Herbicide Tolerance Options for Weed Control in Lanza® Tedera
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment 1 (2017). Post-Emergent Herbicides on a 2-Year-Old Tedera Seed Crop
2.2. Experiment 2 (2018). Post-Emergent Herbicides on a 1-Month-Old Tedera Stand
2.3. Experiment 3 (2018). Post-Emergent Herbicides on a 1-year-Old Tedera Stand
2.4. Experiment 4 (2020). Pre-Emergent and Post-Emergent Herbicides on 1 Month Old Seedlings
2.5. Experiment 5 (2020). Post-Emergent Herbicides on 5-Month-Old Plants
2.6. Experiment 6 (2020). Post-Emergent Herbicides on 1 Month Old Seedlings
2.7. Experiment 7 (2021). Post-Emergent Herbicides on a 3-Year-Old Tedera Stand
2.8. Experiment 8 (2021). Pre-Emergent and Post-Emergent Herbicides on 1-Month-Old Seedlings
2.9. Herbicide Mode of Action
2.10. Statistical Analysis
3. Results
3.1. Experiment 1 (2017). Post-Emergent Herbicides on a 2-Year-Old Tedera Seed Crop
3.2. Experiment 2 (2018). Post-Emergent Herbicides on a 1-Month-Old Tedera Stand
3.3. Experiment 3 (2018). Post-Emergent Herbicides on a 1-Year-Old Tedera Stand
3.4. Experiment 4 (2020). Pre-Emergent and Post-Emergent Herbicides on 1-Month-Old Tedera Seedlings
3.5. Experiment 5 (2020). Post-Emergent Herbicides on 5-Month-Old Plants
3.6. Experiment 6 (2020). Post-Emergent Herbicides on 1-Month-Old Seedlings
3.7. Experiment 7 (2021). Post-Emergent Herbicides on a 3-Year-Old Tedera Stand
3.8. Experiment 8 (2021). Pre-Emergent and Post-Emergent Herbicides on 1-Month-Old Seedlings
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Méndez, P. Forage potential of Canary Islands legumes. In Proceedings of the Management of Mediterranean Shrublands and Related Forage Resources, Crete, Greece, 21–23 April 1993; pp. 141–144. [Google Scholar]
- Méndez, P.; Fernández, M. Interés forrajero de las variedades de Bituminaria bituminosa (L.) Stirton (“tedera”) de Canarias. In Proceedings of the XXX Reunión científica de la sociedad Española para el estudio de los pastos, Donostia-San Sebastian, Spain, 4–8 June 1990; pp. 264–272. [Google Scholar]
- Méndez, P.; Santos, A.; Correal, E.; Ríos, S. Agronomic traits as forage crops of nineteen populations of Bituminaria bituminosa. Grassl. Sci. Eur. 2006, 11, 300–302. [Google Scholar]
- Real, D.; Oldham, C.M.; Nelson, M.N.; Croser, J.; Castello, M.; Verbyla, A.; Pradhan, A.; Van Burgel, A.; Méndez, P.; Correal, E.; et al. Evaluation and breeding of tedera for Mediterranean climates in southern Australia. Crop Pasture Sci. 2014, 65, 1114–1131. [Google Scholar] [CrossRef]
- Pazos-Navarro, M.; Dabauza, M.; Correal, E.; Hanson, K.; Teakle, N.; Real, D.; Nelson, M. Next generation DNA sequencing technology delivers valuable genetic markers for the genomic orphan legume species, Bituminaria bituminosa. BMC Genet. 2011, 12, 104. [Google Scholar] [CrossRef]
- Pazos-Navarro, M.; Croser, J.; Castello, M.; Ramankutty, P.; Fuller, K.; Real, D.; Walker, D.; Correal, E.; Dabauza, M. Embryogenesis and plant regeneration of the perennial pasture and medicinal legume Bituminaria bituminosa (L.) C.H. Stirton. Crop Pasture Sci. 2014, 65, 934–943. [Google Scholar] [CrossRef]
- Pradhan, A.; Besharat, N.; Castello, M.; Croser, J.; Real, D.; Nelson, M.N. Evidence for Outcrossing in the Perennial Forage Legume Tedera. Crop Sci. 2014, 54, 2406–2412. [Google Scholar] [CrossRef]
- Castello, M.; Croser, J.S.; Lulsdorf, M.M.; Ramankutty, P.; Pradhan, A.; Nelson, M.N.; Real, D. Breaking primary dormancy in seeds of the perennial pasture legume tedera (Bituminaria bituminosa C.H. Stirt. vars albomarginata and crassiuscula). Grass Forage Sci. 2015, 70, 365–373. [Google Scholar] [CrossRef]
- Noble, D.H. MIDAS, a Bioeconomic Model of a Dryland Farm System. Edited by R. S. Kingwell and D. J. Pannell. Wageningen: Pudoc (1987), pp. 207. Exp. Agric. 1989, 25, 135. [Google Scholar] [CrossRef]
