Tair | *** | 0.88 | |
P1N0 | 5 | Ts = 0.81 + 0.98Tair | *** | 0.94 |
45 | Ts = 3.2 + 0.94Tair | *** | 0.89 | |
90 | Ts = 5.1 + 0.55Tair | *** | 0.88 | |
180 | Ts = 6.7 + 0.4Tair | *** | 0.88 | |
P1N1 | 5 | Ts = 0.88 + 0.91Tair | *** | 0.92 |
45 | Ts = 2.8 + 0.76Tair | *** | 0.89 | |
90 | Ts = 5.4 + 0.54Tair | *** | 0.88 | |
180 | Ts = 6.5 + 0.4Tair | *** | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarrah, M.; Mayel, S.; Franko, U.; Kuka, K. Effects of Agricultural Management Practices on the Temporal Variability of Soil Temperature under Different Crop Rotations in Bad Lauchstaedt-Germany. Agronomy 2022, 12, 1199. https://doi.org/10.3390/agronomy12051199
Jarrah M, Mayel S, Franko U, Kuka K. Effects of Agricultural Management Practices on the Temporal Variability of Soil Temperature under Different Crop Rotations in Bad Lauchstaedt-Germany. Agronomy. 2022; 12(5):1199. https://doi.org/10.3390/agronomy12051199
Chicago/Turabian StyleJarrah, Mahboube, Sonia Mayel, Uwe Franko, and Katrin Kuka. 2022. "Effects of Agricultural Management Practices on the Temporal Variability of Soil Temperature under Different Crop Rotations in Bad Lauchstaedt-Germany" Agronomy 12, no. 5: 1199. https://doi.org/10.3390/agronomy12051199
APA StyleJarrah, M., Mayel, S., Franko, U., & Kuka, K. (2022). Effects of Agricultural Management Practices on the Temporal Variability of Soil Temperature under Different Crop Rotations in Bad Lauchstaedt-Germany. Agronomy, 12(5), 1199. https://doi.org/10.3390/agronomy12051199