The Vase Life of the Leaves of Selected Perennial Species after the Application of Growth Regulators
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Vase Life and Quality of Hemerocallis × hybrida ‘Agata’ Leaves
3.1.1. Leaf Vase Life
3.1.2. Leaf Protein Content
3.1.3. Leaf Chlorophyll a + b Content
3.2. Vase Life and Quality of Limonium latifolium Leaves
3.2.1. Leaf Vase Life
3.2.2. Leaf Protein Content
3.2.3. Leaf Chlorophyll a + b Content
3.3. Vase Life and Quality of Heuchera hybrida ‘Chocolate Ruffles’ Leaves
3.3.1. Leaf Vase Life
3.3.2. Leaf Chlorophyll a + b Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, J.D.; Paull, R.E.; Hara, A.H.; Tenbrink, V.L. Predicting vase life in tropical cut flowers and foliage. Proc. Fla. State Hortic. Soc. 1991, 104, 61–63. [Google Scholar]
- Pacifici, S.; Burchi, G.; del Carlo, A.; Ferrante, A. Effect of storage temperature and duration on vase life of cut Ruscus racemosus L. foliage. Acta Hortic. 2013, 970, 69–74. [Google Scholar] [CrossRef]
- Janowska, B. Effect of conditioning on the longevity of leaves of the Italian arum (Arum italicum Mill.) kept at a low temperature. Nauka Przyr. Technol. 2010, 4, 12. [Google Scholar]
- Janowska, B.; Stanecka, A. Effect of growth regulators on the postharvest longevity of cut flowers and leaves of the Calla lily (Zantedeschia Spreng). Acta Agrobot. 2011, 64, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Janowska, B.; Stanecka, A.; Czarnecka, B. Postharvest longevity of the leaves of the Calla lily (Zantedeschia Spreng.). Acta Sci. Pol. Hortorum Cultus 2012, 11, 121–131. [Google Scholar]
- Hayden, D.H. Characterization of senescence regulated gene expression in Anthurium. Ph.D. Thesis, University of Hawaii Library, Honolulu, HI, USA, 2003. [Google Scholar]
- Leshem, Y.Y.; Halevy, A.H.; Frenkel, C. Processes and Control of Plant Senescence; Elsevier Science Publishers, B.V.: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Skutnik, E.; Łukaszewska, A. Regulacja pozbiorczej trwałości gatunków uprawianych na zieleń ciętą. Post. Nauk Rol. 2001, 5, 111–124. [Google Scholar]
- Łukaszewska, A.; Skutnik, E. Przewodnik Florysty; Wydawnictwo SGGW: Warszawa, Poland, 2003. [Google Scholar]
- Breeze, E.; Harrison, E.; McHattie, S.; Hughes, L.; Hickman, R.; Hill, C.; Kiddle, S.; Kim, Y.-S.; Penfold, C.A.; Jenkins, D.; et al. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 2011, 23, 873–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Asami, T.; Nakagawa, Y. Preface to the Special Issue: Brief review of plant hormones and their utilization in agriculture. J. Pestic. Sci. 2018, 43, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Musembi, N.N.; Hutchinson, M.J.; Waithaka, K. The effects of 6-benzylaminopurine and gibberellic acid on postharvest physiology of Lisianthus (Eustoma grandiflorum) flowers: I. Novel synergism improves water balance and vase life. Acta Hortic. 2013, 9, 47–56. [Google Scholar] [CrossRef]