- Finlayson, J.; Real, D.; Nordblom, T.; Revell, C.; Ewing, M.; Kingwell, R. Farm level assessments of a novel drought tolerant forage: Tedera (Bituminaria bituminosa C.H. Stirt var. albomarginata). Agric. Syst. 2012, 112, 38–47. [Google Scholar] [CrossRef]
- Oldham, C.M.; Real, D.; Bailey, H.J.; Thomas, D.; Van Burgel, A.J.; Vercoe, P.; Correal, E.; Rios, S. Australian and Spanish scientists are collaborating in the domestication of tedera: Young merino sheep grazing a monoculture of tedera in autumn showed preference for certain accessions but no signs of ill health. Crop Pasture Sci. 2013, 64, 399–408. [Google Scholar] [CrossRef]
- Oldham, C.M.; Wood, D.; Milton, J.; Real, D.; Vercoe, P.; van Burgel, A.J. An animal house study on utilisation of fresh tedera (Bituminaria bituminosa var. albomarginata and crassiuscula) by Merino wethers. Anim. Prod. Sci. 2015, 55, 617–624. [Google Scholar] [CrossRef]
- Ghaffari, M.H.; Durmic, Z.; Real, D.; Vercoe, P.; Smith, G.; Oldham, C. Furanocoumarins in tedera do not affect ruminal fermentation in continuous culture. Anim. Prod. Sci. 2014, 55, 544–550. [Google Scholar] [CrossRef]
- Real, D.; Oldham, C.M.; van Burgel, A.; Dobbe, E.; Hardy, J. Tedera proves its value as a summer and autumn feed for sheep in Mediterranean-like climates. Anim. Prod. Sci. 2018, 58, 2269–2279. [Google Scholar] [CrossRef]
- Real, D. Critical Agronomic Practices for Establishing the Recently Domesticated Perennial Herbaceous Forage Legume Tedera in Mediterranean-like Climatic Regions in Western Australia. Agronomy 2022, 12, 274. [Google Scholar] [CrossRef]
- McCormick, L.H.; Boschma, S.P.; Cook, A.S.; McCorkell, B.M. Herbicides Evaluated for Tropical Perennial Grasses; Grassland Society of NSW: Gundagai, Australia, 2011; pp. 133–135. [Google Scholar]
- Glassey, C.B.; Clark, C.E.F.; Roach, C.G.; Lee, J.M. Herbicide application and direct drilling improves establishment and yield of chicory and plantain. Grass Forage Sci. 2013, 68, 178–185. [Google Scholar] [CrossRef]
- Lewis, T.; Lucas, R.J.; Moot, D.J. Subterranean Clover Response to Different Herbicide Applications; Australian Society of Agronomy Inc.: Warragul, Australia, 2017; pp. 1–4. [Google Scholar]
- Peck, G.A.; O’Reagain, J.; Johnson, B.; Kedzlie, G.; Taylor, B.; Buck, S.; Mace, G. Improving the Reliability of Establishing Legumes into Grass Pastures in the Sub-Tropics; Australian Society of Agronomy Inc.: Warragul, Australia, 2015; pp. 875–878. [Google Scholar]
- Kelly, F. There Are Herbicides that Can Be Used on the Drought-Tolerant Perennial Legumes Cullen australasicum, Lotononis bainesii and Bituminaria bituminosa to Control Major Broadleaf Weeds. Bachelor’s Thesis, The University of Western Australia, Perth, Australia, 2008. [Google Scholar]
- Gray, A. Establishing the Herbicide Tolerance of Bituminaria Bituminosa var. Albomarginata and var. Crassiuscula Seedlings to Control the Major Broadleaf Weeds during the Establishment Phase. Bachelor’s Thesis, The University of Western Australia, Perth, Australia, 2011. [Google Scholar]
- Moore, J. Tedera tolerance of herbicides and small crumbweed control. In Proceedings of the 19th Australasian Weeds Conference, Hobart, Australia, 1–4 September 2014; pp. 20–23. [Google Scholar]
- Ashworth, M.B.; Walsh, M.J.; Flower, K.C.; Powles, S.B. Identification of glyphosate-resistant Lolium rigidum and Raphanus raphanistrum populations within the first Western Australian plantings of transgenic glyphosate-resistant canola. Crop Pasture Sci. 2015, 66, 930–937. [Google Scholar] [CrossRef]
- Moore, C.B.; Moore, J.H. HerbiGuide—The Pesticide Expert on a Disk 2021 V35.0. Available online: www.herbiguide.com.au (accessed on 1 April 2022).
