The Addition of Saflufenacil to Glyphosate plus Dicamba Improves Glyphosate-Resistant Canada Fleabane (Erigeron canadensis L.) Control in Soybean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Methods
2.2. Statistical Analysis
3. Results and Discussion
3.1. Soybean Injury
3.2. Control of Glyphosate-Resistant Canada Fleabane
3.3. Consistency of Glyphosate-Resistant Canada Fleabane Control
3.4. Soybean Yield
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weaver, S.E. The biology of Canadian weeds. 115. Conyza canadensis. Can J. Plant Sci. 2001, 81, 867–875. [Google Scholar] [CrossRef]
- Loux, M.; Stachler, J.; Johnson, B.; Nice, G.; Davis, V.; Nordby, D. Biology and Management of Horseweed. Purdue University Extension. 2006. Available online: https://www.extension.purdue.edu/extmedia/gwc/gwc-9-w.pdf (accessed on 16 November 2019).
- Cici, S.Z.H.; Van Acker, R.C. A review of the recruitment biology of winter annual weed in Canada. Can. J. Plant Sci. 2009, 89, 575–589. [Google Scholar] [CrossRef]
- Main, C.L.; Steckel, L.E.; Hayes, R.M.; Mueller, T.C. Biotic and abiotic factors influence horseweed emergence. Weed Sci. 2006, 54, 1101–1105. [Google Scholar] [CrossRef]
- Tozzi, E.; Van Acker, R.C. Effects of seedling emergence timing on the population dynamics of horseweed (Conyza canadensis var. canadensis). Weed Sci. 2014, 62, 451–456. [Google Scholar] [CrossRef]
- Regehr, D.L.; Bazzaz, F.A. Low temperature photosynthesis in successional winter annuals. J. Ecol. 1976, 57, 1297–1303. [Google Scholar] [CrossRef]
- Bhowmik, P.C.; Bekech, M.M. Horseweed (Conyza canadensis) seed production, emergence, and distribution in no-tillage and conventional-tillage corn (Zea mays). Agron. J. 1993, 1, 67–71. [Google Scholar]
- Davis, V.M.; Kruger, G.R.; Stachler, J.M.; Loux, M.M.; Johnson, W.G. Growth and seed production of horseweed (Conyza canadensis) populations resistant to glyphosate, ALS-inhibiting, and multiple (glyphosate + ALS-inhibiting) herbicides. Weed Sci. 2009, 57, 494–504. [Google Scholar] [CrossRef]
- Stevens, O.A. Weights of seeds and numbers per plant. Weeds 1957, 5, 46–55. [Google Scholar] [CrossRef]
- Salisbury, E.J. Weeds and Aliens; New Naturalist Series; Collins: London, UK, 1961. [Google Scholar]
- Dauer, J.T.; Mortensen, D.A.; Van Gessel, M.J. Temporal and special dynamics of long-distance Conyza canadensis seed dispersal. J. Appl. Ecol. 2007, 44, 105–114. [Google Scholar] [CrossRef]
- Dauer, J.T.; VanGessel, M.J.; Neumann, G. Horseweed (Conyza canadensis) seed collected in the planetary boundary layer. Weed Sci. 2006, 54, 1063–1067. [Google Scholar]
- Buhler, D.D.; Owen, M.D.K. Emergence and survival of horseweed (Conyza canadensis). Weed Sci. 1997, 45, 98–101. [Google Scholar] [CrossRef]
- Franz, J.E.; Mao, M.K.; Sikorski, J.A. Glyphosate: A Unique Global Herbicide; American Chemical Society: Washington, DC, USA, 1997. [Google Scholar]
- Gougler, J.A.; Geiger, D.R. Uptake and distribution of N-phosphonomethylglycine in sugar beet plants. Plant Physiol. 1981, 68, 668–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewey, S.A.; Appleby, A.P. A comparison between glyphosate and assimilate translocation patterns in tall morning glory (Ipomoea purpurea). Weed Sci. 1983, 31, 308–314. [Google Scholar] [CrossRef]
- Dill, G. Glyphosate resistant crops: History, status and future. Pest Manag. Sci. 2005, 61, 219–224. [Google Scholar] [CrossRef]
- Gulden, R.H.; Sikkema, P.H.; Hamill, A.S.; Tardif, F.J.; Swanton, C.J. Glyphosate resistant cropping systems in Ontario: Multivariate and nominal trait-based weed community structure. Weed Sci. 2010, 58, 278–288. [Google Scholar] [CrossRef]
