Economic Viability of Ultrasonic Sensor Actuated Nozzle Height Control in Center Pivot Irrigation Systems
Abstract
:1. Introduction
2. Material and Method
2.1. Cost Estimates
2.2. DESA Components, and Low-Cost Sensor Test
2.3. Calculation of Water Losses in the Center Pivot Irrigation System
3. Results and Discussion
3.1. Irrigation Water Value Lost by Wind Drift Additionally, Savings with DESA
3.2. Climate Change
3.3. Economic Viability of DESA
3.4. Calculation of the Installation, Maintenance, and Operation Including DESA System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- New, L.; Fipps, G. Center Pivot Irrigatio. In Proceedings of Texas Farmer Collect; Texas A&M University: College Station, TX, USA, 2000; Available online: https://hdl.handle.net/1969.1/86877 (accessed on 1 March 2022).
- Ortiz, J.N.; Tarjuelo, J.M.; de Juan, J.A. Characterisation of evaporation and drift losses with centre pivots. Agric. Water Manag. 2019, 96, 1541–1546. [Google Scholar] [CrossRef]
- Tarjuelo, J.M.; Montero, J.; Honrubia, F.T.; Ortiz, J.J.; Ortega, J.F. Analysis of uniformity of sprinkle irrigation in a semi-arid area. Agric. Water Manag. 1999, 40, 315–331. [Google Scholar] [CrossRef]
- Saraswati, M.; Kuantama, E.; Mardjoko, P. Design and Construction of Water Level Measurement System Accessible Through SMS. In Proceedings of the 2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation, Valetta, Malta, 14–16 November 2012; pp. 48–53. Available online: https://ieeexplore.ieee.org/abstract/document/6410127 (accessed on 1 March 2022).
- Mensah, E. Economic Evaluation of Silage Crops under Reduced Irrigation in the Texas High Plains. Ph.D. Thesis, West Texas A&M University, College Station, TX, USA, 20 June 2016. [Google Scholar]
- Roy, V.; Noureen, S.S.; Bayne, S.; Bilbao, A.; Giesselmann, M. A Renewable Solution Approach for Center Pivot Irrigation System. In Proceedings of the 2018 IEEE Rural Electric Power Conference (REPC), Memphis, TN, USA, 6–8 May 2018; pp. 61–66. [Google Scholar]
- Lamm, F.R.; Porter, D.O.; Bordovsky, J.P.; Evett, S.R.; O’Shaughnessy, S.A.; Stone, K.C.; Kranz, W.L.; Rogers, D.H.; Colaizzi, P.D. Targeted, Precision Irrigation for Moving Platforms: Selected Papers from a Center Pivot Technology Transfer Effort. Trans. ASABE 2019, 62, 1409–1415. [Google Scholar] [CrossRef]
- Hall, K.D.; Lacewell, R.D.; Lyle, W.M. Yield and Economic Implications of Alternative Irrigation Distribution Systems: Texas High Plains; Report 88-1; Tree Species; Texas Agric. Experiment Station Tech.: Lubbock, TX, USA, 1988. [Google Scholar]
- Bosch, D.J.; Powell, N.L.; Wright, F.S. An economic comparison of subsurface microirrigation with center pivot sprinkler irrigation. J. Prod. Agric. 1992, 5, 431–437. [Google Scholar] [CrossRef]
- Styles, S.; Bernasconi, P. Demonstration of Emerging Irrigation Technologies; Agreem. B56936; California Department of Water Resources: Sacramento, CA, USA, 1994. [Google Scholar]
- Johnson, G.C.; Rochester, E.W.; Hatch, L.U.; Curtis, L.M.; Yoo, K.H. Analysis of center pivot irrigation systems operating in a humid-area environment. Trans. ASAE 1987, 30, 1720–1725. [Google Scholar] [CrossRef]
- Dhuyvetter, K.C.; Lamm, F.R.; Rogers, D.H. Subsurface Drip Irrigation for Field Corn: An Economic Analysis; Kansas State University Cooperative Extension Service: 1994. Available online: https://agris.fao.org/agris-search/search.do?recordID=US9605677 (accessed on 1 March 2022).
