Effect of Catch Crops and Tillage Systems on the Content of Selected Nutrients in Spring Wheat Grain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
- Conventional plough tillage—after harvest of the spring wheat crop (first decade of August), wheat straw was removed from the field, subsoil ploughing and harrowing were carried out, and subsequently, the catch crops were sown (second decade of August); after the harvest of the catch crops (October), their aboveground biomass was shredded and incorporated into the soil during autumn ploughing (25 cm deep); in the spring, a tillage unit was used, mineral NPK fertilization was applied, and spring wheat was sown by seed drill (second decade of April).
- Conservation tillage—after harvest of the spring wheat crop (first decade of August), wheat straw was removed from the field, the field was tilled with a rigid tine cultivator (grubber), the catch crops were sown (second decade of August); after the harvest of the catch crops (October), their aboveground biomass was shredded and left in the field as mulch (until March 15); in the spring, the mulch was incorporated into the soil using a disk harrow (12 cm deep), the field was smoothed with a spike tooth harrow, mineral NPK fertilization was applied, and spring wheat was sown with a seed drill with disks (second decade of April). Detailed information on the agricultural practices used in the experiment is presented in Table 1.
2.3. Weather Conditions at the Study Site
2.4. Chemical Analyses of Soil
2.5. Chemical Analyses of Spring Wheat Grain
- c—phenolic content (mg) in the sample read from the calibration curve.
- V—extract volume taken for analysis (mL).
- c—phenolic content (mg) in the sample read from the calibration curve.
- V—extract volume taken for analysis (mL).
- m—weighed portion of material (g).
- where:
- an—amino acid content in the protein tested, ans—amino acid content in the reference protein, n—the number of essential amino acids.
2.6. Statistical Analyses
3. Results
3.1. Soil Conditions
3.2. Total Dietary Fiber Content and O-Dihydroxyphenol Content
3.3. Amino Acid Content
3.4. Content of Some Macro- and Micronutrients
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duthie, G.G.; Duthie, S.J.; Kyle, J.A.M. Plant polyphenols in cancer and heart disease: Implications as nutritional antioxidants. Nutr. Res. Rev. 2000, 13, 79–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, M.S.; Zhao, F.J.; Fairweather-Tait, S.J.; Poulton, P.R.; Dunham, S.J.; McGrath, S.P. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 2008, 22, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Ciołek, A.; Makarska, E.; Wesołowski, M.; Cierpiała, R. Content of selected nutrients in wheat, barley and oat grain from organic and conventional farming. J. Elem. 2012, 2, 181–189. [Google Scholar] [CrossRef]
- Shahidi, F.; Chandrasekara, A. Millet grain phenolics and their role in disease risk reduction and health promotion: A review. J. Funct. Foods 2013, 5, 570–581. [Google Scholar] [CrossRef]
- Hajšlová, J.; Schulzová, V.; Slanina, P.; Janné, K.; Hellenäs, K.E.; Andersson, C.H. Quality of organically and conventionally grown potatoes: Four-year study of micronutrients, metals, secondary metabolites, enzymic browning and organoleptic properties. Food Addit. Contam. 2008, 22, 514–534. [Google Scholar] [CrossRef]
- Brocic, Z.; Milosevic, D.; Macak, M.; Tyr, S. Influence of an organic and conventional systems on chemical composition of potato tubers. Cereal Res. Commun. 2008, 36, 679–682. Available online: http://aspace.agrif.bg.ac.rs/handle/123456789/1636 (accessed on 11 April 2022).
- Erenstein, O.; Poole, N.; Donovan, J. Role of staple cereals in human nutrition: Separating the wheat from the chaff in the infodemics age. Trends Food Sci. Technol. 2022, 119, 508–513. [Google Scholar] [CrossRef]
- Harasim, E.; Antonkiewicz, J.; Kwiatkowski, C.A. The Effects of Catch Crops and Tillage Systems on Selected Physical Properties and Enzymatic Activity of Loess Soil in a Spring Wheat Monoculture. Agronomy 2020, 10, 334. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, C.A.; Harasim, E.; Staniak, M. Effect of catch crops and tillage systems on some chemical properties of loess soil in a short-term monoculture of spring wheat. J. Elem. 2020, 25, 35–43. [Google Scholar] [CrossRef]
- Mäder, P.; Hahn, D.; Dubois, D.; Gunst, L.; Alföldi, T.; Bergmann, H.; Oehme, M.; Amadó, R.; Schneider, H.; Graf, U.; et al. Wheat quality in organic and conventional farming: Results of 21 year field experiment. J. Sci. Food Agric. 2007, 87, 1826–1835. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, S.X.; Malhi, S. Effects of fertilization and other agronomic measures on nutritional quality of crops. J. Sci. Food Agric. 2008, 88, 7–23. [Google Scholar] [CrossRef]
- Bavec, M.; Narodoslawsky, M.; Bavec, F.; Turinek, M. Ecological impact of wheat and spelt production under industrial and alternative farming systems. Renew. Agric. Food Syst. 2011, 27, 242–250. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Harasim, E.; Pawłowski, L. Can catch crops be an important factor in carbon dioxide sequestration? Int. J. Conserv. Sci. 2020, 11, 1005–1018. Available online: http://ijcs.ro/public/IJCS-20-74_Kwiatkowski.pdf (accessed on 11 April 2022).
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Derpsh, R.; Friedrich, T. Global overview of conservation agriculture adoption. In Proceedings of the 4th World Congress on Conservation Agriculture, New Delhi, India, 4–7 February 2009; pp. 429–438. Available online: https://www.researchgate.net/publication/238743255_Global_Overview_of_Conservation_Agriculture_Adoption (accessed on 11 April 2022).
