Optimizing Irrigation and Nitrogen Management to Increase Yield and Nitrogen Recovery Efficiency in Double-Cropping Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climatic Condition
2.2. Experiment Design and Plant Materials
2.3. Measurements
2.3.1. Total Dry Weight, Nitrogen Uptake and Use Efficiency
2.3.2. Yield and Yield Components
2.3.3. Photosynthesis Characteristic
2.3.4. Nitrate Reductase
2.4. Data Analysis
3. Results
3.1. Effect of Nitrogen Application and Irrigation Method on Yield
3.2. Effect of Nitrogen Application and Irrigation Method on Yield Components
3.3. Effect of Nitrogen Application and Irrigation Method on Total Dry Matter Weight
3.4. Effect of Nitrogen Application and Irrigation Method on Photosynthetic Characteristics
3.5. Effect of Nitrogen Application and Irrigation Method on Nitrate Reductase Activity
3.6. Effect of Nitrogen Application and Irrigation Method on Nitrogen Uptake and Use Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, S.; Linquist, B.A.; Wilson, L.T.; Cassman, K.G.; Stuart, A.M.; Pede, V.; Miro, B.; Saito, K.; Agustiani, N.; Aristya, V.E.; et al. Sustainable intensification for a larger global rice bowl. Nat. Commun. 2021, 12, 7163. [Google Scholar] [CrossRef] [PubMed]
- Normile, D. Reinventing rice to feed the world. Science 2008, 322, 375. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Nie, L.X.; Liao, Y.C.; Shah, F.; Cui, K.H.; Wang, Q.; Lian, Y.; Huang, J.L. Toward yield improvement of early-season rice: Other options under double rice-cropping system in central China. Eur. J. Agron. 2013, 45, 75–86. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Y.; Huang, L.Y.; Peng, S.B.; Nie, L.X.; Cui, K.H.; Huang, J.L.; Wang, F. Premature heading and yield losses caused by prolonged seedling age in double-season rice. Field Crops Res. 2015, 183, 147–155. [Google Scholar] [CrossRef]
- Wang, D.P.; Huang, J.L.; Nie, L.X.; Wang, F.; Ling, X.X.; Cui, K.H.; Li, Y.; Peng, S.B. Integrated crop management practices for maximizing grain yield of double-season rice. Sci. Rep. 2017, 7, 38982. [Google Scholar] [CrossRef]
- Huang, M. The decreasing area of hybrid rice production in China: Causes and potential effects on Chinese rice self-sufficiency. Food Secur. 2022, 14, 267–272. [Google Scholar] [CrossRef]
- Luo, W.Q.; Chen, M.T.; Kang, Y.H.; Li, W.P.; Li, D.; Cui, Y.L.; Khan, S.; Luo, Y.F. Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall. Agric. Water Manag. 2022, 260, 107285. [Google Scholar] [CrossRef]
- Li, H.M.; Li, M.X. Sub-group formation and the adoption of the alternate wetting and drying irrigation method for rice in China. Agric. Water Manag. 2010, 97, 700–706. [Google Scholar] [CrossRef]
- Ahmad, M.J.; Choi, K.S. Climate-Induced Perspective Variations in Irrigation Schedules and Design Water Requirements for the Rice-Wheat System. Agronomy 2021, 11, 2006. [Google Scholar] [CrossRef]
