Geochemical Modelling of Inorganic Nutrients Leaching from an Agricultural Soil Amended with Olive-Mill Waste Biochar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olive-Mill Waste Biochar
2.2. Agricultural Soil
2.3. Modelling K Leaching from Soil Columns Amended with Biochar
2.3.1. Data Selection and Input Parameters
2.3.2. Equilibrium Exchange Model (E.E. Model)
2.3.3. Kinetic Exchange Model (K.E. Model)
3. Results & Discussion
3.1. Application of the Equilibrium Exchange Model (E.E. Model)
3.2. Application of the Kinetic Exchange Model (K.E. Model)
3.3. Preliminary Assessment of Biochars’ Potential and Benefits Uses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Our Priorities—The Strategic Objectives of FAO; FAO: Rome, Italy, 2019. [Google Scholar]
- “4 per 1000” Initiative Strategic Plan. 2020. Available online: https://www.4p1000.org/sites/default/files/francais/strategic_plan.pdf (accessed on 11 December 2021).
- El-Bassi, L.; Azzaz, A.A.; Jellali, S.; Akrout, H.; Marks, E.A.N.; Ghimbeu, C.M.; Jeguirim, M. Application of olive mill waste-based biochars in agriculture: Impact on soil properties, enzymatic activities and tomato growth. Sci. Total Environ. 2021, 755, 142531. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Asif, M.; Bilal, H.M.; Rehman, B.; Adnan, M.; Ahmad, T.; Rehman, H.; Anjum, M.Z. Organic and Inorganic Fertilizer; Integral Part for Crop Production Review Article. EC Agric. 2020, 6.3, 1–7. [Google Scholar]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Withers, P.J.A.; Neal, C.; Jarvie, H.P.; Doody, D.G. Agriculture and Eutrophication: Where Do We Go from Here? Sustainability 2014, 6, 5853–5875. [Google Scholar] [CrossRef] [Green Version]
- Agra CEAS Consulting. Integrated Crop Management Systems in the EU. 2002. Available online: https://ec.europa.eu/environment/agriculture/pdf/icm_finalreport.pdf (accessed on 11 December 2021).
- Hadroug, S.; Jellali, S.; Azzaz, A.A.; Kwapinska, M.; Hamdi, H.; Leahy, J.J.; Jeguirim, M.; Kwapinski, W. Valorization of salt post-modified poultry manure biochars for phosphorus recovery from aqueous solutions: Investigations on adsorption properties and involved mechanism. Biomass Convers. Biorefinery 2021, 1–16. [Google Scholar] [CrossRef]
- Lashen, Z.M.; Shams, M.S.; El-Sheshtawy, H.S.; Slaný, M.; Antoniadis, V.; Yang, X.; Sharma, G.; Rinklebe, J.; Shaheen, S.M.; Elmahdy, S.M. Remediation of Cd and Cu contaminated water and soil using novel nanomaterials derived from sugar beet processing- and clay brick factory-solid wastes. J. Hazard. Mater. 2022, 428, 128205. [Google Scholar] [CrossRef] [PubMed]
- Man, Y.; Wang, B.; Wang, J.; Slaný, M.; Yan, H.; Li, P.; El-Naggar, A.; Shaheen, S.M.; Rinklebe, J.; Feng, X. Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. Environ. Int. 2021, 153, 106527. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Domingues, R.R.; Sánchez-Monedero, M.A.; Spokas, K.A.; Melo, L.C.A.; Trugilho, P.F.; Nunes Valenciano, M.; Silva, C.A. Enhancing Cation Exchange Capacity of Weathered Soils Using Biochar: Feedstock, Pyrolysis Conditions and Addition Rate. Agronomy 2020, 10, 824. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Han, J.; Zhang, A.; Kang, Y.; Han, J.; Yang, B.; Hussain, Q.; Wang, X.; Zhang, M.; Khan, M.A. Biochar promotes soil organic carbon sequestration and reduces net global warming potential in apple orchard: A two-year study in the Loess Plateau of China. Sci. Total Environ. 2022, 803, 150035. [Google Scholar] [CrossRef] [PubMed]