- Saini, R.K.; Preston, C.; Malone, J.; Gill, G. Molecular basis of resistance to clethodim in Australian ryegrass (Lolium rigidum) populations. In Proceedings of the 19th Australasian Weeds Conference, “Science, Community and Food Security: The Weed Challenge”, Hobart, TAS, Australia, 1–4 September 2014; pp. 11–14. [Google Scholar]
- Broster, J.C.; Pratley, J.E.; Ip, R.H.L.; Ang, L.; Seng, K.P. Cropping practices influence incidence of herbicide resistance in annual ryegrass (Lolium rigidum) in Australia. Crop Pasture Sci. 2019, 70, 77–84. [Google Scholar] [CrossRef]
- Broster, J.C.; Pratley, J.E.; Ip, R.H.L.; Ang, L.; Seng, K.P. A quarter of a century of monitoring herbicide resistance in Lolium rigidum in Australia. Crop Pasture Sci. 2019, 70, 283–293. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Feist, D.; Eskelsen, S.; Scott, J.E.; Knezevic, S.Z. Weed control in soybean with preemergence- and postemergence-applied herbicides. Crop Forage Turfgrass Manag. 2017, 3, 40. [Google Scholar] [CrossRef]
- Nelson, M.N.; Jabbari, J.S.; Turakulov, R.; Pradhan, A.; Pazos-Navarro, M.; Stai, J.S.; Cannon, S.B.; Real, D. The First Genetic Map for a Psoraleoid Legume (Bituminaria bituminosa) Reveals Highly Conserved Synteny with Phaseoloid Legumes. Plants 2020, 9, 973. [Google Scholar] [CrossRef]
- Schuster, M.Z.; Pelissari, A.; Szymczak, L.S.; Lustosa, S.B.C.; Moraes, A. Chemical control of white clover in soybean crops. Planta Daninha 2015, 33, 561–565. [Google Scholar] [CrossRef]
- Hijano, N.; Monquero, P.A.; Munhoz, W.S.; Gusmão, M.R. Herbicide selectivity in alfalfa crops. Planta Daninha 2013, 31, 903–918. [Google Scholar] [CrossRef]
1-Month-Old | Older than 3 Months |
---|---|
atrazine | amitrole + paraquat |
bromoxynil | atrazine |
diflufenican | bromoxynil + diflufenican |
flumetsulam | cyanazine |
glufosinate | diflufenican |
glyphosate | flumetsulam |
imazamox | glyphosate |
imazethapyr | imazamox |
MCPA | imazethapyr |
MCPA + diflufenican | MCPA |
oxyfluorfen | MCPA + bromoxynil |
MCPA + diflufenican | |
metribuzin | |
terbutryn |
Site | Exp. 1 | Exp. 2. | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6 | Exp. 7 | Exp. 8 |
---|---|---|---|---|---|---|---|---|
Location | Dandaragan | Northam | Dandaragan | Northam | ||||
Year | 2017 | 2018 | 2018 | 2020 | 2020 | 2020 | 2021 | 2021 |
Latitude | 30°50′14″ S | 31°39′16.31″ S | 30°50′14″ S | 31°39′16.31″ S | ||||
Longitude | 115°45′44″ E | 116°40′13.86″ E | 115°45′44″ E | 116°40′13.86″ E | ||||
Annual average rainfall (mm) | 480 | 425 | 480 | 425 | ||||
Irrigation | Rain-fed | Irrigated Rain-fed Irrigated | Rain-fed | Irrigated | ||||
Soil Type | Sandy loam | Sandy loam | Red sandy loam | Sandy loam | Sandy loam | |||
Soil pH (CaCl2) | 6.8 | 5.8 | 5.8 | 6.8 | 5.8 | |||
Type of Experiment | Field | Field | Glasshouse | Field | Field |
Herbicides | Group 1 | Exp. 1 | Exp. 2. | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6 | Exp. 7 | Exp. 8 |
---|---|---|---|---|---|---|---|---|---|
Post-Emergent Herbicides | |||||||||
2,4-DB | 4 | 500;1000;2000 | |||||||
2,4-DB + dlumetsulan | 4 + 2 | 1000 + 20 | |||||||
Aclonifen + diflufenican + pyroxasulfone | 32 + 12 + 15 | 400 + 66 + 100 | |||||||
Bentazone | 6 | 1440 | |||||||