- Musembi, N.N.; Adeya, N.; Murigi, W.W. Interactions between hormonal and developmental signalling in the prevention of side-shoots in rose (Rosa hybrida L.). J. Hortic. Sci. Biotechnol. 2012, 87, 419–423. [Google Scholar] [CrossRef]
- Kobayashi, M.; Yamaguchi, I.; Murofushi, N.; Ota, Y.; Takahashi, N. Fluctuation and localization of endogenous gibberellins in rice. Agric. Biol. Chem. 1988, 52, 1189–1194. [Google Scholar]
- Hoad, G.V. Transport of hormones in the phloem of higher plants. Plant Growth Regul. 1995, 16, 173–182. [Google Scholar] [CrossRef]
- Gupta, R.; Chakrabarty, S.K. Gibberellic acid in plant. Still a mystery unresolved. Plant Signal. Behav. 2013, 8, e25504. [Google Scholar] [CrossRef] [Green Version]
- Andrzejak, R.; Janowska, B. Yield and quality of inflorescences in the Zantedeschia albomaculata (Hook.) Baill. ‘Albomaculata’ after the treatment with AMF and GA3. Agronomy 2021, 11, 644. [Google Scholar] [CrossRef]
- Debeaujon, I.; Koornneef, M. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol. 2000, 122, 415–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, J.; Murase, K.; Rieu, I.; Zentella, R.; Zhang, Z.-L.; Powers, S.J.; Gong, F.; Phillips, A.L.; Hedden, P.; Sun, T.-P.; et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 2006, 18, 3399–3414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janowska, B.; Andrzejak, R.; Kosiada, T.; Kwiatkowska, M.; Smolińska, D. The flowering and nutritional status of Gladiolus hybridus ‘Black Velvet’ following gibberellin treatment. Horticultural. Sci. 2018, 45, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Rangaswamy, V. Improved production of gibberellic acid by Fusarium moniliforme. J. Microbiol. 2012, 2, 51–55. [Google Scholar] [CrossRef]
- Yang, R.; Xiao, C.; Guo, Y.; Ye, M.; Lin, J. Inclusion complexes of GA3 and the plant growth regulation activities. Mater. Sci. Eng. C 2018, 91, 475–485. [Google Scholar] [CrossRef]
- Szymaniak, D.; Pernak, J.; Rzemieniecki, T.; Kaczmarek, D.K.; Andrzejak, R.; Kosiada, T.; Janowska, B. Synthesis and characterization of bio-based quaternary ammonium salts with gibberellate or α-tryptophanate anion. Mon. Chem.–Chem. Mon. 2020, 151, 1365–1373. [Google Scholar] [CrossRef]
- Dawande, V.; Gurav, R. Effect of cytokinins on shoot induction from seed derived. Int. J. Curr. Res. 2015, 7, 16383–16386. [Google Scholar]
- Janowska, B.; Stanecki, M. Effect of benzyladenine on the abundance and quality of flower yield in the Calla lily (Zantedeschia Spreng.). Acta Agrob. 2012, 65, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Janowska, B.; Stanecki, M. Effect of rhizome soaking in a mixture of BA and GA3 on the earliness of flowering and quality of the yield of flowers and leaves in the Calla lily (Zantedeschia Spreng.). Acta Sci. Pol. Hortorum Cultus 2013, 13, 3–12. [Google Scholar]