- Gautam, N.K.; Sarkar, S. Estimating Crop Water Requirements and Assessing Irrigation Water Distribution Cost for Rice Production Using a Pipe Network. Pol. J. Environ. Stud. 2018, 27, 1071–1083. [Google Scholar] [CrossRef]
- Mandal, S.; Choudhury, B.U.; Satpati, L.N. Monsoon variability, crop water requirement, and crop planning for kharif rice in Sagar Island, India. Int. J. Biometeorol. 2015, 59, 1891–1903. [Google Scholar] [CrossRef]
- Nalley, L.; Linquist, B.; Kovacs, K.; Anders, M. The Economic Viability of Alternative Wetting and Drying Irrigation in Arkansas Rice Production. Agron. J. 2015, 107, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Faiz-ul Islam, S.; Sander, B.O.; Quilty, J.R.; de Neergaard, A.; van Groenigen, J.W.; Jensen, L.S. Mitigation of greenhouse gas emissions and reduced irrigation water use in rice production through water-saving irrigation scheduling, reduced tillage and fertiliser application strategies. Sci. Total Environ. 2020, 739, 140215. [Google Scholar] [CrossRef] [PubMed]
- Fertitta-Roberts, C.; Oikawa, P.Y.; Jenerette, G.D. Evaluating the GHG mitigation-potential of alternate wetting and drying in rice through life cycle assessment. Sci. Total Environ. 2019, 653, 1343–1353. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Jiang, P.; Shan, S.; Gao, W.; Ma, G.; Zou, Y.; Uphoff, N.; Yuan, L. Higher yields of hybrid rice do not depend on nitrogen fertilization under moderate to high soil fertility conditions. Rice 2017, 10, 43. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.T.; Peng, J.; Wang, J.; Fu, P.H.; Hou, Y.; Zhang, C.D.; Fahad, S.; Peng, S.B.; Cui, K.H.; Nie, L.X.; et al. Crop management based on multi-split topdressing enhances grain yield and nitrogen use efficiency in irrigated rice in China. Field Crops Res. 2015, 184, 50–57. [Google Scholar] [CrossRef]
- Nkebiwe, P.M.; Weinmann, M.; Bar-Tal, A.; Muller, T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crops Res. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Huang, M.; Liu, Y.; Cao, F.B.; Chen, J.N. Residual Effects of Nitrogen Application for Six Consecutive Crop Seasons on Soil Nitrogen Mineralization and the Succeeding Crop Yield in a Rice Paddy. J. Soil Sci. Plant. Nutr. 2022, 22, 1052–1059. [Google Scholar] [CrossRef]
- Huang, M.; Shan, S.; Chen, J.; Cao, F.; Jiang, L.; Zou, Y. Comparison on Grain Quality Between Super Hybrid and Popular Inbred Rice Cultivars under Two Nitrogen Management Practices. In Advances in International Rice Research; IntechOpen: London, UK, 2017. [Google Scholar]
- Jiang, W.J.; Huang, W.C.; Liang, H.; Wu, Y.L.; Shi, X.R.; Fu, J.; Wang, Q.H.; Hu, K.L.; Chen, L.; Liu, H.B.; et al. Is rice field a nitrogen source or sink for the environment? Environ. Pollut. 2021, 283, 117122. [Google Scholar] [CrossRef]
- Li, X.F.; Dou, F.G.; Guo, J.Q.; Velarca, M.V.; Chen, K.; Gentry, T.; McNear, D. Soil microbial community responses to nitrogen application in organic and conventional rice production. Soil Sci. Soc. Am. J. 2020, 84, 1885–1897. [Google Scholar] [CrossRef]