Bromoxynil | 6 | 400 | 250;500;1000 | ||||||
Bromoxynil + diflufenican | 6 + 12 | 250 + 25 | 250 + 25;750 + 75 | 250 + 25;500 + 50 | |||||
Butroxydim | 1 | 45 | 45 | 45 | |||||
Carbetamide | 23 | 2070;4140 | 2070 | ||||||
Clethodim | 1 | 120 | |||||||
Clopyralid | 4 | 45 | |||||||
Cyanazine | 5 | 1080 | |||||||
Diflufenican | 12 | 100 | 100 | 100 | 100;300 | 50;100;200;400 | 100 | ||
Diflufenican + pyraflufen | 12 + 14 | 100 + 8;200 + 16 | |||||||
Diflufenican + flumetsulam + diuron | 12 + 2+5 | 50 + 20 + 90;100 + 40 + 180 | 100 + 20 + 90;200 + 40 + 180;400 + 80 + 360 | 100 + 20 + 90 | |||||
Diuron | 5 | 450;900 | |||||||
Flumetsulam + diuron | 2 + 5 | 20 + 50 | 20 + 50 | 20 + 90;40 + 180 | 40 + 180 | 20 + 90;40 + 180 | 40 + 180 | 20 + 90 | |
Flumetsulam | 2 | 32 | 20 | 20 | |||||
Flumetsulam + diflufenican | 2 + 12 | 20 + 100 | |||||||
Flumetsulam + picolinafen | 2 + 12 | 20 + 37.5 | |||||||
Flumetsulam + diuron + picolinafen | 2 + 5 + 12 | 20 + 90 + 37.5;40 + 180 + 75 | |||||||
Flumioxazin | 14 | 90;180 | |||||||
Fluroxypyr | 4 | 50;100 | |||||||
Fomesafen | 14 | 180;360 | 180;360 | 180;360 | |||||
Fomesafen + diuron | 14 + 5 | 240 + 90 | |||||||
Fomesafen + clopyralid | 14 + 4 | 240 + 30 | |||||||
Glyphosate | 9 | 450 | |||||||
Haloxyfop | 1 | 104 | 104 | ||||||
Imazamox + imazapyr | 2 + 2 | 24.75 + 11.25 | 10 + 4.5;20 + 9 | 12.4 + 5.6;24.8 + 11.2 | |||||
Imazamox | 2 | 35 | 35 | 35 | |||||
Imazethapyr | 2 | 98 | 98 | 98 | |||||
Linuron | 5 | 500 | |||||||
MCPA + bromoxynil | 4 + 6 | 250 + 250;750 + 750 | |||||||
MCPA + diflufenican | 4 + 12 | 250 + 25;750 + 75 | |||||||
MCPA + bromoxynil + diflufenican | 4 + 6 + 12 | 250 + 250 + 25;750 + 750 + 75 | |||||||
MCPB + MCPA + flumetsulam | 4 + 4 + 2 | 600 + 40 + 20;1200 + 80 + 40;2400 + 160 + 80 | |||||||
Mesotrione | 27 | 96;192 | |||||||
Oxyfluorfen | 14 | 120 | 120 | ||||||
Picolinafen | 12 | 37.5 | |||||||
Prometryn | 5 | 400 | 400 | ||||||
Propyzamide | 3 | 1000 | 1000 | 1000 | 1000; 2000 | ||||
Prosulfocarb + S-Metolachlor | 15 | 2000 + 300; 4000 + 600 | |||||||
Pyraflufen-ethyl | 14 | 8 | 8 | 16;32 | |||||
Saflufenacil | 14 | 23.8 | 23.8 | ||||||
Saflufenacil + paraquat | 14 + 22 | 23.8 + 375 | 23.8 + 375 | ||||||
Terbuthylazine | 5 | 900;1800 |
Herbicides | Group 1 | Exp. 4 | Exp. 8 |
---|---|---|---|
Pre-Emergent Herbicides | |||
Aclonifen + diflufenican + pyroxasulfone (IBS 2) | 32 + 12 + 15 | 400 + 66 + 100 | |
Clopyralid (PSPE 3) | 4 | 90 | |
Fomesafen (IBS) | 14 | 360;720 | |
Fomesafen (PSPE) | 14 | 300;600 | |
Fomesafen + diuron (IBS) | 14 + 5 | 240 + 450 | |
Fomesafen + diuron + Flumetsulam (IBS) | 14 + 5 + 2 | 240 + 450 + 40 | |
Flumetsulam + diuron (IBS) | 2 + 5 | 40 + 450 | |
Propyzamide (IBS) | 3 | 1000;2000 | 1000 |
Prosulfocarb + S-Metolachlor (IBS) | 15 | 2000 + 300;4000 + 600 | |
Terbuthylazine (IBS) | 5 | 900;1800 |
Herbicides | Rate a.i. g/ha | Biomass Reduction (%) | Yellowing (%) | Chlorosis (%) | Necrosis (%) |
---|---|---|---|---|---|
14 July 2017 | |||||
Un-sprayed control | 0 a 1 | 0 a | 0 a | 0 a | |
Bentazone | 1440 | 2 a | 5 ab | 10 b | 0 a |
Cyanazine | 1080 | 5 a | 32 c | 28 d | 27 c |
Flumetsulam | 32 | 0 a | 10 ab | 0 a | 0 a |
Diflufenican | 100 | 3 ab | 0 a | 15 bc | 0 a |
Bromoxynil | 400 | 3 ab | 12 ab | 20 cd | 15 b |