- Kassam, A.; Friedrich, T.; Shaxson, F.; Pretty, J. The spread of conservation agriculture: Justification, sustainability and uptake. Int. J. Agric. Sustain. 2009, 7, 292–320. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsh, R. Conservation agriculture in the 21st century: A paradigm of sustainable agriculture. In Proceedings of the Invited Paper at the European Congress on Conservation Agriculture, Madrid, Spain, 1–5 October 2010; pp. 19–68. [Google Scholar]
- Gajda, A.M.; Przewłoka, B. Soil biological activity as affected by tillage intensity. Int. Agrophys. 2012, 26, 15–23. [Google Scholar] [CrossRef]
- Van den Putte, A.; Govers, G.; Diels, J.; Langhans, C.; Clymans, W.; Vanuytrecht, E.; Merckx, R.; Raes, D. Soil functioning and conservation tillage in the Belgian Loam Belt. Soil Tillage Res. 2012, 103, 1–11. [Google Scholar] [CrossRef]
- Sapkota, T.B. Conservation Tillage Impact on Soil Aggregation, Organic Matter Turnover and Biodiversity. In Organic Fertilisation, Soil Quality and Human Health; Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2012; Volume 9. [Google Scholar] [CrossRef]
- Troccoli, A.; Maddaluno, C.; Mucci, M.; Russo, M.; Rinaldi, M. Is it appropriate to support the farmers foradopting conservation agriculture? Economic and environmental impact assessment. Ital. J. Agron. 2015, 10, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Bac, S.; Koźmiński, C.; Rojek, M. Agrometeorology; PWN: Warszawa, Poland, 1993; pp. 32–33. [Google Scholar]
- Moore, J.C.; de Vries, W.; Lipp, M.; Grifiths, J.C.; Abernethy, D.R. Total Protein Methods and Their Potential Utility to Reduce the Risk of Food Protein Adulteration. Compr. Rev. Food Sci. Food Saf. 2010, 9, 330–351. [Google Scholar] [CrossRef]
- Houba, V.J.G.; Temminghoff, E.J.M.; Gaikhorst, G.A.; Van Vark, W. Soil Analysis Proceduresusing 0.01 M Calcium Chlorideas Extraction Reagent. Commun. Soil Sci. Plant Anal. 2000, 31, 1299–1396. [Google Scholar] [CrossRef]
- Stevenson, F.J. Extraction, fraction and general chemical composition of soil organic matter. In Humus Chemistry, Genesis, Composition, Reactions; Stevenson, F.J., Ed.; John Wiley and Sons: New York, NY, USA, 1982. [Google Scholar]
- Alef, K.; Nannipieri, P. Enzyme activities. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: London, UK; New York, NY, USA; San Francisco, CA, USA, 1995. [Google Scholar]
- Tabatabai, M.A.; Bremner, J.M. Assay of urease activity in soils. Soil Biol. Biochem. 1972, 4, 479–487. [Google Scholar] [CrossRef]
- Csapó, J.; Albert, C.; Lóki, K.; Csapó-Kiss, Z. Separation and determination of the amino acids by ion exchange column chromatography applying postcolumn derivatization. Acta Univ. Sapientiae Aliment. 2008, 1, 5–29. Available online: https://core.ac.uk/download/pdf/233610052.pdf (accessed on 11 April 2022).
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. Available online: http://www.ajevonline.org/content/16/3/144.full.pdf+html (accessed on 11 April 2022).
- Oser, B.L. Method for integrating essential amino acid content in the nutritional evaluation of protein. J. Am. Diet. Assoc. 1951, 27, 396. [Google Scholar] [CrossRef]
- Demirbas, A. β-Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem. 2005, 90, 773–777. [Google Scholar] [CrossRef]
- Škrbić, B.; Onija, A. Multivariate analyses of microelement contents in wheat cultivated in Serbia (2002). Food Control 2007, 18, 338–345. [Google Scholar] [CrossRef]
- Kraska, P.; Andruszczak, S.; Kwiecińska-Poppe, E.; Pałys, E. Effect of chemical crop protection on the content of some elements in grain of spelt wheat (Triticum aestivum ssp. spelta). J. Elem. 2013, 1, 79–90. [Google Scholar] [CrossRef]
- Jablonskyte-Rasce, D.; Maiksteniene, S.; Mankeviciene, A. Evaluation of productivity and quality of common wheat (Triticum aestivum L.) and spelt (Triticum spelta L.) in relation to nutrition conditions. Zemdirb. Agric. 2013, 100, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Gawęda, D. Yield and yield structure of spring barley (Hodeum vulgare L.) grown in monoculture after different stubble crops. Acta Agrobot. 2011, 64, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, C.A.; Harasim, E.; Haliniarz, M.; Gawęda, D.; Misztal-Majewska, B.; Chojnacka, S. Chemical composition of stubble crop biomass depending on a crop plant species and tillage system. J. Elem. 2019, 24, 1371–1381. [Google Scholar] [CrossRef]
- Pawłowski, L.; Pawłowska, M.; Kwiatkowski, C.A.; Harasim, E. The Role of Agriculture in Climate Change Mitigation—A Polish Example. Energies 2021, 14, 3657. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D.; Różniak, M.; Radziemska, M.; Gałęzewski, L. Zonal Tillage as Innovative Element of the Technology of Growing Winter Wheat: A Field Experiment under Low Rainfall Conditions. Agriculture 2020, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Niewiadomska, A.; Majchrzak, L.; Borowiak, K.; Wolna-Maruwka, A.; Waraczewska, Z.; Budka, A.; Gaj, R. The Influence of Tillage and Cover Cropping on Soil Microbial Parameters and Spring Wheat Physiology. Agronomy 2020, 10, 200. [Google Scholar] [CrossRef] [Green Version]
- Gajda, A.M.; Czyż, E.A.; Klimkowicz-Pawlas, A. Effects of Different Tillage Intensities on Physicochemical and Microbial Properties of a Eutric Fluvisol Soil. Agronomy 2021, 11, 1497. [Google Scholar] [CrossRef]