- Hameed, F.; Xu, J.Z.; Rahim, S.F.; Wei, Q.; Khalil, A.U.R.; Liao, Q. Optimizing Nitrogen Options for Improving Nitrogen Use Efficiency of Rice under Different Water Regimes. Agronomy 2019, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Santiago-Arenas, R.; Dhakal, S.; Ullah, H.; Agarwal, A.; Datta, A. Seeding, nitrogen and irrigation management optimize rice water and nitrogen use efficiency. Nutr. Cycl. Agroecosyst. 2021, 120, 325–341. [Google Scholar] [CrossRef]
- Xu, G.W.; Jiang, M.M.; Lu, D.K.; Wang, H.Z.; Chen, M.C. Nitrogen forms affect the root characteristic, photosynthesis, grain yield, and nitrogen use efficiency of rice under different irrigation regimes. Crops Sci. 2020, 60, 2594–2610. [Google Scholar] [CrossRef]
- Sang, H.H.; Jiao, X.Y.; Wang, S.F.; Guo, W.H.; Salahou, M.K.; Liu, K.H. Effects of micro-nano bubble aerated irrigation and nitrogen fertilizer level on tillering, nitrogen uptake and utilization of early-season rice. Plant Soil Environ. 2018, 64, 297–302. [Google Scholar]
- Xu, G.W.; Zhao, X.H.; Jiang, M.M.; Lu, D.K.; Chen, M.C. Nitrogen forms and irrigation regimes interact to affect rice yield by regulating the source and sink characteristics. Agron. J. 2021, 113, 4022–4036. [Google Scholar] [CrossRef]
- Zheng, E.N.; Yang, H.; Zhang, Z.X. Influence of different nitrogen forms application on rice photosynthesis: Fluorescence with water-saving irrigation in black soil region of Songnen Plain, Northeast China. Paddy Water Environ. 2018, 16, 795–804. [Google Scholar]
- Ye, Y.S.; Liang, X.Q.; Chen, Y.X.; Liu, J.; Gu, J.T.; Guo, R.; Li, L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Res. 2013, 144, 212–224. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Zhang, W.Y.; Beebout, S.S.; Zhang, H.; Liu, L.J.; Yang, J.C.; Zhang, J.H. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res. 2016, 193, 54–69. [Google Scholar] [CrossRef]
- Balabandian, A.; Ashouri, M.; Doroudian, H.R.; Sadeghi, S.M.; Rezaei, M. Effect of Irrigation Interval and Biological and Nitrogen Fertilizers on Grain Yield and Yield Components of Rice Cultivars. Rom. Agric. Res. 2021, 38, 193–201. [Google Scholar]
- Pan, B.H.; Zheng, Y.; Shen, R.Q.; Ye, T.; Zhao, W.Z.; Dong, J.; Ma, H.Q.; Yuan, W.P. High Resolution Distribution Dataset of Double-Season Paddy Rice in China. Remote Sens. 2021, 13, 4609. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S.; Tan, F.Y.; Guo, A.H.; Huo, Z.G. Potential agro-thermal resources dynamic for double-season rice cultivation across China under greenhouse gas emission scenarios. Theor. Appl. Climatol. 2021, 144, 67–75. [Google Scholar] [CrossRef]
- Liu, S.W.; Zhang, L.; Jiang, J.Y.; Chen, N.N.; Yang, X.M.; Xiong, Z.Q.; Zou, J.W. Methane and nitrous oxide emissions from rice seedling nurseries under flooding and moist irrigation regimes in Southeast China. Sci. Total Environ. 2012, 426, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.M.; Wang, L.; Chen, F.X.; Ren, X.N.; Tan, Z.X. Soil carbon sequestration efficiency under continuous paddy rice cultivation and excessive nitrogen fertilization in South China. Soil Till. Res. 2021, 213, 105108. [Google Scholar] [CrossRef]