- Janowska, B. Effect of growth regulators on flower and leaf yield of the calla lily (Zantedeschia Spreng.). Hort. Sci. 2013, 40, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Sakakibara, H. Cytokinins: Activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 2006, 57, 431–449. [Google Scholar] [CrossRef] [Green Version]
- Kupke, B.M.; Tucker, M.R.; Able, J.A.; Porker, K.D. Manipulation of barley development and flowering time by exogenous application of plant growth regulators. Front. Plant Sci. 2022, 12, 694424. [Google Scholar] [CrossRef] [PubMed]
- Palavan-Ünsal, N.; Cağ, S.; Cetin, E.; Büyüktunçer, D. Retardation of senescence by meta-topolin in wheat leaves. J. Cell. Mol. Biol. 2002, 1, 101–108. [Google Scholar]
- Janowska, B.; Grabowska, R.; Ratajczak, E. Post-harvest longevity of leaves of the Sea lavender (Limonium latifolium (Sm.) Kuntze) after application of growth regulators. Hort. Sci. 2013, 40, 172–176. [Google Scholar] [CrossRef] [Green Version]
- Skutnik, E.; Rabiza-Świder, J.; Wachowicz, M. Senescences of cut leaves of Zantedeschia aethiopca and Z. elliottiana. Part I. Chlorophyll degradation. Acta Sci. Pol. Hortorum Cultus 2004, 3, 57–65. [Google Scholar]
- Janowska, B. Wpływ kondycjonowania w kwasie giberelinowym i benzyloadeninie na pozbiorczą trwałość liści obrazków włoskich (Arum italicum Mill.). Nauka Przyr. Technol. 2012, 6, 9. [Google Scholar]
- Hiscox, J.D.; Israelstam, G.F. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 1979, 57, 1332–1334. [Google Scholar] [CrossRef]
- Arnon, D. Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta Vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Gulzar, S.; Tahir, I.; Amin, I. Effect of cytokinins the senescence and longevity of isolated flowers of Day Lily (Hermerocallis fulva) cv. Royal Crown sprayed with cycloheximide. Acta Hortic. 2005, 669, 52. [Google Scholar]
- Janowska, B.; Schroeter-Zakrzewska, A. Effect of growth regulators on the postharvest longevity of leaves of sea lavender (Limonium latifolium /Sm./Kuntze). Nauka Przyr. Technol. 2010, 4, 3. [Google Scholar]
- Janowska, B.; Czuchaj, P.; Rybus-Zając, M. Vase life of Heuchera L. leaves following the application of benzyladenine. Acta Scietiarum Pol. Hortorum Cultus 2017, 16, 113–120. [Google Scholar]
- Rubinstein, B. Regulation of cell death in flower petals. Plant Mol. Biol. 2000, 44, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Gan, S.; Amasino, R. Making sense of senescences. Plant Physiol. 1997, 113, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Thomas, H.; Ougham, H. The stay-green trait. J. Exp. Bot. 2014, 65, 3889–3900. [Google Scholar] [CrossRef]
- Nakajima, S.; Ito, H.; Tanaka, R.; Tanaka, A. Chlorophyll b reductase plays an essential role in maturation and storability of Arabidopsis seeds. Plant Physiol. 2012, 160, 261–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janowska, B.; Andrzejak, R.; Jakubowska, P.; Antkowiak, A.; Nawrot, D.; Krzaczkowska, A. The effect of growth regulators on the post-harvest longevity of leaves of the Alchemilla mollis (Bauser) Rothm. leaf longevity. Folia Hortic. 2016, 28, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Paull, R. Postharvest handling of Alstroemeria. Hortic. Sci. 1991, 26, 314. [Google Scholar] [CrossRef] [Green Version]