- Duke, S.O.; Powles, S.B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 2008, 64, 319–325. [Google Scholar] [CrossRef]
- Nurse, R.E.; Swanton, C.J.; Tardif, F.; Sikkema, P.H. Weed control and yield are improved when glyphosate is preceded by a residual herbicide in glyphosate-tolerant maize (Zea mays). Crop Prot. 2006, 25, 1174–1179. [Google Scholar] [CrossRef]
- Beckie, H.J. Herbicide-resistant weeds: Management tactics and practices. Weed Technol. 2006, 20, 793–814. [Google Scholar] [CrossRef]
- Powles, S.B.; Lorraine-Colwill, D.F.; Dellow, J.J.; Preston, C. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci. 1998, 46, 604–607. [Google Scholar] [CrossRef]
- Van Gessel, M.J. Glyphosate-resistant horseweed from Delaware. Weed Sci. 2001, 49, 703–705. [Google Scholar] [CrossRef]
- Byker, H.P.; Soltani, N.; Robinson, D.E.; Tardif, F.J.; Lawton, M.B.; Sikkema, P.H. Occurrence of glyphosate and cloransulam resistant Canada fleabane [Conyza canadensis (L.) Cronq.] in Ontario. Can. J. Plant Sci. 2013, 93, 851–855. [Google Scholar] [CrossRef]
- Budd, C.M.; Soltani, N.; Robinson, D.E.; Hooker, D.C.; Miller, R.T.; Sikkema, P.H. Control of glyphosate resistant Canada fleabane with saflufenacil plus tankmix partners in soybean. Can. J. Plant Sci. 2016, 96, 989–994. [Google Scholar] [CrossRef]
- Taylor, R.J. Chemical Fact Sheet for: Dicamba; Environmental Protection Agency: Washington, DC, USA, 1983. [Google Scholar]
- WSSA. Herbicide Handbook, 10th ed.; Weed Science Society of America: Lawrence, KS, USA, 2014; p. 40. [Google Scholar]
- HRAC. Classification of Herbicides According to Site of Action. 2018. Available online: http://www.weedscience.org/Documents/ShowDocuments.aspx?DocumentID=1193 (accessed on 25 March 2021).
- Petersen, P.J.; Haderlie, L.C.; Hoefer, R.H.; McAllister, R.S. Dicamba absorption and translocation as influenced by formulation and surfactant. Weed Sci. 1985, 35, 717–720. [Google Scholar] [CrossRef]
- Bromilow, R.H.; Chamberlain, K.; Evans, A.A. Physiochemical aspects of phloem translocation of herbicides. Weed Sci. 1990, 38, 305–314. [Google Scholar] [CrossRef]
- Behrens, M.R.; Mutlu, N.; Chakraborty, S.; Dumitru, R.; Jiang, W.Z.; La Vallee, B.J.; Herman, P.L.; Clemente, T.E.; Weeks, D.P. Dicamba resistance: Enlarging and preserving biotechnology-based weed management strategies. Science 2007, 316, 1185–1188. [Google Scholar] [CrossRef] [Green Version]
- Waltz, E. Glyphosate resistance threatens Roundup hegemony. Nat. Biotechnol. 2010, 28, 537–538. [Google Scholar] [CrossRef]
- Egan, J.F.; Mortensen, D.A. Quantifying vapor drift of dicamba herbicides applied to soybean. Environ. Toxicol. Chem. 2012, 31, 1023–1031. [Google Scholar] [CrossRef]
- Eubank, T.W.; Poston, D.H.; Nandula, V.K.; Koger, C.H.; Shaw, D.R.; Reynolds, D.B. Glyphosate-resistant horseweed (Conyza canadensis) control using glyphosate-, paraquat-, and glufosinate-based herbicide programs. Weed Technol. 2008, 22, 16–21. [Google Scholar] [CrossRef]
- Bolte, J.D. Emergence and Control of Horseweed (Conyza canadensis). Master’s Thesis, University of Missouri-Columbia, Columbia, MO, USA, 2015. [Google Scholar]
- Zimmer, M.; Young, B.G.; Johnson, W.G. Weed control with halauxifen-methyl applied alone and in mixtures with 2,4-D, dicamba, and glyphosate. Weed Technol. 2018, 32, 597–602. [Google Scholar] [CrossRef]
- Canadian Weed Science Society. Description of 0–100 Rating Scale for Herbicide Efficacy and Crop Phytotoxicity. 2018. Available online: https://www.weedscience.ca/cwss-visual-ratings-scale/ (accessed on 25 March 2021).