- Meng, T.Y.; Zhang, X.B.; Ge, J.L.; Chen, X.; Zhu, G.L.; Chen, Y.L.; Zhou, G.S.; Wei, H.H.; Dai, Q.G. Improvements in grain yield and nutrient utilization efficiency of japonica inbred rice released since the 1980s in eastern China. Field Crops Res. 2022, 277, 108427. [Google Scholar] [CrossRef]
- Yang, G.D.; Hu, Z.Y.; Hao, Z.Y.; Li, J.H.; Wang, Q.; Meng, X.X.; Zhou, Y.F.; Huang, R.D. Effect of Nitrogen on the Metabolic Enzyme Activity of Leaves, Protein Content and Yield of Sorghum (Sorghum Bicolor [L.] Moench) in Northern China. Appl. Ecol. Environ. Res. 2021, 19, 3467–3479. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Yu, J.X.; Xu, Y.J.; Wang, Z.Q.; Liu, L.J.; Zhang, H.; Gu, J.F.; Zhang, J.H.; Yang, J.C. Alternate wetting and drying irrigation combined with the proportion of polymer-coated urea and conventional urea rates increases grain yield, water and nitrogen use efficiencies in rice. Field Crops Res. 2021, 268, 108165. [Google Scholar] [CrossRef]
- Cabangon, R.J.; Castillo, E.G.; Tuong, T.P. Chlorophyll meter-based nitrogen management of rice grown under alternate wetting and drying irrigation. Field Crops Res. 2011, 121, 136–146. [Google Scholar] [CrossRef]
- Yao, F.X.; Huang, J.L.; Cui, K.H.; Nie, L.X.; Xiang, J.; Liu, X.J.; Wu, W.; Chen, M.X.; Peng, S.B. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crops Res. 2012, 126, 16–22. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Gaihre, Y.K.; Biswas, J.C.; Jahan, M.S.; Singh, U.; Adhikary, S.K.; Satter, M.A.; Saleque, M.A. Different nitrogen rates and methods of application for dry season rice cultivation with alternate wetting and drying irrigation: Fate of nitrogen and grain yield. Agric. Water Manag. 2018, 196, 144–153. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.L.; Shi, Y.; Yu, Z.W. Optimized split nitrogen fertilizer increase photosynthesis, grain yield, nitrogen use efficiency and water use efficiency under water-saving irrigation. Sci. Rep. 2020, 10, 20310. [Google Scholar] [CrossRef]
- Zhong, C.; Cao, X.C.; Bai, Z.G.; Zhang, J.H.; Zhu, L.F.; Huang, J.L.; Jin, Q.Y. Nitrogen metabolism correlates with the acclimation of photosynthesis to short-term water stress in rice (Oryza sativa L.). Plant. Physiol. Biochem. 2018, 125, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.W.; Lu, D.K.; Wang, H.Z.; Li, Y.J. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric. Water Manag. 2018, 203, 385–394. [Google Scholar] [CrossRef]
- Bhuiyan, M.K.A.; Bhuiya, S.U.; Saleque, M.A.; Khatun, A. Nitrogen application in direct wet-seeded rice under alternate wetting and drying irrigation condition: Effects on grain yield, dry matter production, nitrogen uptake and nitrogen use efficiencies. J. Plant. Nutr. 2017, 40, 2477–2493. [Google Scholar] [CrossRef]