- Woźniak, A.; Gos, M. Yield and quality of spring wheat and soil properties as affected by tillage system. Plant Soil Environ. 2014, 60, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Lòpez-Fando, C.; Dorado, J.; Pardo, M.T. Effects of zone-tillage in rotation with no-tillage on soil propertiesand crop yields in a semi-arid soil from central Spain. Soil Tillage Res. 2007, 95, 266–276. [Google Scholar] [CrossRef]
- Rühlemann, L.; Schmidtke, K. Evaluation of monocropped and intercropped grain legumes for cover cropping in no-tillage and reduced tillage organic agriculture. Eur. J. Agron. 2015, 65, 83–94. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.C.; Shi, C.; Chen, J.; Zhou, Q.; Xiong, Y. Soil respiration in a triple intercropping system under conservation tillage. Plant Soil Environ. 2015, 61, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Plaza-Bonilla, D.; Nolot, J.M.; Raffaillac, D.; Justes, E. Innovative cropping systems to reduce N inputs andmaintain wheat yields by inserting grain legumes and cover crops in southwestern France. Eur. J. Agron. 2017, 82, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Pagnani, G.; Galieni, A.; D’Egidio, S.; Visioli, G.; Stagnari, F.; Pisante, M. Effect of Soil Tillage and Crop Sequence on Grain Yield and Quality of Durum Wheat in Mediterranean Areas. Agronomy 2019, 9, 488. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.A.; Tedone, L.; Verdini, L.; Cazzato, E.; De Mastro, G. Wheat Response to No-Tillage and NitrogenFertilization in a Long-Term Faba Bean-Based Rotation. Agronomy 2019, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, C.A.; Harasim, E.; Feledyn-Szewczyk, B.; Antonkiewicz, J. Enzymatic Activity of Loess Soil in Organic and Conventional Farming Systems. Agriculture 2020, 10, 135. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, C.A.; Harasim, E. Chemical Properties of Soil in Four-Field Crop Rotations under Organic and Conventional Farming Systems. Agronomy 2020, 10, 1045. [Google Scholar] [CrossRef]
- Piecyk, M.; Kulka, D.; Worobiej, E. The characteristic and nutritional value of spelt grain and its products. Bromatatologia Chem. Toksykol. 2009, 42, 247–251. [Google Scholar]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef] [PubMed]
- Lovegrove, A.; Pellny, T.K.; Hassall, K.L.; Plummer, A.; Wood, A.; Bellisai, A.; Przewieslik-Allen, A.; Burridge, A.J.; Ward, J.L.; Shewry, P.R. Historical changes in the contents and compositions of fibre components and polar metabolites in white wheat flour. Sci. Rep. 2020, 10, 5920. [Google Scholar] [CrossRef] [Green Version]
- Gebruers, K.; Dornez, E.; Boros, D.; Fraś, A.; Dynkowska, W.; Bedő, Z.; Rakszegi, M.; Delcour, J.A.; Courtin, C.M. Variation in the Content of Dietary Fiber and Components Thereof in Wheats in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9740–9749. [Google Scholar] [CrossRef]
- Wu, C.; Chen, F.; Wang, X.; Wu, Y.; Dong, M.; He, G.; Galyean, R.D.; He, L.; Huang, G. Identification of antioxidant phenolic compounds in feverfew (Tanacetum parthenium) by HPLC-ESI-MS/MS and NMR. Phytochem. Anal. 2007, 18, 401–410. [Google Scholar] [CrossRef]
- Stokłosa, A.; Hura, T.; Stupnicka-Rodzynkiewicz, E.; Dąbkowska, T.; Lepiarczyk, A. The influence of plant mulches on the content of phenolic compounds in soil and primary weed infestation of maize. Acta Agrobot. 2008, 61, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, A.; Rachoń, L.; Stępniowska, A. Spring wheat grain quality in relation to a cropping system. J. Elem. 2018, 23, 1295–1306. [Google Scholar] [CrossRef]
- Buczek, J.; Migut, D.; Jańczak-Pieniążek, M. Effect of Soil Tillage Practice on Photosynthesis, Grain Yield and Quality of Hybrid Winter Wheat. Agriculture 2021, 11, 479. [Google Scholar] [CrossRef]
- Djouadi, K.; Mekliche, A.; Dahmani, S.; Ladjiar, N.I.; Abid, Y.; Silarbi, Z.; Hamadache, A.; Pisante, M. Durum Wheat Yield and Grain Quality in Early Transition from Conventional to Conservation Tillage in Semi-Arid Mediterranean Conditions. Agriculture 2021, 11, 711. [Google Scholar] [CrossRef]
- Baublis, A.J.; Lu, C.; Clydesdale, F.M.; Decker, E.A. Potential of wheat-based cereals as a source of dietary antioxidants. J. Am. Coll. Nutr. 2000, 19, 308S–311S. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, H.; Michalska, A. Occurrence of antioxidants in cereal grain (wheat, barley, rye, and oats) and in buckwheat grain. In Antioxidants in Food—Health, Technological, Molecular and Analytical Aspects; Grajek, W., Ed.; WNT: Warsaw, Poland, 2007; pp. 187–201. [Google Scholar]
- Chandrasekara, A.; Naczk, M.; Shahidi, F. Effect of processing on the antioxidant activity of millet grains. Food Chem. 2012, 133, 1–9. [Google Scholar] [CrossRef]
- Rybka, K.; Sitarska, J.; Raczyńska-Bojanowska, K. Ferulic acid in rye and wheat grain and grain dietary fibre. Cereal Chem. 1993, 70, 55–59. [Google Scholar]
- Lempereur, I.; Rouaur, X.; Abecassis, J. Arabinoxylan and ferulic acid variation in durum wheat (Triticum durum) and distribution in milling fractions. J. Cereal Sci. 1997, 25, 103–107. [Google Scholar] [CrossRef]
- Piironen, V.; Toivo, J.; Lampi, A.M. Plant sterols in cereals and cereal products. Cereal Chem. 2002, 79, 148–154. [Google Scholar] [CrossRef]