Butroxydim | 45 | 2 a | 5 ab | 0 a | 0 a |
Imazamox + imazapyr | 24.75 + 11.25 | 0 a | 60 d | 0 a | 0 a |
Bromoxynil + diflufenican | 250 + 25 | 3 ab | 0 a | 48 e | 5 a |
Propyzamide | 1000 | 2 a | 0 a | 0 a | 0 a |
Linuron | 500 | 5 ab | 15 b | 22 cd | 12 b |
Imazamox | 35 | 2 a | 10 ab | 0 a | 0 a |
Clethodim | 120 | 0 a | 12 ab | 0 a | 0 a |
Saflufenacil | 23.8 | 10 b | 33 c | 7 ab | 25 c |
Saflufenacil + paraquat | 23.8 + 375 | 58 c | 0 a | 0 a | 58 d |
Imazethapyr | 98 | 3 ab | 17 b | 0 a | 0 a |
l.s.d. (p = 0.05) | 7 | 14 | 9 | 9 |
Herbicides | Rate a.i. g/ha | Tedera Biomass Reduction (%) 1 WATA 1 13 August 2018 | Tedera Biomass Reduction (%) 6 WATA 14 September 2018 |
---|---|---|---|
Un-sprayed control | 3 ab 2 | 0 a | |
Flumetsulam + diuron | 20 + 50 | 0 a | 0. a |
Flumetsulam | 20 | 0 a | 0 a |
Diflufenican | 100 | 10 b | 0 a |
Prometryn | 400 | 3 ab | 3 ab |
Imazamox | 35 | 10 b | 5 ab |
Imazethapyr | 98 | 18 b | 8 ab |
Oxyfluorfen | 120 | 79 c | 12 b |
Pyraflufen-ethyl | 8 | 0 a | 0 a |
Pyraflufen-ethyl + propyzamide | 8 | 0 a | 0 a |
Pyraflufen-ethyl + haloxyfop | 8 | 83 c | 60 c |
Pyraflufen-ethyl + butroxydim | 8 | 80 c | 60 c |
l.s.d. (p = 0.05) | 8 | 10 |
Herbicides | Rate a.i. g/ha | Tedera Biomass Reduction (%) | Cape Weed Control (%) | ||
---|---|---|---|---|---|
13 August 2018 (6 WATA 1) | 14 September 2018 (11 WATA) | 13 August 2018 (6 WATA) | 14 September 2018 (11 WATA) | ||
Un-sprayed control | 0 a 2 | 0 a | 0 a | 0 a | |
Flumetsulam + diuron | 20 + 50 | 2 a | 3 ab | 95 e | 91 e |
Imazamox | 35 | 3 ab | 15 cd | 32 bc | 77 de |
Diflufenican | 100 | 3 ab | 5 abc | 15 ab | 38 bc |
Prometryn | 400 | 5 abc | 3 ab | 54 cd | 78 de |
Flumetsulam | 20 | 6 abc | 3 ab | 19 ab | 60 cd |
Imazethapyr | 98 | 13 bcd | 13 bcd | 64 d | 85 de |
Oxyfluorfen | 120 | 13 cd | 17 de | 13 ab | 33 b |
Pyraflufen-ethyl | 8 | 17 d | 8 abcd | 12 ab | 13 ab |
Saflufenacil | 23.8 | 70 e | 27 e | 100 e | 92 e |
l.s.d. (p = 0.05) | 9 | 10 | 23 | 26 |
Grass Herbicides | Rate a.i. g/ha | Tedera Biomass Reduction (%) 13 August 2018 | Grass Control (%) 13 August 2018 (6 WATA 1) | Grass Control (%) 14 September 2018 11 (WATA) |
---|---|---|---|---|
Un-sprayed control | 13 | 0 a 2 | 0 a | |
Haloxyfop | 104 | 12 | 49 b | 80 b |
Butroxydim | 45 | 14 | 85 bc | 88 b |
Propyzamide | 1000 | 13 | 96 c | 93 b |
l.s.d. (p = 0.05) | n.s. | 38 | 17 |
Herbicides | Rate a.i. g/ha | Seedlings/m2 (Pre-Emergent) 29 April 2020 | Seedlings/m2 (Post-Emergent) 28 May 2020 |
---|---|---|---|
Propyzamide | 2000 | 26 a 1 | 21 a |
Un-sprayed control | 23 ab | 20 a | |
Prosulfocarb + S-metolachlor | 4000 + 600 | 20 ab | 15 ab |
Propyzamide followed by flumetsulam + diuron | 1000 + 20 + 90 | 20 ab | N.A. 2 |
Propyzamide followed by flumetsulam + diuron | 2000 + 40 + 180 | N.A. | 20 a |
Prosulfocarb + S-metolachlor | 2000 + 300 | 20 ab | 20 a |
Propyzamide | 1000 | 17 b | 21 a |
Terbuthylazine | 900 | 6 c | 8 b |
Terbuthylazine | 1800 | 2 c | 20 a |
l.s.d. (p = 0.05) | 8 | 8 |
Herbicides | Rate a.i. g/ha | Visual Biomass Reduction (%) | Dry Biomass (kg/ha) |
---|---|---|---|
Un-sprayed control | 0 a 1 | 6791 a | |
Propyzamide followed by flumetsulam + diuron | 1000 + 20 + 90 2 | 3 ab | 6768 a |