- Sun, Y.J.; Yan, F.J.; Sun, Y.Y.; Xu, H.; Guo, X.; Yang, Z.Y.; Yin, Y.Z.; Guo, C.C.; Ma, J. Effects of different water regimes and nitrogen application strategies on grain filling characteristics and grain yield in hybrid rice. Arch. Agron. Soil Sci. 2018, 64, 1152–1171. [Google Scholar] [CrossRef]
- Sun, Y.J.; Ma, J.; Sun, Y.Y.; Xu, H.; Yang, Z.Y.; Liu, S.J.; Jia, X.W.; Zheng, H.Z. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China. Field Crops Res. 2012, 127, 85–98. [Google Scholar] [CrossRef]
- Aziz, O.; Bin, L.; Imtiaz, M.; Chen, J.; He, Y.; Lin, L.; Ali, S.; Riaz, M.; Mehmood, S.; Rizwan, M.; et al. Irrigation methods affect water productivity, grain yield, and growth responses of rice at different levels of nitrogen. J. Soil Water Conserv. 2018, 73, 329–336. [Google Scholar] [CrossRef]
- He, H.B.; Yang, R.; Jia, B.; Chen, L.; Fan, H.; Cui, J.; Yang, D.; Li, M.L.; Ma, F.Y. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation. Sci. World J. 2014, 2014, 839658. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Wallace, H.M.; Xu, C.Y.; Xu, Z.H.; Farrar, M.B.; Joseph, S.; Van Zwieten, L.; Bai, S.H. Short-term effects of organo-mineral biochar and organic fertilisers on nitrogen cycling, plant photosynthesis, and nitrogen use efficiency. J. Soil Sediment. 2017, 17, 2763–2774. [Google Scholar] [CrossRef]
- Vu, D.H.; Stuerz, S.; Asch, F. Nutrient uptake and assimilation under varying day and night root zone temperatures in lowland rice. J. Plant Nutr. Soil Sci. 2020, 183, 602–614. [Google Scholar] [CrossRef]
- Jafarikouhini, N.; Kazemeini, S.A.; Sinclair, T.R. Sweet corn nitrogen accumulation, leaf photosynthesis rate, and radiation use efficiency under variable nitrogen fertility and irrigation. Field Crops Res. 2020, 257, 107913. [Google Scholar] [CrossRef]
- Pan, J.F.; Liu, Y.Z.; Zhong, X.H.; Lampayan, R.M.; Singleton, G.R.; Huang, N.R.; Liang, K.M.; Peng, B.L.; Tian, K. Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China. Agric. Water Manag. 2017, 184, 191–200. [Google Scholar] [CrossRef]
- Goyal, V.; Singh, A.K.; Mishra, A.K.; Parihar, S.S. Integrated effect of water regimes and nitrogen levels on productivity of transplanted rice (Oryza sativa) and wheat (Triticum aestivum) under rice-wheat cropping system: Field and simulation study. Indian J. Agric. Sci. 2018, 88, 54–62. [Google Scholar]
- Wang, Z.Q.; Gu, D.J.; Beebout, S.S.; Zhang, H.; Liu, L.J.; Yang, J.C.; Zhang, J.H. Effect of irrigation regime on grain yield, water productivity, and methane emissions in dry direct-seeded rice grown in raised beds with wheat straw incorporation. Crops J. 2018, 6, 495–508. [Google Scholar] [CrossRef]
Year | Season | Min T | Max T | RAD | ADR |
---|---|---|---|---|---|
Transplanting to Panicle initiation | |||||
2018 | Early | 18.2 | 26.7 | 14.2 | 5.9 |
Late | 27.3 | 36.1 | 21.0 | 1.2 | |
2019 | Early | 16.6 | 26.3 | 15.0 | 6.8 |
Late | 24.6 | 31.9 | 14.0 | 1.4 | |
Panicle initiation to Flowering | |||||