- Lacko-Bartošová, M. Nutritional quality and antioxidant capacity of Triticum spelta varieties. J. Ecol. Health 2010, 14, 290–294. [Google Scholar]
- Żuchowski, J.; Jończyk, K.; Pecio, Ł.; Oleszek, W. Phenolic acid concentrations in organically and conventionally cultivated spring and winter wheat. J. Sci. Food Agric. 2011, 91, 1089–1095. [Google Scholar] [CrossRef]
- Gawęda, D.; Haliniarz, M. Grain Yield and Quality of Winter Wheat Depending on Previous Crop and Tillage System. Agriculture 2021, 11, 133. [Google Scholar] [CrossRef]
- Graziano, S.; Marmiroli, N.; Visioli, G.; Gullì, M. Proteins and Metabolites as Indicators of Flours Quality and Nutritional Properties of Two Durum Wheat Varieties Grown in Different Italian Locations. Foods. 2020, 9, 315. [Google Scholar] [CrossRef] [Green Version]
- Kalinova, J.; Moudry, J. Content and Quality of Protein in Proso Millet (Panicum miliaceum L.) Varieties. Plant Foods Hum. Nutr. 2006, 61, 43–47. [Google Scholar] [CrossRef]
- Jiang, X.; Tian, J.; Hao, Z.; Zhang, W. Protein Content and Amino Acid Composition in Grains of Wheat-Related Species. Agric. Sci. China 2008, 7, 272–279. [Google Scholar] [CrossRef]
- Shoup, F.K.; Pomeranz, Y.; Deyoe, C.W. Amino Acid Composition of Wheat Varieties and Flours Varying Widely in Bread-Making Potentialities. J. Food Sci. 2006, 31, 94–101. [Google Scholar] [CrossRef]
- Siddiqi, R.A.; Singh, T.P.; Rani, M.; Sogi, D.S.; Bhat, M.A. Diversity in Grain, Flour, Amino Acid Composition, Protein Profiling, and Proportion of Total Flour Proteins of Different Wheat Cultivars of North India. Front. Nutr. 2020, 7, 141. [Google Scholar] [CrossRef]
- Matuz, J.; Bartók, T.; Mórocz-Salamon, K.; Bóna, L. Structure and potential allergenic character of cereal proteins: I. Protein content and amino acid composition. Cereal Res. Commun. 2000, 28, 263–270. [Google Scholar] [CrossRef]
- Andruszczak, S. Reaction of winter spelt cultivars to reduced tillage system and chemical plant protection. Zemdirb. Agric. 2017, 104, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Ma, G.; Wang, C.; Lu, H.; Li, S.; Xie, Y.; Ma, D.; Zhu, Y.; Guo, T. Effect of irrigation and nitrogen application on grain amino acid composition and protein quality in winter wheat. PLoS ONE 2017, 12, e0178494. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Haliniarz, M.; Tomczyńska-Mleko, M.; Mleko, S.; Kawecka-Radomska, M. The content of dietary fiber, amino acids, dihydroxyphenols and some macro- and micronutrients in grain of conventionally and organically grown common wheat, spelt wheat and proso millet. Agric. Food Sci. 2015, 24, 195–205. [Google Scholar] [CrossRef]
- Ballester-Sánchez, J.; Millán-Linares, M.C.; Fernández-Espinar, M.T.; Haros, C.M. Development of Healthy, Nutritious Bakery Products by Incorporation of Quinoa. Foods 2019, 8, 379. [Google Scholar] [CrossRef] [Green Version]
- Qazi, W.M.; Ballance, S.; Kousoulaki, K.; Uhlen, A.K.; Kleinegris, D.M.M.; Skjånes, K.; Rieder, A. Protein Enrichment of Wheat Bread with Microalgae: Microchloropsis gaditana, Tetraselmis chui and Chlorella vulgaris. Foods 2021, 10, 3078. [Google Scholar] [CrossRef]
- Ekholm, P.; Reinivuo, H.; Mattila, P.; Pakkala, H.; Koponen, J.; Happonen, A.; Hellström, J.; Ovaskainen, M.L. Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland. J. Food Compos. Anal. 2007, 20, 487–495. [Google Scholar] [CrossRef]
- Suchowilska, E.; Wiwart, M.; Kandler, W.; Krska, R. A comparison of macro- and microelement concentrationsin the whole grain of four Triticum species. Plant Soil Environ. 2012, 58, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.J.; Su, Y.H.; Dunham, S.J.; Rakszegi, M.; Bedo, Z.; McGrath, S.P.; Shewry, P.R. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. Cereal Sci. 2009, 49, 290–295. [Google Scholar] [CrossRef]
- Woźniak, A.; Makarski, B. Content of minerals, total protein and wet gluten in grain of spring wheat depending on cropping systems. J. Elem. 2013, 18, 297–305. [Google Scholar] [CrossRef]
- Kraska, P. Content of some elements in grain of spring wheat cv. Zebra depending on soil tillage systems and catch crop. J. Elem. 2011, 16, 407–419. [Google Scholar] [CrossRef]
- Weber, R. Soil properties as affected by the duration of using zero–tillage systems. Postêpy Nauk Rolniczych 2010, 1, 63–75. Available online: https://instytucja.pan.pl/images/stories/pliki/wydzialy/wydzial_v/dwum_pnr/2010/PNR_1-10.pdf (accessed on 11 April 2022). (In Polish, abstract in English).
- Wiśniowska-Kielian, B.; Klima, K. Comparison of microelement contents in the winter wheat grain from organic and conventional farms. J. Res. Appl. Agric. Eng. 2007, 52, 100–103. [Google Scholar]
- Galantini, J.A.; Landriscini, M.R.; Iglesias, J.O.; Miglierinac, A.M.; Rosell, R.A. The effects of crop rotation and fertilization on wheat productivity in the Pampean semiaridregion of Argentina: 2. Nutrient balance, yield and grain quality. Soil Tillage Res. 2000, 53, 137–144. [Google Scholar] [CrossRef]
- Sager, M.; Hösch, J. Macro-and micro element levels in cereals grown in lower Austria. J. Cent. Eur. Agric. 2005, 6, 461–472. Available online: https://hrcak.srce.hr/file/26750 (accessed on 11 April 2022).