Propyzamide | 2000 | 5 ab | 6560 ab |
Prosulfocarb + S-Metolachlor | 2000 + 300 | 14 b | 5824 bc |
Prosulfocarb + S-Metolachlor | 4000 + 600 | 9 ab | 5719 bc |
Propyzamide | 1000 | 6 ab | 5541 c |
Terbuthylazine | 900 | 57 c | 2851 d |
Terbuthylazine | 1800 | 72 d | 1097 e |
l.s.d (p = 0.05) | 11 | 897 |
Herbicides | Rate a.i. g/ha | Flowering Reduction (%) 21 September 2020 | Biomass (kg/ha) 18 December 2020 |
---|---|---|---|
Un-sprayed control | 0 a 1 | 5830 a | |
MCPA ester + bromoxynil | 250 + 250 | 90 d | 5524 a |
Diflufenican | 100 | 5 a | 5384 a |
Diflufenican | 300 | 5 a | 4943 ab |
Flumetsulam +diuron | 40 + 180 | 10 ab | 4430 abc |
Bromoxynil + diflufenican | 250 + 25 | 30 bc | 4339 abc |
MCPA ester + diflufenican | 250 + 25 | 95 d | 4268 abc |
MCPA ester + bromoxynil + diflufenican | 250 + 250 + 25 | 82.5 d | 3914 abc |
MCPA ester + diflufenican | 750 + 75 | 97.5 d | 3423 bc |
MCPA ester + bromoxynil + diflufenican | 750 + 750 + 75 | 100 d | 3140 bc |
Bromoxynil + diflufenican | 750 + 75 | 47.5 c | 2957 c |
MCPA ester + bromoxynil | 750 + 750 | 100 d | 2851 c |
l.s.d. (p = 0.05) | 21 | 1948 |
Herbicides | Rate a.i. g/ha | Shoot Dry Weight (g/Plant) | Plant Height (cm/Plant) | Root Dry Weight (g/Plant) | Root Average Diameter/Plant (mm/plant) | Total Root Volume (cm3/Plant) |
---|---|---|---|---|---|---|
Flumetsulam + diuron | 20 + 90 | 1.52 | 13.17 1 * | 0.41 | 0.56 | 2.66 |
Carbetamide | 4140 | 1.51 | 11.87 | 0.32 | 0.55 | 2.42 |
Diflufenican + pyraflufen | 100 + 8 | 1.45 | 9.36 | 0.36 | 0.52 | 2.07 |
Diflufenican | 400 | 1.39 | 9.83 | 0.40 | 0.60 * | 3.08 |
Fomesafen | 360 | 1.34 | 10.74 | 0.45 | 0.62 * | 3.21 |
Carbetamide | 2070 | 1.30 | 12.08 | 0.41 | 0.59 * | 2.84 |
Fomesafen | 180 | 1.22 | 8.39 | 0.32 | 0.58 | 2.03 |
Flumetsulam + diuron | 40 + 180 | 1.19 | 12.79 * | 0.30 | 0.56 | 1.93 |
Diflufenican | 200 | 1.17 | 10.20 | 0.33 | 0.62 * | 2.25 |
Un-sprayed control | 1.11 | 9.46 | 0.35 | 0.51 | 2.05 | |
Diflufenican + flumetsulam + diuron | 50 + 20 + 90 | 1.09 | 13.73 * | 0.30 | 0.52 | 1.74 |
Diflufenican + pyraflufen | 200 + 160 | 1.06 | 9.50 | 0.24 | 0.48 | 1.69 |
Diflufenican + flumetsulam + diuron | 100 + 40 + 180 | 1.01 | 12.49 | 0.27 | 0.49 | 1.87 |
Diuron | 450 | 0.96 | 12.77 * | 0.28 | 0.48 | 1.64 |
Diflufenican | 50 | 0.96 | 6.92 | 0.25 | 0.60 * | 2.10 |
Diflufenican | 100 | 0.90 | 7.46 | 0.23 | 0.61 * | 2.05 |
Bromoxynil | 250 | 0.79 | 7.73 | 0.19 | 0.50 | 1.64 |
Diuron | 900 | 0.75 | 12.58 | 0.20 * | 0.44 * | 1.26 |
Fluroxypyr | 50 | 0.75 | 7.06 | 0.40 | 0.58 | 3.12 |
Flumioxazin | 180 | 0.71 | 7.34 | 0.16 * | 0.49 | 1.18 |
Imazamox+ imazapyr | 10 + 4.5 | 0.70 | 6.88 | 0.20 | 0.56 | 1.40 |
Flumioxazin | 90 | 0.59 | 6.10 * | 0.13 * | 0.55 | 0.97 |
Imazamox+ imazapyr | 20 + 9 | 0.54 * | 3.62 * | 0.23 | 0.56 | 1.75 |
Bromoxynil | 500 | 0.54 * | 6.64 | 0.11 * | 0.46 | 0.88 * |
Bromoxynil + diflufenican | 500 + 50 | 0.42 | 5.75 | 0.06 * | 0.39 * | 0.47 * |
Fluroxypyr | 100 | 0.42 * | 2.87 * | 0.25 | 0.64 * | 1.99 |
Bromoxynil + diflufenican | 250 + 25 | 0.33 * | 3.38 * | 0.05 * | 0.44 * | 0.52 * |
Mesotrione | 192 | 0.22 * | 5.50 * | 0.07 * | 0.43 * | 0.59 * |
Mesotrione | 96 | 0.20 * | 7.19 | 0.05 * | 0.49 | 0.48 * |