- Byker, H.P.; Soltani, N.; Robinson, D.E.; Tardif, F.J.; Lawton, M.B.; Sikkema, P.H. Control of glyphosate-resistant horseweed (Conyza canadensis) with dicamba applied preplant and postemergence in dicamba-resistant soybean. Weed Technol. 2013, 27, 492–496. [Google Scholar] [CrossRef]
- Westerveld, D.B.; Soltani, N.; Hooker, D.C.; Robinson, D.E.; Sikkema, P.H. Efficacy of tiafenacil applied preplant alone or mixed with metribuzin for glyphosate-resistant horseweed control in soybean. Weed Technol. 2021, 35, 817–823. [Google Scholar] [CrossRef]
- Soltani, N.; Shropshire, C.; Sikkema, P.H. Control of glyphosate-resistant marestail in identity-preserved or glyphosate-resistant and glyphosate/dicamba-resistant soybean with preplant herbicides. Am. J. Plant Sci. 2020, 11, 851. [Google Scholar] [CrossRef]
- Westerveld, D.; Soltani, N.; Hooker, D.; Robinson, D.; Sikkema, P.H. Biologically-effective-dose of bromoxynil, applied alone and mixed with metribuzin, for the control of glyphosate-resistant horseweed in soybean. Weed Technol. 2021, 35, 811–816. [Google Scholar] [CrossRef]
- Westerveld, D.; Soltani, N.; Hooker, D.; Robinson, D.; Sikkema, P.H. Biologically effective dose of pyraflufen-ethyl/2,4-D, applied preplant alone or mixed with metribuzin on glyphosate-resistant horseweed in soybean. Weed Technol. 2021, 35, 824–829. [Google Scholar] [CrossRef]
- Hedges, B.K.; Soltani, N.; Robinson, D.E.; Hooker, D.C.; Sikkema, P.H. Control of glyphosate-resistant Canada fleabane in Ontario with multiple effective modes-of-action in glyphosate/dicamba-resistant soybean. Can. J. Plant Sci. 2018, 99, 78–83. [Google Scholar] [CrossRef]
- Soltani, N.; Shropshire, C.; Sikkema, P.H. Glyphosate-resistant Canada fleabane control with three-way herbicide tankmixes in soybean. Am. J. Plant Sci. 2020, 11, 1478–1486. [Google Scholar] [CrossRef]
Site | Year | Location | Agronomic Information | ||
---|---|---|---|---|---|
Treatment Spray Date | Seeding Date | Emergence Date | |||
S1 | 2020 | Ridgetown | 26 May | 5 June | 11 June |
S2 | 2020 | Moraviantown | 12 June | 18 June | 23 June |
S3 | 2021 | Kintyre | 18 May | 19 May | 25 May |
S4 | 2021 | Bothwell | 24 May | 12 June | 18 June |
Site | Year | Location | GRCF | Resistance (%) | ||
---|---|---|---|---|---|---|
Size (cm) | Density (m−2) | Glyphosate | Cloransulam-Methyl | |||
S1 | 2020 | Ridgetown | 8 | 386 | 100 | 99 |
S2 | 2020 | Moraviantown | 8 | 111 | 92 | 100 |
S3 | 2021 | Kintyre | 9 | 293 | 98 | 85 |
S4 | 2021 | Bothwell | 9 | 54 | - | - |
Active Ingredient | Mode of Action | Trade Name | Manufacturer |
---|---|---|---|
Dicamba | Synthetic auxin | Xtendimax | Bayer CropScience Inc., 160 Quarry Park Blvd S. E., Calgary, AB, Canada |
Metribuzin | Photosystem II (PS II) inhibitor | Sencor 480SC | |
2,4-D ester | Synthetic auxin | Ester 700 | Nufarm Canada., 5101, 333—96th Ave N.E., Calgary, AB, Canada |
Pyraflufen-ethyl/2,4-D | PPO inhibitor/ Synthetic auxin | Blackhawk | |
Halauxifen-methyl | Synthetic auxin | Elevore | Dow AgroSciences Canada Inc., 2400, 215—2nd Street S. W., Calgary, AB, Canada |