- Rachoń, L.; Szumiło, G.; Brodowska, M.; Woźniak, A. Nutritional value and mineral composition of grain of selected wheat species depending on the intensity of a production technology. J. Elem. 2015, 20, 705–715. [Google Scholar] [CrossRef] [Green Version]
- Dogan, Y. Investigation of micro and macro element content of wheat varieties grown commonly in Turkey. Oxid. Commun. 2015, 38, 1265–1274. [Google Scholar]
- Jordan-Meille, L.; Holland, J.L.; McGrath, S.P.; Glendining, M.J.; Thomas, C.L.; Haefele, S.M. The grain mineral composition of barley, oat and wheat on soils with pH and soil phosphorus gradients. Eur. J. Agron. 2021, 126, 126281. [Google Scholar] [CrossRef]
Date of Performance | Plough Tillage | Conservation Tillage |
---|---|---|
First decade of August | Harvest of spring wheat (stubble left in the field; straw removed from the field) | Harvest of spring wheat (stubble left in the field; straw removed from the field) |
Second decade of August | Field preparation for sowing catch crops (subsoil ploughing, harrowing), sowing of catch crops | Field preparation for sowing catch crops (no-tillage)—rigid tine cultivator (grubber), harrowing |
Second decade of October | Catch crop biomass is cut and then shredded. Incorporation of biomass into the soil (ploughing-in of biomass) | Catch crop biomass is cut and then shredded. Biomass is left on the field surface (mulch) |
Third decade of October –first decade of April | Catch crop biomass mixed with the soil decomposes into organic matter | Catch crop biomass left in the field (mulch) slowly decomposes |
Second decade of March –second decade of April | Field preparation for sowing spring wheat (tillage practices as in plough tillage) | Field preparation for sowing spring wheat (tillage practices as in conservation tillage) |
Specification | Tillage System | |||||
---|---|---|---|---|---|---|
Plough Tillage | Conservation Tillage | |||||
2016 | 2017 | 2018 | 2016 | 2017 | 2018 | |
White mustard | 4.22 | 4.07 | 4.01 | 4.15 | 4.01 | 3.98 |
Lacy phacelia | 4.11 | 3.95 | 3.87 | 4.03 | 3.90 | 3.81 |
Faba bean + spring vetch | 2.61 | 2.49 | 2.42 | 2.58 | 2.40 | 2.37 |
Specification | Months | Annual Sum | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | ||
Sum monthly in 2016 | 41.9 | 147.1 | 11.6 | 29.0 | 116.2 | 58.4 | 84.8 | 53.3 | 137.5 | 11.1 | 54.6 | 32.5 | 778.0 |
Sum monthly in 2017 | 35.3 | 30.7 | 18.9 | 25.4 | 60.2 | 53.1 | 70.6 | 60.5 | 80.4 | 25.7 | 38.8 | 31.6 | 531.2 |
Sum monthly in 2018 | 38.1 | 29.2 | 16.5 | 34.8 | 60.9 | 59.2 | 65.0 | 74.2 | 60.3 | 20.2 | 44.7 | 50.3 | 553.4 |
Long-term average (1966–2006) | 31.5 | 26.9 | 29.6 | 44.5 | 79.5 | 80.2 | 79.4 | 68.6 | 77.6 | 48.7 | 39.8 | 42.4 | 648.7 |
Specification | Months | Annual Average | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | ||
Mean monthly in 2016 | −8.3 | −2.0 | 2.2 | 8.8 | 13.9 | 17.5 | 20.8 | 20/0 | 11.9 | 4.8 | 6.3 | −5.4 | 7.5 |
Mean monthly in 2017 | −7.9 | −2.8 | 2.1 | 7.7 | 13.5 | 17.1 | 19.2 | 18.6 | 10.8 | 4.8 | 4.7 | −5.7 | 6.8 |
Mean monthly in 2018 | −4.1 | −1.8 | 2.4 | 8.9 | 14.5 | 17.8 | 20.5 | 20.2 | 12.1 | 5.6 | 6.4 | −4.6 | 8.1 |
Long-term average (1966–2006) | −3.2 | −2.1 | 2.2 | 7.6 | 13.4 | 16.3 | 17.9 | 17.4 | 13.0 | 8.1 | 2.6 | −1.0 | 7.7 |
Month | Year | ||
---|---|---|---|
2016 | 2017 | 2018 | |
IV | 1.35 | 1.07 | 1.21 |
V | 1.17 | 1.82 | 1.74 |
VI | 1.31 | 0.63 | 0.33 |
VII | 0.80 | 0.29 | 0.58 |
VIII | 0.95 | 0.76 | 0.81 |
Specification | Tillage System | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Conservation Tillage | Plough Tillage | |||||||||||
Total N ***% | P mg kg−1 | K mg kg−1 | Mg mg kg−1 | C-org. % | % Humus | Total N % | P mg kg−1 | K mg kg−1 | Mg mg kg−1 | C-org. % | % Humus | |