- Hicklenton, P. GA3 and benzylaminopurine delay leaf chlorosis in cut Alstroemeria stems. HortScience 1991, 26, 1198–1199. [Google Scholar] [CrossRef] [Green Version]
- Taheri-Shiva, N.; Hatamzade, A.; Bakhshi, D.; Mousa, R.; Ghasemnezhad, M. The effect of gibberellic acid treatment at different stages of inflorescence development on anthocyanin synthesis in oriental hybrid lily var. ‘Sorbbone’. Agric. Commun. 2014, 2, 49–54. [Google Scholar]
- Yeat, C.S.; Szydlik, M.; Łukaszewska, A. The effect of postharvest treatments on flower quality and vase life of cut Alstroemeria ‘Dancing Queen’. J. Fruit Ornam. Plant Res. 2012, 20, 147–160. [Google Scholar] [CrossRef]
- Khan, A.F.; Mujeeb, F.; Aha, F.; Farooqui, A. Effect of plant growth regulators on growth and essential oil content in palmarosa (Cymbopogon martinii). Asian J. Pharm. Clin. Res. 2015, 8, 373–376. [Google Scholar]
- Khandaker, M.; Azam, H.M.; Rosnah, J.; Dalorima, T.; Mat, N. The effects of application of exogenous IAA and GA3 on the physiological activities and quality of Abelmoschus esculentus (Okra) var. Singa 979. Pertanika J. Trop. Agric. Sci. 2018, 41, 209–224. [Google Scholar]
Ionic Liquids/Quaternary Ammonium Salts with the Gibberellinate Anion | Concentration of GA3 Anion (%) | Tm (°C) | Tg (°C) | Tonset5% (°C) | Tonset50% (°C) |
---|---|---|---|---|---|
[Chol] [Gib] | 77.0 | 98 | 78 | 170 | 236 |
[Gib] [Ach] | 70.0 | 97 | 110 | 180 | 252 |
[Q-C2] [Gib] | 49.4 | 99 | - | 175 | 285 |
[Q-C12] [Gib] | 41.2 | 99 | - | 219 | 315 |
Concentration (mg·dm−3) | |||
---|---|---|---|
Conditioner | 0 | 50 | 100 |
Vase life (days) | |||
BA | 26.4 a | 25.0 a | 25.7 a |
MemT | 26.4 a | 33.8 c | 34.9 c |
MemTR | 26.4 a | 30.0 b | 31.6 b |
GA3 | 26.4 a | 25.4 a | 27.1 a |
[Q-C2][Gib] | 26.4 a | 24.8 a | 35.4 c |
[Gib][Ach] | 26.4 a | 33.4 c | 31.9 b |
[Chol][Gib] | 26.4 a | 34.3 c | 35.0 c |
[Q-C12][Gib] | 26.4 a | 30.1 b | 31.8 b |
Protein content (mg·g−1 F.W.) | |||
BA | 3.50 a | 3.25 a | 3.56 a |
MemT | 3.50 a | 4.93 b | 4.37 ab |
MemTR | 3.50 a | 4.18 ab | 4.87 b |
GA3 | 3.50 a | 3.81 a | 4.25 ab |
[Q-C2][Gib] | 3.50 a | 4.25 ab | 4.68 b |
[Gib][Ach] | 3.50 a | 5.06 c | 4.62 b |
[Chol][Gib] | 3.50 a | 4.81 b | 4.00 ab |
[Q-C12][Gib] | 3.50 a | 3.68 a | 3.98 ab |
Chlorophyll a + b content (mg·g−1 F.W.) | |||
BA | 0.12 a | 0.11 a | 0.25 d |
MemT | 0.12 a | 0.12 a | 0.12 a |
MemTR | 0.12 a | 0.29 e | 0.36 f |
GA3 | 0.12 a | 0.41 g | 0.24 d |
[Q-C2][Gib] | 0.12 a | 0.35 f | 0.12 a |
[Gib][Ach] | 0.12 a | 0.21 c | 0.31 e |
[Chol][Gib] | 0.12 a | 0.37 f | 0.13 a |
[Q-C12][Gib] | 0.12 a | 0.18 b | 0.25 d |
Concentration (mg·dm−3) | |||
---|---|---|---|
Conditioner | 0 | 50 | 100 |
Vase life (days) | |||
BA | 15.0 a | 16.8 a | 15.6 a |
MemT | 15.0 a | 15.6 a | 16.1 a |