2018 | Early | 22.7 | 30.3 | 16.3 | 8.6 |
Late | 23.1 | 31.3 | 15.6 | 0.8 | |
2019 | Early | 22.8 | 30.7 | 15.3 | 10.2 |
Late | 23.1 | 31.7 | 13.6 | 0.5 | |
Flowering to Maturity | |||||
2018 | Early | 25.7 | 32.5 | 15.2 | 9.2 |
Late | 14.1 | 25.8 | 11.6 | 2.2 | |
2019 | Early | 24.1 | 30.3 | 12.6 | 11.0 |
Late | 17.2 | 27.2 | 12.4 | 3.6 | |
Transplanting to Maturity | |||||
2018 | Early | 22.2 | 29.8 | 15.2 | 7.9 |
Late | 21.5 | 31.1 | 16.0 | 1.4 | |
2019 | Early | 21.1 | 29.1 | 14.3 | 9.3 |
Late | 21.6 | 30.3 | 13.3 | 1.8 |
Treatment | ESR | LSR |
---|---|---|
D1 | 0 | 0 |
D2 | 112.5 | 135 |
D3 | 150.0 | 180 |
D4 | 187.5 | 225 |
Year a | Season | Treatment | Panicles Number (×104 ha−1) | Spikelets per Panicle | Spikelet Filling (%) | 1000-Grain Weight (g) |
---|---|---|---|---|---|---|
2018 | Early | G1D1 | 231.3 bcd | 117.8 de | 78.5 a | 27.1 a |
G1D2 | 242.8 abc | 125.0 c | 81.3 a | 27.7 a | ||
G1D3 | 258.6 a | 134.2 b | 78.8 a | 27.9 a | ||
G1D4 | 251.1 ab | 140.1 a | 77.7 a | 28.0 a | ||
G2D1 | 221.4 d | 105.3 f | 79.0 a | 27.1 a | ||
G2D2 | 229.8 cd | 112.5 e | 80.6 a | 27.6 a | ||
G2D3 | 243.4 abc | 121.8 cd | 78.4 a | 27.4 a | ||
G2D4 | 248.8 abc | 125.4 c | 77.2 a | 27.9 a | ||
Late | G1D1 | 241.1 bcd | 165.3 f | 77.8 ab | 26.2 bc | |
G1D2 | 251.7 abc | 174.2 de | 78.3 a | 26.9 ab | ||
G1D3 | 269.3 a | 187.9 a | 76.8 ab | 26.3 bc | ||
G1D4 | 260.2 ab | 180.7 bc | 75.9 ab | 26.0 bc | ||
G2D1 | 215.8 e | 163.8 f | 76.3 ab | 26.0 bc | ||
G2D2 | 224.9 de | 171.3 e | 74.6 ab | 26.6 abc | ||
G2D3 | 244.2 bcd | 182.9 ab | 74.3 ab | 27.7 a | ||
G2D4 | 233.2 cde | 177.0 cd | 74.0 b | 25.3 c | ||
2019 | Early | G1D1 | 257.4 de | 110.1 c | 77.4 a | 27.9 a |
G1D2 | 223.2 e | 114.3 bc | 79.4 a | 28.2 a | ||
G1D3 | 281.1 ab | 123.3 a | 76.6 a | 28.0 a | ||
G1D4 | 289.3 a | 119.0 ab | 76.2 a | 28.0 a | ||
G2D1 | 249.7 de | 108.8 c | 76.4 a | 27.8 a | ||
G2D2 | 261.0 cd | 111.9 c | 77.7 a | 28.1 a | ||
G2D3 | 271.2 abc | 118.9 ab | 80.3 a | 28.0 a | ||
G2D4 | 283.2 ab | 113.0 bc | 76.3 a | 28.2 a | ||
Late | G1D1 | 279.2 de | 124.6 ef | 81.0 a | 26.4 ab | |
G1D2 | 320.1 b | 132.2 cd | 82.8 a | 26.7 ab | ||
G1D3 | 330.6 a | 141.9 b | 82.0 a | 27.1 ab | ||
G1D4 | 314.8 ab | 148.1 a | 81.5 a | 26.0 ab | ||
G2D1 | 267.4 e | 121.2 f | 80.2 a | 26.4 ab | ||
G2D2 | 309.0 bc | 127.8 de | 80.2 a | 25.9 b | ||
G2D3 | 305.2 bc | 136.2 c | 79.1 a | 26.8 ab | ||
G2D4 | 292.5 d | 142.8 ab | 78.9 a | 26.4 ab |
Year | Season | Treatment | NDE | NGE | NHI | AE | NRE | PFP | PE |
---|---|---|---|---|---|---|---|---|---|
(kg kg−1) | (kg kg−1) | (%) | (kg kg−1) | % | (kg kg−1) | (kg kg−1) | |||
2018 | early | G1D1 | 161.5 a | 96.6 a | 77.3 a | ||||
G1D2 | 120.2 c | 77.3 b | 70.2 b | 13.9 a | 41.6 c | 60.8 a | 31.59 a | ||
G1D3 | 108.7 d | 65.2 d | 64.5 c | 9.5 b | 51.7 a | 49.3 b | 24.33 b | ||
G1D4 | 90.1 e | 58.9 e | 56.7 de | 7.6 c | 43.7 c | 41.2 c | 19.18 c | ||
G2D1 | 151.5 b | 93.2 a | 76.4 a | ||||||