- Dhuyvetter, K.C.; Lamm, F.R.; Rogers, D.H. An Economic Comparison of Subsurface Drip Irrigation (SDI) and Center Pivot Irrigation for Field Corn. In Proceedings of the Central Plains Irrigation Short Course, Garden City, KS, USA, 7–8 February 1995; pp. 7–8. [Google Scholar]
- Al-agele, H.A.; Nackley, L.; Higgins, C.W. A pathway for sustainable agriculture. Sustainability 2021, 13, 4328. [Google Scholar] [CrossRef]
- AL-agele, H.A.; Nackley, L.; Higgins, C.W. Testing Novel New Drip Emitter with Variable Diameters for a Variable Rate Drip Irrigation. Agriculture 2021, 11, 87. [Google Scholar] [CrossRef]
- Barbosa, B.D.S.; Colombo, A.; de Souza, J.G.N.; Baptista, V.B.d.; Araújo, A. Energy efficiency of a center pivot irrigation system. Eng. Agríc. 2018, 38, 284–292. [Google Scholar] [CrossRef] [Green Version]
- AL-agele, H.A.; Higgins, C.W. A Variable Rate Drip Irrigation Prototype for Precision Irrigation. Precis. Agric. 2021, 11, 2493. [Google Scholar] [CrossRef]
- AL-agele, H.A.; Proctor, K.; Murthy, G.; Higgins, C.W. A Case Study of Tomato (Solanum lycopersicon var. Legend) Production and Water Productivity in Agrivoltaic Systems. Sustainability 2021, 13, 2850. [Google Scholar] [CrossRef]
- Al-agele, H.A.; Mahapatra, D.M.; Prestwich, C.; Higgins, C.W. Dynamic Adjustment of Center Pivot Nozzle Height: An Evaluation of Center Pivot Water Application Pattern and the Coefficient of Uniformity. Appl. Eng. Agric. 2020, 36, 647–656. [Google Scholar] [CrossRef]
- Al-agele, H.A.; Jashami, H.; Higgins, C.W. Evaluation of novel ultrasonic sensor actuated nozzle in center pivot irrigation systems. Agric. Water Manag. 2022, 262, 107436. [Google Scholar] [CrossRef]
- Arduino, S.A. Arduino; Arduino LLC: Somerville, MA, USA, 2015; p. 372. [Google Scholar]
- Wichelns, D. Agricultural Water Pricing: United States. 2010, pp. 1–27. Available online: https://www.oecd-ilibrary.org/agriculture-and-food/sustainable-management-of-water-resources-in-agriculture/agricultural-water-pricing_9789264083578-16-en (accessed on 1 March 2022).
- Gollehon, N.; Quinby, W. Irrigation in the American West: Area, water and economic activity. Int. J. Water Resour. Dev. 2000, 16, 187–195. [Google Scholar] [CrossRef]
- O’brien, D.M.; Lamm, F.R.; Stone, L.R.; Rogers, D.H. Corn yields and profitability for low–capacity irrigation systems. Appl. Eng. Agric. 2021, 17, 315. [Google Scholar]
- Molle, B.; Tomas, S.; Hendawi, M.; Granier, J. Evaporation and wind drift losses during sprinkler irrigation influenced by droplet size distribution. Irrig. Drain. 2012, 61, 240–250. [Google Scholar] [CrossRef]
- D’Odorico, P.; Chiarelli, D.D.; Rosa, L.; Bini, A.; Zilberman, D.; Rulli, M.C. The global value of water in agriculture. Proc. Natl. Acad. Sci. USA 2020, 117, 21985–21993. [Google Scholar] [CrossRef] [PubMed]
- Pérez, L.; Sánchez-Román, R.M.; Frizzone, J.A. Optimal moment to change pressure regulator and sprayer kit on center pivot irrigation machines: Application to a study case. IRRIGA 2011, 16, 450–458. [Google Scholar]