Herbicides | Rate a.i. g/ha | Biomass Reduction (%) 4 WATA 1 22 July 2021 | Biomass Reduction (%) 8 WATA 24 August 2021 | Biomass (kg/ha) 9 WATA 31 August 2021 |
---|---|---|---|---|
Carbetamide | 2070 | 0 a 2 | 0 a | 1406 a |
Diflufenican + flumetsulam + diuron | 200 + 40 + 180 | 0 a | 0 a | 1348 ab |
Fomesafen | 180 | 3 ab | 10 ab | 1308 ab |
Un-sprayed Control | 0 a | 0 a | 1262 ab | |
Flumetsulam + diuron + picolinafen | 20 + 90 + 37.5 | 13 bcd | 10 ab | 1258 ab |
Flumetsulam + picolinafen | 20 + 37.5 | 17 cde | 3 ab | 1212 abc |
Fomesafen | 360 | 5 ab | 10 ab | 1174 abc |
Diflufenican + flumetsulam + diuron | 100 + 20 + 90 | 3 ab | 10 ab | 1173 abc |
Diflufenican + flumetsulam + diuron | 400 + 80 + 360 | 3 ab | 7 ab | 1144 abc |
Diflufenican | 100 | 5 ab | 3 ab | 1134 abcd |
Flumetsulam + diflufenican | 20 + 100 | 8 abc | 7 ab | 1087 abcde |
MCPB + MCPA + flumetsulam | 600 + 40 + 20 | 25 efg | 37 c | 1080 abcde |
2,4-DB | 500 | 23 def | 50 de | 986 abcdef |
2,4-DB + flumetsulam | 1000 + 20 | 37 h | 60 efg | 966 abcdef |
Flumetsulam + diuron | 40 + 180 | 3 ab | 0 a | 922 abcdefg |
Picolinafen | 37.5 | 13 bcd | 10 ab | 859 bcdefg |
MCPB + MCPA + flumetsulam | 1200 + 80 + 40 | 30 fgh | 53 e | 753 cdefg |
MCPB + MCPA + flumetsulam | 2400 + 160 + 80 | 35 gh | 57 ef | 639 defgh |
2,4-DB | 1000 | 32 fgh | 60 efg | 620 efgh |
2,4-DB | 2000 | 38 h | 67 fg | 520 fgh |
Flumetsulam + diuron + picolinafen | 40 + 180 + 75 | 13 bcd | 13 b | 441 gh |
Saflufenacil + paraquat | 23.8 + 375 | 50 i | 40 cd | 434 gh |
Glyphosate | 450 | 40 hi | 70 g | 231 h |
l.s.d. (p = 0.05) | 11 | 11 | 496 |
Herbicides | Rate a.i. g/ha | Timing | Biomass (kg/ha) |
---|---|---|---|
Fomesafen | 360 | IBS | 1397 a 1 |
Flumetsulam + diuron | 20 + 90 | Post-emergent | 1320 ab |
Fomesafen | 360 | Post-emergent | 1304 ab |
Fomesafen | 600 | PSPE | 1296 ab |
Diflufenican + flumetsulam + diuron | 100 + 20 + 90 | Post-emergent | 1292 ab |
Fomesafen + diuron + flumetsulam | 240 + 450 + 40 | IBS | 1194 abc |
Fomesafen | 180 | Post-emergent | 1147 abc |
Fomesafen + diuron | 240 + 450 | IBS | 1090 abc |
Fomesafen | 720 | IBS | 1023 abcd |
Un-sprayed control | 1021 abc | ||
Fomesafen | 300 | PSPE | 998 abcd |
Fomesafen + diuron | 240 + 90 | Post-emergent | 938 abcd |
Fomesafen + clopyralid | 240 + 30 | Post-emergent | 930 abcd |
Clopyralid | 90 | PSPE | 902 abcd |
Aclonifen + diflufenican + pyroxasulfone | 400 + 66 + 100 | IBS | 883 abcd |
Flumetsulam + diuron | 40 + 450 | IBS | 816 bcd |
Clopyralid | 45 | Post-emergent | 749 cd |
Imazamox + imazapyr | 24.8 + 11.2 | Post-emergent | 549 d |
Imazamox + imazapyr | 12.4 + 5.6 | Post-emergent | 538 d |
Aclonifen + diflufenican + pyroxasulfone | 400 + 66 + 100 | Post-emergent | 510 d |
l.s.d. (p = 0.05) l.s.d. (p = 0.05) (vs Un-sprayed control) | 535 463 |
Herbicide | Exp. 4 | Exp. 8 |
---|---|---|
Aclonifen + diflufenican + pyroxasulfone (IBS) | 400 + 66 + 100 | |
Fomesafen (IBS) | 360; 720 | |
Fomesafen (PSPE) | 300; 600 | |
Fomesafen + diuron (IBS) | 240 + 450 | |
Fomesafen + diuron + flumetsulam (IBS) | 240 + 450 + 40 | |
Flumetsulam + diuron (IBS) | 40 + 450 | |
Clopyralid (PSPE) | 90 | |
Terbuthylazine (IBS) | 900;1800 |
Herbicide | Exp. 2 | Exp. 4 | Exp. 5 | Exp. 6 1 | Exp. 8 | ||||
---|---|---|---|---|---|---|---|---|---|