- Medina, J.; Calabi-Floody, M.; Aponte, H.; Santander, C.; Paneque, M.; Meier, S.; Panettieri, M.; Cornejo, P.; Borie, F.; Knicker, H.; et al. Utilization of Inorganic Nanoparticles and Biochar as Additives of Agricultural Waste Composting: Effects of End-Products on Plant Growth, C and Nutrient Stock in Soils from a Mediterranean Region. Agronomy 2021, 11, 767. [Google Scholar] [CrossRef]
- Ferjani, A.; Jeguirim, M.; Jellali, S.; Limousy, L.; Courson, C.; Akrout, H.; Thevenin, N.; Ruidavets, L.; Muller, A.; Bennici, S. The use of exhausted grape marc to produce biofuels and biofertilizers: Effect of pyrolysis temperatures on biochars properties. Renew. Sustain. Energy Rev. 2019, 107, 425–433. [Google Scholar] [CrossRef]
- Jindo, K.; Audette, Y.; Higashikawa, F.S.; Silva, C.A.; Akashi, K.; Mastrolonardo, G.; Sánchez-Monedero, M.A.; Mondini, C. Role of biochar in promoting circular economy in the agriculture sector. Part 1: A review of the biochar roles in soil N, P and K cycles. Chem. Biol. Technol. Agric. 2020, 7, 1–12. [Google Scholar] [CrossRef]
- Mia, S.; Dijkstra, F.A.; Singh, B. Chapter One—Long-Term Aging of Biochar: A Molecular Understanding With Agricultural and Environmental Implications. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 141, pp. 1–51. ISBN 978-0-12-812423-9. [Google Scholar]
- Kizito, S.; Luo, H.; Lu, J.; Bah, H.; Dong, R.; Wu, S. Role of nutrient-enriched biochar as a soil amendment during maize growth: Exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability 2019, 11, 3211. [Google Scholar] [CrossRef] [Green Version]
- Jellali, S.; Khiari, B.; Usman, M.; Hamdi, H.; Charabi, Y.; Jeguirim, M. Sludge-derived biochars: A review on the influence of synthesis conditions on pollutants removal efficiency from wastewaters. Renew. Sustain. Energy Rev. 2021, 144, 111068. [Google Scholar] [CrossRef]
- Van Poucke, R.; Meers, E.; Tack, F.M.G. Leaching behavior of Cd, Zn and nutrients (K, P, S) from a contaminated soil as affected by amendment with biochar. Chemosphere 2020, 245, 125561. [Google Scholar] [CrossRef]
- Kong, Z.; Liaw, S.B.; Gao, X.; Yu, Y.; Wu, H. Leaching characteristics of inherent inorganic nutrients in biochars from the slow and fast pyrolysis of mallee biomass. Fuel 2014, 128, 433–441. [Google Scholar] [CrossRef]
- Angst, T.E.; Sohi, S.P. Establishing release dynamics for plant nutrients from biochar. GCB Bioenergy 2013, 5, 221–226. [Google Scholar] [CrossRef]
- Johnson, J.; Anderson, G.; Parkhurst, D. Database “thermo. com. V8. R6. 230,” Rev. 1-11. Lawrence Livermore Natl. Lab. Livermore California 995 2000. [Google Scholar]
- Gwenzi, W.; Nyambishi, T.J.; Chaukura, N.; Mapope, N. Synthesis and nutrient release patterns of a biochar-based N–P–K slow-release fertilizer. Int. J. Environ. Sci. Technol. 2018, 15, 405–414. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, L.; Mei, Y.; Li, F.; Cao, X. Release of nutrients and heavy metals from biochar-amended soil under environmentally relevant conditions. Environ. Sci. Pollut. Res. 2018, 25, 2517–2527. [Google Scholar] [CrossRef] [PubMed]