A ** | 0.05 a * (±0.01) | 157 a (±1.6) | 278 a (±2.4) | 62 a (±0.4) | 0.70 a (±0.08) | 1.45 a (±0.05) | 0.05 a (±0.01) | 153 a (±1.2) | 276 a (±2.1) | 56 a (±0.3) | 0.69 a (±0.07) | 1.41 a (±0.05) |
B | 0.10 b (±0.02) | 169 b (±1.9) | 279 a (±2.1) | 69 b (±0.7) | 0.89 b (±0.07) | 1.59 b (±0.07) | 0.09 b (±0.02) | 160 b (±1.4) | 271 a (±2.0) | 63 b (±0.4) | 0.87 b (±0.06) | 1.55 b (±0.06) |
C | 0.08 b (±0.01) | 167 b (±2.0) | 279 a (±2.0) | 67 b (±0.4) | 0.83 b (±0.06) | 1.54 b (±0.08) | 0.07 b (±0.01) | 161 b (±1.3) | 275 a (±1.9) | 60 b (±0.2) | 0.80 b (±0.04) | 1.50 b (±0.07) |
D | 0.09 b (±0.01) | 171 b (±1.8) | 276 a (±2.5) | 68 b (±0.3) | 0.86 b (±0.07) | 1.62 b (±0.09) | 0.07 b (±0.01) | 165 b (±1.3) | 270 a (±1.9) | 61 b (±0.3) | 0.82 b (±0.05) | 1.57 b (±0.08) |
HSD (p ≥ 0.05) | 0.025 | 9.4 | n.s. **** | 4.6 | 0.106 | 0.087 | 0.024 | 6.7 | n.s. | 3.9 | 0.105 | 0.085 |
Specification | Dehydrogenase Activity (μmol TPF kg−1·h−1) | Urease Activity (mmol NH4+ kg−1·h−1) |
---|---|---|
Tillage System | ||
PT * | 4.9 (±0.09) a *** | 4.1 (±0.05) a |
CT | 6.1 (±0.11) b | 5.5 (±0.08) b |
HSD (p ≥ 0.05) | 0.81 | 0.62 |
Catch Crop | ||
A ** | 4.4 (±0.07) a | 4.0 (±0.05) a |
B | 6.8 (±0.12) b | 5.9 (±0.09) b |
C | 6.2 (±0.06) b | 5.2 (±0.05) b |
D | 6.4 (±0.09) b | 5.5 (±0.06) b |
HSD (p ≥ 0.05) | 0.90 | 0.83 |
Year | ||
2016 | 6.0 (±0.09) a | 5.1 (±0.07) a |
2017 | 4.8 (±0.05) b | 3.8 (±0.03) b |
2018 | 5.1 (±0.06) b | 4.1 (±0.04) b |
HSD (p ≥ 0.05) | 0.73 | 0.91 |
Specification | Total Dietary Fiber Content (%) | O-Dihydroxyphenol Content (g 100·g−1) |
---|---|---|
Tillage System | ||
PT * | 16.35 (±2.33) a *** | 0.149 (±0.013) a |
CT | 16.69 (±2.55) a | 0.161 (±0.039) b |
HSD (p ≥ 0.05) | n.s. **** | 0.011 |
Catch Crop | ||
A ** | 15.58 (±2.11) a | 0.137 (±0.009) a |
B | 17.38 (±2.89) b | 0.169 (±0.042) c |
C | 17.04 (±2.45) b | 0.157 (±0.030) b |
D | 17.19 (±2.53) b | 0.152 (±0.025) b |
HSD (p ≥ 0.05) | 1.433 | 0.0124 |
Year | ||
2016 | 17.43 (±2.97) a | 0.164 (±0.040) a |
2017 | 15.66 (±2.17) b | 0.142 (±0.011) b |
2018 | 15.51 (±2.09) b | 0.136 (±0.008) b |
HSD (p ≥ 0.05) | 1.413 | 0.0152 |
Specification | Catch Crop | Tillage System | Year | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A ** | B | C | D | HSD (p ≥ 0.05) | PT * | CT | HSD (p ≥ 0.05) | 2016 | 2017 | 2018 | HSD (p ≥ 0.05) | |
Asp (asparagine) | 5.63 a (±0.05) | 6.41 b (±0.06) | 6.22 b (±0.04) | 6.27 b (±0.04) | 0.506 | 6.25 a (±0.03) | 6.28 a (±0.04) | n.s. | 6.39 a (±0.03) | 6.24 a (±0.06) | 6.19 a (±0.06) | n.s. |
Thr (threonine) | 3.26 a (±0.03) | 3.59 b (±0.02) | 3.55 b (±0.03) | 3.51 b (±0.04) | 0.234 | 3.61 a (±0.05) | 3.49 a (±0.06) | n.s. | 3.75 a (±0.03) | 3.54 a (±0.05) | 3.48 a (±0.06) | n.s. |
Ser (serine) | 5.45 a (±0.06) | 6.39 b (±0.09) | 6.24 b (±0.08) | 6.19 b (±0.05) | 0.586 | 6.11 a (±0.07) | 6.15 a (±0.07) | n.s. | 6.24 a (±0.08) | 6.12 a (±0.07) | 6.05 a (±0.09) | n.s. |
Glu (glutamine) | 38.1 a (±1.1) | 41.3 b (±1.0) | 39.3 a (±0.9) | 40.8 b (±1.2) | 1.28 | 37.1 a (±1.3) | 39.9 a (±1.4) | n.s. | 39.0 a (±0.8) | 37.3 b (±1.2) | 36.9 b (±1.0) | 0.89 |
Pro (proline) | 12.5 a (±0.6) | 15.5 b (±0.7) | 14.8 b (±0.5) | 14,4 b (±0.6) | 1.33 | 13.3 a (±0.7) | 14.9 b (±0.6) | 1.24 | 14.1 a (±0.5) | 13.8 a (±0.8) | 13.6 a (±0.8) | n.s. |
Gly (glysine) | 4.13 a (±0.07) | 5.28 b (±0.08) | 5.11 b (±0.09) | 5.17 b (±0.08) | 0.916 | 4.14 a (±0.06) | 5.01 b (±0.08) | 0.823 | 5.13 a (±0.04) | 4.11 b (±0.07) | 4.08 b (±0.08) | 0.871 |
Ala (alanine) | 4.09 a (±0.08) | 5.31 b (±0.09) | 5.12 b (±0.07) | 5.19 b (±0.06) | 1.043 | 5.02 a (±0.03) | 5.09 a (±0.04) | n.s. | 5.20 a (±0.05) | 5.13 a (±0.06) | 5.07 a (±0.07) | n.s. |
Cys-A (cysteine-A) | 1.45 a (±0.02) | 3.59 c (±0.04) | 2.43 b (±0.01) | 2.38 b (±0.02) | 0.923 | 2.16 a (±0.01) | 3.22 b (±0.04) | 0.936 | 3.17 a (±0.02) | 2.11 b (±0.01) | 2.18 b (±0.02) | 0.928 |