MemTR | 15.0 a | 14.3 a | 17.1 ab |
GA3 | 15.0 a | 15.6 a | 15.4 a |
[Q-C2][Gib] | 15.0 a | 15.1 a | 13.9 a |
[Gib][Ach] | 15.0 a | 18.3 b | 19.4 b |
[Chol][Gib] | 15.0 a | 15.7 a | 16.1 a |
[Q-C12][Gib] | 15.0 a | 16.4 a | 18.3 b |
Protein content (mg·g−1 F.W.) | |||
BA | 17.50 a | 18.12 ab | 18.93 b |
MemT | 17.50 a | 18.37 b | 17.12 a |
MemTR | 17.50 a | 17.93 ab | 18.43 b |
GA3 | 17.50 a | 19.81 c | 17.66 a |
[Q-C2][Gib] | 17.50 a | 20.56 c | 20.31 c |
[Gib][Ach] | 17.50 a | 21.06 cd | 18.87 b |
[Chol][Gib] | 17.50 a | 21.62 d | 20.87 d |
[Q-C12][Gib] | 17.50 a | 20.00 c | 20.25 c |
Chlorophyll a + b content (mg·g−1 F.W.) | |||
BA | 1.24 b | 1.80 f | 1.90 g |
MemT | 1.24 b | 1.87 fg | 1.97 g |
MemTR | 1.24 b | 1.60 e | 1.54 e |
GA3 | 1.24 b | 1.31 c | 2.23 h |
[Q-C2][Gib] | 1.24 b | 1.80 f | 1.78 f |
[Gib][Ach] | 1.24 b | 1.31 c | 1.00 a |
[Chol][Gib] | 1.24 b | 1.42 d | 1.70 f |
[Q-C12][Gib] | 1.24 b | 1.50 e | 1.00 a |
Concentration (mg·dm−3) | |||
---|---|---|---|
Conditioner | 0 | 50 | 100 |
Vase life | |||
BA | 46.1 d | 65.0 f | 97.4 h |
MemT | 46.1 d | 77.6 g | 57.4 e |
MemTR | 46.1 d | 55.6 e | 73.1 g |
GA3 | 46.1 d | 21.3 ab | 16.9 a |
[Q-C2][Gib] | 46.1 d | 25.8 b | 22.4 ab |
[Gib][Ach] | 46.1 d | 17.9 ab | 18.1 ab |
[Chol][Gib] | 46.1 d | 19.8 ab | 21.6 ab |
[Q-C12][Gib] | 46.1 d | 29.0 c | 15.6 a |
Protein content (mg·g−1 F.W.) | |||
BA | 3.25 a | 3.43 a | 3.50 a |
MemT | 3.25 a | 4.50 ab | 5.00 b |
MemTR | 3.25 a | 3.93 ab | 5.12 b |
GA3 | 3.25 a | 12.62 f | 11.06 df |
[Q-C2][Gib] | 3.25 a | 40.75 h | 11.43 df |
[Gib][Ach] | 3.25 a | 10.87 d | 16.43 g |
[Chol][Gib] | 3.25 a | 12.75 f | 10.31 d |
[Q-C12][Gib] | 3.25 a | 8.18 c | 10.18 d |
Chlorophyll a + b content (mg·g−1 F.W.) | |||
BA | 0.43 a | 0.84 b | 0.58 b |
MemT | 0.43 a | 0.37 a | 0.64 b |
MemTR | 0.43 a | 0.45 a | 0.65 b |
GA3 | 0.43 a | 1.82 f | 1.52 e |
[Q-C2][Gib] | 0.43 a | 1.80 f | 1.83 f |
[Gib][Ach] | 0.43 a | 1.30 d | 1.50 e |
[Chol][Gib] | 0.43 a | 2.03 g | 1.56 e |
[Q-C12][Gib] | 0.43 a | 1.14 c | 1.36 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janowska, B.; Nowińska, M.; Andrzejak, R. The Vase Life of the Leaves of Selected Perennial Species after the Application of Growth Regulators. Agronomy 2022, 12, 805. https://doi.org/10.3390/agronomy12040805
Janowska B, Nowińska M, Andrzejak R. The Vase Life of the Leaves of Selected Perennial Species after the Application of Growth Regulators. Agronomy. 2022; 12(4):805. https://doi.org/10.3390/agronomy12040805
Chicago/Turabian StyleJanowska, Beata, Maria Nowińska, and Roman Andrzejak. 2022. "The Vase Life of the Leaves of Selected Perennial Species after the Application of Growth Regulators" Agronomy 12, no. 4: 805. https://doi.org/10.3390/agronomy12040805
APA StyleJanowska, B., Nowińska, M., & Andrzejak, R. (2022). The Vase Life of the Leaves of Selected Perennial Species after the Application of Growth Regulators. Agronomy, 12(4), 805. https://doi.org/10.3390/agronomy12040805