Tiafenacil | Protoporphyrinogen oxidase (PPO) inhibitor | Insight | ISK Biosciences., 7470 Auburn Rd, Painesville, OH 44077, United States. |
Bromoxynil | PS II inhibitor | Pardner | Bayer CropScience Inc., 160 Quarry Park Blvd S. E., Calgary, AB, Canada |
Saflufenacil | PPO inhibitor | Eragon LQ | BASF Canada Inc., 100 Milverton Drive, Mississauga, ON, Canada |
Treatment | Rate (g ai ha−1) | GRCF Control (%) | Density a (Plants m−2) | Biomass a (g m−2) | Soybean Yield (t ha−1) | ||
---|---|---|---|---|---|---|---|
2 WAA | 4 WAA | 8 WAA | |||||
Weedy control | - | 0 | 0 | 0 | 324 d | 246 d | 1.42 b |
Weed-free control | - | 100 | 100 | 100 | 0 a | 0 a | 2.57 a |
Glyphosate (G) + dicamba (D) | 900 + 600 | 57 c | 93 b | 94 b,c | 16 b,c | 4 a,b,c | 2.73 a |
G + D + tiafenacil | 900 + 600 + 25 | 64 b,c | 87 b | 90 c | 23 c | 7 a,b,c | 2.65 a |
G + D + metribuzin | 900 + 600 + 400 | 65 b,c | 88 b | 92 c | 25 b,c | 49 c | 2.66 a |
G + D + bromoxynil | 900 + 600 + 280 | 77 a,b | 94 a,b | 93 b,c | 19 b,c | 7 a,b,c | 2.62 a |
G + D + pyraflufen-ethyl/2,4-D | 900 + 600 + 532 | 66 b,c | 95 a,b | 96 a,b,c | 13 b,c | 2 a,b,c | 2.70 a |
G + D + 2,4-D ester | 900 + 600 + 528 | 54 c | 92 b | 97 a,b,c | 6 b,c | 5 a,b,c | 2.62 a |
G + D + halauxifen-methyl | 900 + 600 + 5 | 57 b,c | 93 b | 98 a,b | 7 a,b | 1 a,b | 2.78 a |
G + D + saflufenacil | 600 + 25 | 92 a | 99 a | 99 a | 4 a,b | 1 a,b | 2.04 a,b |
Consistency of GRCF Control | ||||
---|---|---|---|---|
Treatment | Rate (g ai ha−1) | 2 WAA | 4 WAA | 8 WAA |
Glyphosate (G) + dicamba (D) | 900 + 600 | 66 | 17 | 22 |
G + D + tiafenacil | 900 + 600 + 25 | 61 | 19 | 23 |
G + D + metribuzin | 900 + 600 + 400 | 60 | 19 | 22 |
G + D + bromoxynil | 900 + 600 + 280 | 52 | 17 | 21 |
G + D + pyraflufen-ethyl/2,4-D | 900 + 600 + 532 | 60 | 17 | 21 |
G + D + 2,4-D ester | 900 + 600 + 528 | 68 | 18 | 20 |
G + D + halauxifen-methyl | 900 + 600 + 5 | 66 | 17 | 20 |
G + D + saflufenacil | 900 + 600 + 25 | 44 | 16 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dilliott, M.; Soltani, N.; Hooker, D.C.; Robinson, D.E.; Sikkema, P.H. The Addition of Saflufenacil to Glyphosate plus Dicamba Improves Glyphosate-Resistant Canada Fleabane (Erigeron canadensis L.) Control in Soybean. Agronomy 2022, 12, 654. https://doi.org/10.3390/agronomy12030654
Dilliott M, Soltani N, Hooker DC, Robinson DE, Sikkema PH. The Addition of Saflufenacil to Glyphosate plus Dicamba Improves Glyphosate-Resistant Canada Fleabane (Erigeron canadensis L.) Control in Soybean. Agronomy. 2022; 12(3):654. https://doi.org/10.3390/agronomy12030654
Chicago/Turabian StyleDilliott, Meghan, Nader Soltani, David C. Hooker, Darren E. Robinson, and Peter H. Sikkema. 2022. "The Addition of Saflufenacil to Glyphosate plus Dicamba Improves Glyphosate-Resistant Canada Fleabane (Erigeron canadensis L.) Control in Soybean" Agronomy 12, no. 3: 654. https://doi.org/10.3390/agronomy12030654
APA StyleDilliott, M., Soltani, N., Hooker, D. C., Robinson, D. E., & Sikkema, P. H. (2022). The Addition of Saflufenacil to Glyphosate plus Dicamba Improves Glyphosate-Resistant Canada Fleabane (Erigeron canadensis L.) Control in Soybean. Agronomy, 12(3), 654. https://doi.org/10.3390/agronomy12030654