- Kolahchi, Z.; Jalali, M. Simulating leaching of potassium in a sandy soil using simple and complex models. Agric. Water Manag. 2006, 85, 85–94. [Google Scholar] [CrossRef]
- Kolahchi, Z.; Jalali, M. Effect of water quality on the leaching of potassium from sandy soil. J. Arid Environ. 2007, 68, 624–639. [Google Scholar] [CrossRef]
- Limwikran, T.; Kheoruenromne, I.; Suddhiprakarn, A.; Prakongkep, N.; Gilkes, R.J. Dissolution of K, Ca, and P from biochar grains in tropical soils. Geoderma 2018, 312, 139–150. [Google Scholar] [CrossRef]
- Piash, M.I.; Iwabuchi, K.; Itoh, T.; Uemura, K. Release of essential plant nutrients from manure- and wood-based biochars. Geoderma 2021, 397, 115100. [Google Scholar] [CrossRef]
- Hadroug, S.; Jellali, S.; Leahy, J.J.; Kwapinska, M.; Jeguirim, M.; Hamdi, H.; Kwapinski, W. Pyrolysis Process as a Sustainable Management Option of Poultry Manure: Characterization of the Derived Biochars and Assessment of their Nutrient Release Capacities. Water 2019, 11, 2271. [Google Scholar] [CrossRef] [Green Version]
- Parkhurst, B.D.L.; Appelo, C.A.J. User’s Guide To PHREEQC (version 2)—A Computer Program for Speciation, and Inverse Geochemical Calculations. In Water-Resources Investigations Report 99-4259; U.S. Geological Survey: Denver, CO, USA, 1999. [Google Scholar]
- Jacques, D.; Simunek, J. User Manual of the Multicomponent Variably- Saturated Flow and Transport Model HP1; SCK-CEN, Belgian Nuclear Research Centre: Mol, Belgium, 2005. [Google Scholar]
- Toride, N.; Leij, F.J.; van Genuchten, M.T. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments Version 2.0; U.S. Department of Agriculture: Riverside, CA, USA, 1995.
- Filipovic, V.; Cerne, M.; Simunek, J.; Filipovic, L.; Romic, M.; Ondra ek, G.; Bogunovic, I.; Mustac, I.; Krevh, V.; Ferencevic, A.; et al. Modeling water flow and phosphorus sorption in a soil amended with sewage sludge and olive pomace as compost or biochar. Agronomy 2020, 10, 1163. [Google Scholar] [CrossRef]
- Hemati Matin, N.; Jalali, M.; Antoniadis, V.; Shaheen, S.M.; Wang, J.; Zhang, T.; Wang, H.; Rinklebe, J. Almond and walnut shell-derived biochars affect sorption-desorption, fractionation, and release of phosphorus in two different soils. Chemosphere 2020, 241, 124888. [Google Scholar] [CrossRef]
- Jellali, S.; Diamantopoulos, E.; Haddad, K.; Anane, M.; Durner, W.; Mlayah, A. Lead removal from aqueous solutions by raw sawdust and magnesium pretreated biochar: Experimental investigations and numerical modelling. J. Environ. Manag. 2016, 180, 439–449. [Google Scholar] [CrossRef]
- Tamoši, A.; Chouchène, A.; Valatkevičius, P.; Aikas, M.; Uscila, R.; Ghorbel, M.; Jeguirim, M. The Potential of Thermal Plasma Gasification of Olive Pomace Charcoal. Energies 2017, 10, 710. [Google Scholar] [CrossRef] [Green Version]
- Kinigopoulou, V.; Hatzigiannakis, E.; Guitonas, A.; Oikonomou, E.K.; Samaras, P. Utilization of biobed for the efficient treatment of olive oil mill wastewater. Desalin. Water Treat. 2021, 223, 167–179. [Google Scholar] [CrossRef]