Val (valine) | 4.48 a (±0.06) | 5.23 b (±0.05) | 4.73 a (±0.06) | 4.69 a (±0.04) | 0.487 | 4.51 a (±0.05) | 5.83 b (±0.06) | 0.668 | 5.79 a (±0.07) | 4.50 b (±0.06) | 4.36 b (±0.05) | 0.695 |
Met (methionine) | 1.01 a (±0.01) | 2.42 c (±0.03) | 2.02 b (±0.02) | 2.08 b (±0.02) | 0.339 | 2.02 a (±0.02) | 3.16 b (±0.03) | 0.397 | 3.07 a (±0.04) | 2.17 b (±0.02) | 2.12 b (±0.02) | 0.416 |
Ile (isoleucine) | 3.45 a (±0.03) | 3.63 a (±0.05) | 3.58 a (±0.07) | 3.52 a (±0.06) | n.s.*** | 3.63 a (±0.07) | 3.81 a (±0.08) | n.s. | 3.77 a (±0.06) | 3.68 a (±0.05) | 3.59 a (±0.07) | n.s. |
Leu (leucine) | 8.16 a (±0.9) | 8.40 a (±0.7) | 8,37 a (±0.6) | 8.25 a (±0.8) | n.s. | 8.53 a (±0.5) | 8.64 a (±0.6) | n.s. | 8.39 a (±0.5) | 8.26 a (±0.7) | 8.19 a (±0.7) | n.s. |
Tyr (tyrosine) | 2.16 a (±0.06) | 2.88 b (±0.05) | 2.65 b (±0.07) | 2.61 b (±0.07) | 0.415 | 2.74 a (±0.06) | 2.49 a (±0.05) | n.s. | 2.66 a (±0.08) | 2.53 a (±0.06) | 2.49 a (±0.05) | n.s. |
Phe (phenylalanine) | 4.86 a (±0.5) | 5.87 b (±0.6) | 5.73 b (±0.4) | 5.65 b (±0.5) | 0.712 | 5.61 a (±0.6) | 5.54 a (±0.6) | n.s. | 5.70 a (±0.5) | 5.62 a (±0.6) | 5.48 a (±0.5) | n.s. |
His (histidine) | 2.62 a (±0.03) | 2.88 a (±0.04) | 2.79 a (±0.05) | 2.75 a (±0.04) | n.s. | 2.69 a (±0.03) | 2.74 a (±0.04) | n.s. | 2.71 a (±0.04) | 2.54 a (±0.03) | 2.39 a (±0.03) | n.s. |
Lys (lysine) | 2.79 a (±0.07) | 3.31 b (±0.06) | 3.25 b (±0.05) | 3.23 b (±0.06) | 0.424 | 3.05 a (±0.04) | 3.47 b (±0.06) | 0416 | 3.35 a (±0.05) | 2.96 b (±0.07) | 2.88 b (±0.06) | 0.384 |
Arg (arginine) | 4.49 a (±0.08) | 5.72 b (±0.09) | 5.60 b (±0.09) | 5.52 b (±0.07) | 0.974 | 4.41 a (±0.05) | 4.70 a (±0.07) | n.s. | 4.68 a (±0.06) | 4.44 a (±0.07) | 4.37 a (±0.05) | n.s. |
Trp (tryptophan) | 3.49 a (±0.04) | 8.45 c (±0.06) | 5.24 b (±0.03) | 6.12 b (±0.07) | 1.187 | 4.12 a (±0.04) | 6.75 b (±0.06) | 1.034 | 6.61 a (±0.05) | 4.34 b (±0.07) | 4.25 b (±0.05) | 1.098 |
EAAI *** | 57.9 a | 75.6 c | 66.8 b | 70.3 b | 4.95 | 65.9 a | 70.2 b | 4.26 | 71.3 a | 65.4 b | 64.2 b | 4.37 |
Specification | Catch Crop | Tillage System | Year | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A ** | B | C | D | HSD (p ≥ 0.05) | PT * | CT | HSD (p ≥ 0.05) | 2016 | 2017 | 2018 | HSD (p ≥ 0.05) | |
Nitrogen (g kg−1) | 20.1 a (±0.7) | 22.4 b (±0.8) | 21.7 b (±0.6) | 22.8 b (±0.6) | 2.07 | 21.4 a (±0.7) | 18.0 b (±0.7) | 2.12 | 21.1 a (±0.5) | 20.7 a (±0.6) | 20.5 a (±0.6) | n.s. *** |
Potassium (g kg−1) | 1.82 a (±0.03) | 2.54 b (±0.04) | 2.26 b (±0.05) | 2.41 b (±0.05) | 0.431 | 2.34 a (±0.03) | 1.72 b (±0.04) | 0.465 | 2.21 a (±0.05) | 2.09 a (±0.03) | 2.11 a (±0.04) | n.s. |
Magnesium (mg kg−1) | 653 a (±4.0) | 791 b (±5.0) | 724 b (±6.0) | 731 b (±6.0) | 68.3 | 695 a (±5.0) | 919 b (±7.0) | 75.4 | 865 a (±8.0) | 734 b (±7.0) | 725 b (±6.0) | 74.3 |
Calcium (mg kg−1) | 238 a (±2.0) | 361 b (±3.0) | 340 b (±2.0) | 351 b (±3.0) | 56.5 | 181 a (±0.09) | 222 b (±2.0) | 40.5 | 343 a (±4.0) | 288 b (±3.0) | 271 b (±2.0) | 46.4 |
Copper (mg kg−1) | 2.51 a (±0.07) | 4.51 b (±0.09) | 3.16 c (±0.05) | 3.19 c (±0.06) | 0.573 | 3.61 a (±0.08) | 4.93 b (±0.09) | 0.632 | 4.38 a (±0.09) | 3.24 b (±0.08) | 3.36 b (±0.06) | 0.656 |
Manganese (mg kg−1) | 15.9 a (±0.5) | 35.2 b (±0.8) | 24.0 c (±0.6) | 24.6 c (±0.7) | 7.25 | 15.6 a (±0.4) | 26.4 b (±0.7) | 7.06 | 30.5 a (±0.6) | 22.5 b (±0.5) | 23.7 b (±0.4) | 7.11 |
Iron (mg kg−1) | 28.5 a (±0.7) | 40.8 b (±0.9) | 37.3 b (±0.8) | 38.3 b (±0.8) | 6.98 | 36.4 a (±0.7) | 45.0 b (±0.9) | 6.79 | 39.7 a (±1.0) | 30.4 b (±0.6) | 29.2 b (±0.6) | 6.62 |
Zinc (mg kg−1) | 23.5 a (±0.6) | 35.5 b (±0.7) | 33.1 b (±0.8) | 30.2 b (±0.7) | 5.94 | 32.4 a (±0.6) | 33.0 a (±0.6) | n.s. | 32.3 a (±0.7) | 29.1 a (±0.5) | 31.1 a (±0.6) | n.s. |
Selenium (mg kg−1) | 16.5 a (±0.4) | 49.2 b (±1.1) | 29.8 c (±0,8) | 33.5 c (±0.9) | 9.42 | 20.3 a (±0.7) | 34.7 b (±0.9) | 8.86 | 37.2 a (±0.8) | 28.7 b (±0.7) | 29.2 b (±0.6) | 7.44 |