G2D2 | 117.6 c | 72.5 c | 69.9 b | 13.3 a | 46.5 b | 59.5 a | 30.62 a | ||
G2D3 | 106.7 d | 65.1 d | 61.8 cd | 10.1 b | 49.1 a | 50.4 b | 25.16 b | ||
G2D4 | 91.3 e | 54.8 f | 55.1 e | 6.8 c | 44.5 bc | 38.8 c | 18.95 c | ||
late | G1D1 | 142.6 a | 86.7 a | 75.6 a | |||||
G1D2 | 110.3 b | 73.5 b | 68.3 b | 19.8 a | 42.3 c | 68.3 a | 35.22 a | ||
G1D3 | 100.9 c | 63.3 c | 61.7 c | 15.3 b | 49.7 a | 52.9 b | 31.14 b | ||
G1D4 | 96.6 d | 56.9 d | 53.3 d | 12.9 c | 42.9 | 42.4 c | 26.15 c | ||
G2D1 | 139.6 a | 84.2 a | 75.3 a | ||||||
G2D2 | 116.4 b | 73.2 b | 66.6 b | 20.6 a | 44.3 bc | 67.6 a | 36.19 a | ||
G2D3 | 103.2 c | 66.6 c | 60.7 c | 16.8 b | 46.5 b | 52.8 b | 30.19 b | ||
G2D4 | 94.8 d | 57.4 d | 53.2 d | 13.3 c | 41 c | 40.1 c | 27.71 c | ||
2019 | early | G1D1 | 163.9 a | 90.4 a | 80.1 a | ||||
G1D2 | 110.3 c | 78.1 c | 72.6 b | 18.3 a | 39.2 bc | 60.8 a | 40.66 a | ||
G1D3 | 97.1 d | 62.2 e | 66.3 c | 14.9 b | 45.6 a | 49.3 b | 38.59 a | ||
G1D4 | 82.3 e | 56.9 f | 60.1 d | 12.7 c | 41.3 b | 41.2 c | 30.63 c | ||
G2D1 | 148.4 b | 85.6 b | 80.8 a | ||||||
G2D2 | 107.6 c | 70.5 d | 73.5 b | 19.5 a | 36.7 c | 59.5 a | 35.68 b | ||
G2D3 | 96.7 c | 58.3 f | 65.8 c | 15.3 b | 47.1 a | 50.4 b | 33.27 b | ||
G2D4 | 79.6 e | 57.8 f | 59.5 d | 12.9 c | 41.5 b | 38.8 c | 28.71 c | ||
late | G1D1 | 138.7 a | 84.9 a | 79.6 a | |||||
G1D2 | 102.3 b | 70.7 b | 73.3 b | 19.8 a | 35.6 c | 68.3 a | 45.33 a | ||
G1D3 | 96.5 c | 58.8 c | 63.7 d | 15.3 b | 42.3 a | 52.9 b | 40.19 b | ||
G1D4 | 78.4 d | 52.1 d | 55.3 e | 12.9 c | 38.7 b | 42.4 c | 34.26 c | ||
G2D1 | 135.1 a | 83.6 a | 76.3 ab | ||||||
G2D2 | 105.2 b | 68.3 b | 68.9 c | 20.6 a | 40.3 ab | 67.6 a | 46.27 a | ||
G2D3 | 93.3 c | 56.2 c | 63.1 d | 16.8 b | 42.5 a | 52.8 b | 39.67 b | ||
G2D4 | 78.8 d | 54.5 d | 56.4 e | 13.3 c | 40.2 ab | 40.1 c | 35.16 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Zhang, T.; Zhang, C.; He, X.; Shi, A.; Tan, W.; Yi, Z.; Wang, X. Optimizing Irrigation and Nitrogen Management to Increase Yield and Nitrogen Recovery Efficiency in Double-Cropping Rice. Agronomy 2022, 12, 1190. https://doi.org/10.3390/agronomy12051190
Zhu H, Zhang T, Zhang C, He X, Shi A, Tan W, Yi Z, Wang X. Optimizing Irrigation and Nitrogen Management to Increase Yield and Nitrogen Recovery Efficiency in Double-Cropping Rice. Agronomy. 2022; 12(5):1190. https://doi.org/10.3390/agronomy12051190
Chicago/Turabian StyleZhu, Haijun, Ting Zhang, Chunlan Zhang, Xiaoe He, Ailong Shi, Weijian Tan, Zhenxie Yi, and Xuehua Wang. 2022. "Optimizing Irrigation and Nitrogen Management to Increase Yield and Nitrogen Recovery Efficiency in Double-Cropping Rice" Agronomy 12, no. 5: 1190. https://doi.org/10.3390/agronomy12051190
APA StyleZhu, H., Zhang, T., Zhang, C., He, X., Shi, A., Tan, W., Yi, Z., & Wang, X. (2022). Optimizing Irrigation and Nitrogen Management to Increase Yield and Nitrogen Recovery Efficiency in Double-Cropping Rice. Agronomy, 12(5), 1190. https://doi.org/10.3390/agronomy12051190