- Valipour, M.; Bateni, S.M.; Gholami Sefidkouhi, M.A.; Raeini-Sarjaz, M.; Singh, V.P. Complexity of forces driving trend of reference evapotranspiration and signals of climate change. Atmosphere 2020, 11, 1081. [Google Scholar] [CrossRef]
- Gurara, M.A.; Jilo, N.B.; Tolche, A.D. Impact of climate change on potential evapotranspiration and crop water requirement in Upper Wabe Bridge watershed, Wabe Shebele River Basin, Ethiopia. J. Afr. Earth Sci. 2021, 180, 104223. [Google Scholar] [CrossRef]
Item Unit Quantity Cost/Unit Total per ha | Quantity | Cost/Unit (USD) | Total Cost | USD per ha |
---|---|---|---|---|
Power service | 1 | 2000 | 2000 | 60.61 |
8 inch PVC pipe and fittings (feet) | 1000 | 7.20 | 7200 | 218.18 |
Sprinkler System (5 towers = 50 m * 5 = 250 m) | 1 | 52,543 | 52,543 | 1592.21 |
Pump motor, 40 HP | 1 | 15,000 | 15,000 | 454.55 |
Bore well | 1 | 27,500 | 27,500 | 833.33 |
Total investment cost | USD 104,243 | USD 3158.88 |
Areas (ha) | Water Loses by Wind Draft (m3) | ||
---|---|---|---|
0.5 | 0.6 | 0.7 | |
1 | 12 | 14.4 | 16.8 |
33 | 396 | 475.2 | 554.4 |
per season for 33 ha | 9900 | 11,880 | 13,860 |
Areas (ha) | Fraction of Wind Drift Reduced by DESA (m3) | |||||
---|---|---|---|---|---|---|
0.15 | 0.25 | 0.35 | 0.45 | 0.55 | 0.65 | |
1 | 1.8 | 3.6 | 5.88 | 5.4 | 7.92 | 10.92 |
33 | 59.4 | 118.8 | 194.04 | 178.2 | 261.36 | 360.36 |
per season per 33 ha | 1485 | 2970 | 4851 | 4455 | 6534 | 9009 |
Area (ha) | Irrigation Water Price Lost by Wind Draft | ||
---|---|---|---|
USD 0.01 | |||
0.5 | 0.6 | 0.7 | |
1 | 0.06 | 0.07 | 0.08 |
33 | 1.98 | 2.38 | 2.77 |
per season for 33 ha | 49.50 | 59.40 | 69.30 |
USD 0.01 | |||
1 | 0.12 | 0.14 | 0.17 |
33 | 3.96 | 4.75 | 5.54 |
per season for 33 ha | 99.00 | 118.80 | 138.60 |
USD 0.02 | |||
1 | 0.24 | 0.29 | 0.34 |
33 | 7.92 | 9.50 | 11.09 |
per season for 33 ha | 198.00 | 237.60 | 277.20 |
USD 0.10 | |||
1 | 1.20 | 1.44 | 1.68 |
33 | 39.60 | 47.52 | 55.44 |
per season for 33 ha | 990.00 | 1188.00 | 1386.00 |
Area (ha) | Irrigation Water Price Saving by Using a DESA Design | ||
---|---|---|---|
USD 0.005 | |||
0.15 | 0.25 | 0.35 | |
1 | 0.01 | 0.02 | 0.03 |
33 | 0.30 | 0.59 | 0.97 |
per season for 33 ha | 7.43 | 14.85 | 24.26 |
USD 0.01 | |||
1 | 0.02 | 0.04 | 0.06 |
33 | 0.59 | 1.19 | 1.94 |
per season for 33 ha | 14.85 | 29.70 | 48.51 |
USD 0.02 | |||
1 | 0.04 | 0.07 | 0.12 |
33 | 1.19 | 2.38 | 3.88 |
per season for 33 ha | 29.70 | 59.40 | 97.02 |
USD 0.10 | |||
1 | 0.18 | 0.36 | 0.59 |
33 | 5.94 | 11.88 | 19.40 |
per season for 33 ha | 148.50 | 297.00 | 485.10 |
USD 0.005 | |||
0.45 | 0.55 | 0.65 | |
1 | 0.03 | 0.04 | 0.05 |
33 | 0.89 | 1.31 | 1.80 |
per season for 33 ha | 22.275 | 32.67 | 45.045 |
USD 0.01 | |||
1 | 0.05 | 0.08 | 0.11 |
33 | 1.78 | 2.61 | 3.60 |
per season for 33 ha | 44.55 | 65.34 | 90.09 |
USD 0.02 | |||
1 | 0.11 | 0.16 | 0.22 |
33 | 3.56 | 5.23 | 7.21 |
per season for 33 ha | 89.1 | 130.68 | 180.18 |
USD 0.1 | |||
1 | 0.54 | 0.79 | 1.09 |
33 | 17.82 | 26.14 | 36.04 |