Specification | Catch Crop | TDF | O-Dihydr. | Lys | Met | Trp | Se | Mn | Cu |
---|---|---|---|---|---|---|---|---|---|
Humus | control | 0.13 | 0.11 | 0.23 | 0.19 | 0.21 | 0.19 | 0.23 | 0.24 |
white mustard | 0.65 * | 0.61 * | 0.87 * | 0.85 * | 0.89 * | 0.81 * | 0.71 * | 0.78 * | |
lacy phacelia | 0.47 | 0.46 | 0.54 * | 0.52 * | 0.55 * | 0.60 * | 0.58 * | 0.56 * | |
faba bean + spring vetch | 0.55 * | 0.51 * | 0.60 * | 0.58 * | 0.72 * | 0.70 * | 0.62 * | 0.59 * | |
Organic C | control | 0.10 | 0.13 | 0.26 | 0.22 | 0.25 | 0.06 | 0.15 | 0.07 |
white mustard | 0.58 * | 0.62 * | 0.85 * | 0.82 * | 0.91 * | 0.57 * | 0.54 * | 0.55 * | |
lacy phacelia | 0.42 | 0.39 | 0.55 * | 0.54 * | 0.59 * | 0.49 | 0.43 | 0.44 | |
faba bean + spring vetch | 0.57 * | 0.61 * | 0.69 * | 0.65 * | 0.72 * | 0.53 * | 0.50 * | 0.52 * | |
Total N | control | 0.08 | 0.11 | 0.14 | 0.05 | 0.12 | 0.19 | 0.18 | 0.20 |
white mustard | 0.66 * | 0.63 * | 0.64 * | 0.62 * | 0.67 * | 0.61 * | 0.60 * | 0.59 * | |
lacy phacelia | 0.55 * | 0.57 * | 0.52 * | 0.51 * | 0.55 * | 0.50 * | 0.48 | 0.46 | |
faba bean + spring vetch | 0.51 * | 0.54 * | 0.60 * | 0.59 * | 0.63 * | 0.59 * | 0.52 * | 0.53 * | |
Mg | control | 0.26 | 0.22 | 0.24 | 0.21 | 0.19 | 0.08 | 0.08 | 0.10 |
white mustard | 0.61 * | 0.63 * | 0.69 * | 0.73 * | 0.75 * | 0.56 * | 0.51 * | 0.53 * | |
lacy phacelia | 0.57 * | 0.52 * | 0.56 * | 0.54 * | 0.58 * | 0.50 * | 0.42 | 0.44 | |
faba bean + spring vetch | 0.60 * | 0.61 * | 0.69 * | 0.67 * | 0.65 * | 0.53 * | 0.52 * | 0.50 * | |
Dehydrogenase | control | 0.20 | 0.18 | 0.17 | 0.15 | 0.16 | 0.32 | 0.26 | 0.31 |
white mustard | 0.92 * | 0.88 * | 0.78 * | 0.75 * | 0.80 * | 0.78 * | 0.65 * | 0.67 * | |
lacy phacelia | 0.65 * | 0.68 * | 0.58 * | 0.56 * | 0.64 * | 0.56 * | 0.52 * | 0.57 * | |
faba bean + spring vetch | 0.89 * | 0.82 * | 0.71 * | 0.68 * | 0.75 * | 0.60 * | 0.58 * | 0.55 * | |
Urease | control | 0.26 | 0.29 | 0.21 | 0.23 | 0.25 | 0.41 | 0.25 | 0.35 |
white mustard | 0.82 * | 0.85 * | 0.71 * | 0.72 * | 0.77 * | 0.72 * | 0.64 * | 0.62 * | |
lacy phacelia | 0.63 * | 0.66 * | 0.54 * | 0.51 * | 0.57 * | 0.58 * | 0.54 * | 0.50 * | |
faba bean + spring vetch | 0.73 * | 0.75 * | 0.66 * | 0.63 * | 0.69 * | 0.63 * | 0.59 * | 0.53 * |
Catch Crop | Dry Biomass (t·ha−1) | |
---|---|---|
Plants | Roots | |
White mustard | 3.98–4.38 | 0.12–0.13 |
Tansy phacelia | 3.62–4.35 | 0.08–0.10 |
Spring vetch + field pea | 3.20–3.60 | 0.19–0.21 |
Yellow lupine + seradella | 3.20–3.60 | 0.19–0.21 |
Oats + spring vetch + field pea | 3.06–3.40 | 0.15–0.17 |
Seradella | 3.05–3.20 | 0.07–0.09 |
Yellow lupine | 2.72–2.90 | 0.25–0.30 |
Narrow-leafed lupine | 2.39–2.89 | 0.24–0.29 |
Red clover | 2.48–2.80 | 0.06–0.08 |
Westerwolds ryegrass | 2.42–2.65 | 0.05–0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwiatkowski, C.A.; Harasim, E.; Klikocka-Wiśniewska, O. Effect of Catch Crops and Tillage Systems on the Content of Selected Nutrients in Spring Wheat Grain. Agronomy 2022, 12, 1054. https://doi.org/10.3390/agronomy12051054
Kwiatkowski CA, Harasim E, Klikocka-Wiśniewska O. Effect of Catch Crops and Tillage Systems on the Content of Selected Nutrients in Spring Wheat Grain. Agronomy. 2022; 12(5):1054. https://doi.org/10.3390/agronomy12051054
Chicago/Turabian StyleKwiatkowski, Cezary Andrzej, Elżbieta Harasim, and Olimpia Klikocka-Wiśniewska. 2022. "Effect of Catch Crops and Tillage Systems on the Content of Selected Nutrients in Spring Wheat Grain" Agronomy 12, no. 5: 1054. https://doi.org/10.3390/agronomy12051054
APA StyleKwiatkowski, C. A., Harasim, E., & Klikocka-Wiśniewska, O. (2022). Effect of Catch Crops and Tillage Systems on the Content of Selected Nutrients in Spring Wheat Grain. Agronomy, 12(5), 1054. https://doi.org/10.3390/agronomy12051054