Aclonifen + diflufenican + pyroxasulfone | 400 + 66+ 100 | ||||||||
Bromoxynil | 250 | 500 | 1000 | ||||||
Bromoxynil + diflufenican | 250 + 25 | 750 + 75 | 250 + 25 | 500 + 50 | |||||
Diflufenican | 100 | 100 | 300 | 50 | 100 | 200 | 400 | ||
Diflufenican + pyraflufen | 100 + 8 | 200 + 16 | |||||||
Diflufenican + flumetsulam + diuron | 50 + 20 + 90 | 100 + 40 + 180 | 100 + 20 + 90 | ||||||
Diuron | 450 | 900 | |||||||
Flumetsulam + diuron | 20 + 50 | 20 + 90; 40 + 180 | 40 + 180 | 20 + 90 | 40 + 180 | 20 + 90 | |||
Flumetsulam | 20 | ||||||||
Flumioxazin | 90 | 180 | |||||||
Fluroxypyr | 50 | 100 | |||||||
Fomesafen | 180 | 360 | 180; 360 | ||||||
Fomesafen + diuron | 240 + 90 | ||||||||
Fomesafen + clopyralid | 240 + 30 | ||||||||
Imazamox + imazapyr | 10 + 4.5 | 20 + 9 | 12.4 + 5.6; 24.8 + 11.2 | ||||||
Imazamox | 35 | ||||||||
Imazethapyr | 98 | ||||||||
Clopyralid | 45 | ||||||||
MCPA + bromoxynil | 250 + 250 | 750 + 750 | |||||||
MCPA + diflufenican | 250 + 25 | 750 + 75 | |||||||
MCPA + bromoxynil + diflufenican | 250 + 250 + 25 | 750 + 750 + 75 | |||||||
Mesotrione | 96 | 192 | |||||||
Oxyfluorfen | 120 | ||||||||
Prometryn | 400 | ||||||||
Prosulfocarb + S-Metolachlor | 2000 + 300; 4000 + 600 | ||||||||
Pyraflufen-ethyl | 8 | 16 | 32 | ||||||
Terbuthylazine | 900;1800 |
Herbicide | Exp. 1 1 | Exp. 3 | Exp. 7 | ||
---|---|---|---|---|---|
2,4-DB | 500 | 1000 | 2000 | ||
2,4-DB + flumetsulam | 1000 + 20 | ||||
Bentazone | 1440 | ||||
Bromoxynil | 400 | ||||
Bromoxynil + diflufenican | 250 + 25 | ||||
Cyanazine | 1080 | ||||
Diflufenican | 100 | 100 | 100 | ||
Diflufenican + flumetsulam + diuron | 100 + 20 + 90 | 200 + 40 + 180 | 400 + 80 + 360 | ||
Flumetsulam + diuron | 20 + 50 | 40 + 180 | |||
Flumetsulam | 32 | 20 | |||
Flumetsulam + diflufenican | 20 + 100 | ||||
Flumetsulam + picolinafen | 20 + 37.5 | ||||
Flumetsulam + diuron + picolinafen | 20 + 90 + 37.5 | 40 + 180 + 75 | |||
Fomesafen | 180 | 360 | |||
Glyphosate | 450 | ||||
Imazamox + imazapyr | 24.75 + 11.25 | ||||
Imazamox | 35 | 35 | |||
Imazethapyr | 98 | 98 | |||
Linuron | 500 | ||||
MCPB + MCPA + flumetsulam | 600 + 40 + 20 | 1200 + 80 + 40 | 2400 + 160 + 80 | ||
Oxyfluorfen | 120 | ||||
Picolinafen | 37.5 | ||||
Prometryn | 400 | ||||
Pyraflufen-ethyl | 8 | ||||
Saflufenacil | 23.8 | 23.8 | |||
Saflufenacil + paraquat | 23.8 + 375 | 23.8 + 375 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Real, D.; Dhammu, H.S.; Moore, J.; Clegg, D.; van Burgel, A. Herbicide Tolerance Options for Weed Control in Lanza® Tedera. Agronomy 2022, 12, 1198. https://doi.org/10.3390/agronomy12051198
Real D, Dhammu HS, Moore J, Clegg D, van Burgel A. Herbicide Tolerance Options for Weed Control in Lanza® Tedera. Agronomy. 2022; 12(5):1198. https://doi.org/10.3390/agronomy12051198
Chicago/Turabian StyleReal, Daniel, Harmohinder S. Dhammu, John Moore, David Clegg, and Andrew van Burgel. 2022. "Herbicide Tolerance Options for Weed Control in Lanza® Tedera" Agronomy 12, no. 5: 1198. https://doi.org/10.3390/agronomy12051198
APA StyleReal, D., Dhammu, H. S., Moore, J., Clegg, D., & van Burgel, A. (2022). Herbicide Tolerance Options for Weed Control in Lanza® Tedera. Agronomy, 12(5), 1198. https://doi.org/10.3390/agronomy12051198