per season for 33 ha | 445.5 | 653.4 | 900.9 |
Area (ha) | Irrigation Water Price Lost by Wind Drift | ||
---|---|---|---|
USD 0.15 | |||
1 | 1.80 | 2.16 | 2.52 |
33 | 59.40 | 71.28 | 83.16 |
per season for 33 ha | 1485.00 | 1782.00 | 2079.00 |
USD 0.20 | |||
1 | 2.40 | 2.88 | 3.36 |
33 | 79.20 | 95.04 | 110.88 |
per season for 33 ha | 1980.00 | 2376.00 | 2772.00 |
USD 0.25 | |||
1 | 3.00 | 3.60 | 4.20 |
33 | 99.00 | 118.80 | 138.60 |
per season for 33 ha | 2475.00 | 2970.00 | 3465.00 |
Area (ha) | Irrigation Water Price Saving by a Using DESA Design | ||
---|---|---|---|
USD 0.15 | |||
0.15 | 0.25 | 0.35 | |
1 | 0.27 | 0.54 | 0.88 |
33 | 8.91 | 17.82 | 29.11 |
per season for 33 ha | 222.75 | 445.50 | 727.65 |
USD 0.20 | |||
1 | 0.36 | 0.72 | 1.18 |
33 | 11.88 | 23.76 | 38.81 |
per season for 33 ha | 297.00 | 594.00 | 970.20 |
USD 0.25 | |||
1 | 0.45 | 0.90 | 1.47 |
33 | 14.85 | 29.70 | 48.51 |
per season for 33 ha | 371.25 | 742.50 | 1212.75 |
USD 0.15 | |||
0.45 | 0.55 | 0.65 | |
1 | 0.81 | 1.188 | 1.638 |
33 | 26.73 | 39.204 | 54.054 |
per season for 33 ha | 668.25 | 980.1 | 1351.35 |
USD 0.20 | |||
1 | 1.08 | 1.584 | 2.184 |
33 | 35.64 | 52.272 | 72.072 |
per season for 33 ha | 891 | 1306.8 | 1801.8 |
USD 0.25 | |||
1 | 1.35 | 1.98 | 2.73 |
33 | 44.55 | 65.34 | 90.09 |
per season for 33 ha | 1113.75 | 1633.5 | 2252.25 |
Season | The Total Irrigation Water Price Saving Per Season with a DESA Design | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
USD 0.01 | USD 0.01 | USD 0.02 | USD 0.10 | |||||||||
0.15 | 0.25 | 0.35 | 0.15 | 0.25 | 0.35 | 0.15 | 0.25 | 0.35 | 0.15 | 0.25 | 0.35 | |
1 | 30 | 59 | 97 | 59 | 119 | 194 | 119 | 238 | 388 | 594 | 1188 | 1940 |
2 | 59 | 119 | 194 | 119 | 238 | 388 | 238 | 475 | 776 | 1188 | 2376 | 3881 |
3 | 89 | 178 | 291 | 178 | 356 | 582 | 356 | 713 | 1164 | 1782 | 3564 | 5821 |
4 | 119 | 238 | 388 | 238 | 475 | 776 | 475 | 950 | 1552 | 2376 | 4752 | 7762 |
USD 0.005 | USD 0.01 | USD 0.02 | USD 0.1 | |||||||||
0.45 | 0.55 | 0.65 | 0.45 | 0.55 | 0.65 | 0.45 | 0.55 | 0.65 | 0.45 | 0.55 | 0.65 | |
1 | 89 | 131 | 180 | 178 | 261 | 360 | 356 | 523 | 721 | 1782 | 2614 | 3604 |
2 | 178 | 261 | 360 | 356 | 523 | 721 | 713 | 1045 | 1441 | 3564 | 5227 | 7207 |
3 | 267 | 392 | 541 | 535 | 784 | 1081 | 1069 | 1568 | 2162 | 5346 | 7841 | 10,811 |
4 | 356 | 523 | 721 | 713 | 1045 | 1441 | 1426 | 2091 | 2883 | 7128 | 10,454 | 14,414 |
Season | The Total Irrigation Water Price Saving Per Season with a DESA Design | ||||||||
---|---|---|---|---|---|---|---|---|---|
USD 0.15 | USD 0.20 | $0.25 | |||||||
0.15 | 0.25 | 0.35 | 0.15 | 0.25 | 0.35 | 0.15 | 0.25 | 0.35 | |
1 | 891 | 1782 | 2911 | 1188 | 2376 | 3881 | 1485 | 2970 | 4851 |
2 | 1782 | 3564 | 5821 | 2376 | 4752 | 7762 | 2970 | 5940 | 9702 |
3 | 2673 | 5346 | 8732 | 3564 | 7128 | 11,642 | 4455 | 8910 | 14,553 |
4 | 3564 | 7128 | 11,642 | 4752 | 9504 | 15,523 | 5940 | 11,880 | 19,404 |
USD 0.15 | USD 0.20 | USD 0.25 | |||||||
0.45 | 0.55 | 0.65 | 0.45 | 0.55 | 0.65 | 0.45 | 0.55 | 0.65 | |
1 | 2673 | 3920 | 5405 | 3564 | 5227 | 7207 | 4455 | 6534 | 9009 |
2 | 5346 | 7841 | 10,811 | 7128 | 10,454 | 14,414 | 8910 | 13,068 | 18,018 |
3 | 8019 | 11,761 | 16,216 | 10,692 | 15,682 | 21,622 | 13,365 | 19,602 | 27,027 |
4 | 10,692 | 15,682 | 21,622 | 14,256 | 20,909 | 28,829 | 17,820 | 26,136 | 36,036 |
I. ANNUAL FIXED COSTS | ||||||||
Particulars | Investment Cost | Salvage Value | Useful Life Years | Depreciation (1) | Interest(2) (8.5%) | Tax and Insurance (3) (1.4%) | Total (1 + 2 + 3) DITI | Total Per ha |
Power service | USD 2000 | USD 0.00 | 10 | USD 200.00 | USD 85.00 | USD 14.00 | USD 299 | USD 9.06 |
8 inch PVC pipe and fittings | USD 7200 | USD 0.00 | 20 | USD 360.00 | USD 306.00 | USD 50.40 | USD 716 | USD 21.70 |
DESA module * | USD 3599 | USD 0.00 | 20 | USD 500.00 | USD 425.00 | USD 140.00 | USD 1065 | USD 32.27 |
Sprinkler System (5 towers) | USD 52,543 | USD 0.00 | 20 | USD 2627.15 | USD 2233.08 | USD 367.80 | USD 5228 | USD 158.42 |
Pump motor, 40 HP | USD 15,000 | USD 0.00 | 20 | USD 750.00 | USD 637.50 | USD 105.00 | USD 1493 | USD 45.24 |
Well | USD 27,500 | USD 0.00 | 20 | USD 1375.00 | USD 1168.75 | USD 192.50 | USD 2736 | USD 82.91 |
TOTAL FIXED COST | USD 107,842 | USD 5812.15 | USD 4855.33 | USD 869.70 | USD 11,537 | USD 350 | ||
II. ANNUAL OPERATING COST | ||||||||
Fuel | No. of Hours/ Irrigation Event | Rated Horse Power | Fuel Use (KWH/HP/hr) | Fuel Cost (USD/KWH) | # Irrigation Events | Total | Total Per ha | |
Electricity | 65.5 | 40 | 0.746 | USD 0.10 | 10 | USD 977 | USD 29.61 | |
Repairs and Maintenance | Initial Cost | Cost Factor | ||||||
Power service | USD 2000 | 0.00% | USD 0 | USD 0.00 | ||||
DESA module * | USD 3599 | 2.00% | USD 72 | USD 2.18 USD 2.47 | ||||
8 inch PVC pipe and fittings | USD 7200 | 0.00% | USD 0 | USD 0.00 | ||||
Sprinkler System (5 towers) | USD 52,543 | 0.50% | USD 263 | USD 7.97 | ||||
Pump motor, 40 HP | USD 15,000 | 2.00% | USD 300 | USD 9.09 | ||||
Well | USD 27,500 | 0.00% | USD 0 | USD 0.00 | ||||
Labor—Irrigation | Hours | Cost/hour | ||||||
Labor | 2 | USD 10.00 | USD 20 | USD 0.61 | ||||
TOTAL OPERATING COST | USD 1632 | USD 49.45 | ||||||
III. TOTAL ANNUAL COST | Total | per ha | ||||||
TOTAL FIXED AND OPERATING COST | USD 13,168.98 | USD 399.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-agele, H.A.; Mahapatra, D.M.; Nackley, L.; Higgins, C. Economic Viability of Ultrasonic Sensor Actuated Nozzle Height Control in Center Pivot Irrigation Systems. Agronomy 2022, 12, 1077. https://doi.org/10.3390/agronomy12051077
AL-agele HA, Mahapatra DM, Nackley L, Higgins C. Economic Viability of Ultrasonic Sensor Actuated Nozzle Height Control in Center Pivot Irrigation Systems. Agronomy. 2022; 12(5):1077. https://doi.org/10.3390/agronomy12051077
Chicago/Turabian StyleAL-agele, Hadi A., Durga Madhab Mahapatra, Lloyd Nackley, and Chad Higgins. 2022. "Economic Viability of Ultrasonic Sensor Actuated Nozzle Height Control in Center Pivot Irrigation Systems" Agronomy 12, no. 5: 1077. https://doi.org/10.3390/agronomy12051077