- Azzaz, A.A.; Jeguirim, M.; Kinigopoulou, V.; Doulgeris, C.; Goddard, M.L.; Jellali, S.; Matei Ghimbeu, C. Olive mill wastewater: From a pollutant to green fuels, agricultural and water source and bio-fertilizer—Hydrothermal carbonization. Sci. Total Environ. 2020, 733, 139314. [Google Scholar] [CrossRef] [PubMed]
- Berns, A.E.; Flath, A.; Mehmood, K.; Hofmann, D.; Jacques, D.; Sauter, M.; Vereecken, H.; Engelhardt, I.; Berns, A.; Mehmood, K.; et al. Numerical and Experimental Investigations of Cesium and Strontium Sorption and Transport in Agricultural Soils; Numerical and Experimental Investigations of Cesium and Strontium Sorption and Transport in Agricultural Soils. Vadose Zone J. 2018, 17, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Boluda-Botella, N.; Valdes-Abellan, J.; Pedraza, R. Applying reactive models to column experiments to assess the hydrogeochemistry of seawater intrusion: Optimising ACUAINTRUSION and selecting cation exchange coefficients with PHREEQC. J. Hydrol. 2014, 510, 59–69. [Google Scholar] [CrossRef]
- Liu, P.; Ptacek, C.J.; Blowes, D.W. Mercury Complexation with Dissolved Organic Matter Released from Thirty-Six Types of Biochar. Bull. Environ. Contam. Toxicol. 2019, 103, 175–180. [Google Scholar] [CrossRef]
- Jellali, S.; El-Bassi, L.; Charabi, Y.; Uaman, M.; Khiari, B.; Al-Wardy, M.; Jeguirim, M. Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: A critical review on benefits for environment and agriculture. J. Environ. Manag. 2022, 305, 114368. [Google Scholar] [CrossRef]
- Rangabhashiyam, S.; Balasubramanian, P. The potential of lignocellulosic biomass precursors for biochar production: Performance, mechanism and wastewater application—A review. Ind. Crops Prod. 2019, 128, 405–423. [Google Scholar] [CrossRef]
- ΕΝ 14774-1:2004; Solid biofuels—Determination of Moisture Content—Oven Dry Method—Part 1: Total Moisture—Reference Method (ISO 18134-1:2015).; ISO: Geneva, Switzerland, 2004.
- ΕΝ 15148:2009; Solid Biofuels—Determination of the Content of Volatile Matter; ISO: Geneva, Switzerland, 2009.
- ISO 1171:2010; Solid Mineral Fuels—Determination of Ash; ISO: Geneva, Switzerland, 2010.
- EN 14918:2009 Solid Biofuels—Determination of Calorific Value; ISO: Geneva, Switzerland, 2009.
- EN 15104; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen—Instrumental Methods; ISO: Geneva, Switzerland, 2011.
- Nelson, D.W.; Sommers, L. A Rapid and Accurate Procedure for Estimation of Organic Carbon in Soils. Proc. Indiana Acad. Sci. 1974, 84, 456–462. [Google Scholar]
- ISO 11261:1995 Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method; ISO: Geneva, Switzerland, 1995.
- Keeney, D.R.; Nelson, D.W. Methods of Soil Analysis, Part 2-Chemical and microbiological properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy & Academic Press: Madison, WI, USA, 1982; Volume 100. [Google Scholar]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Soil Survey Laboratory Methods Manual; Version 4; Burt, R. (Ed.) United States Department of Agriculture. U.S. Govt. Print. Office: Washington, DC, USA, 2004.
- Sumner, M.E.; de Ramos, L.; Kukier, U. Compulsive exchange method for determining soil exchange capacities: Proposed time and labor saving modifications. Commun. Soil Sci. Plant Anal. 1994, 25, 567–572. [Google Scholar] [CrossRef]
- Rice, E.W.; Baird, R.B.; Eaton, A.D. Standard Methods fot the Examination of Water and Wastewater, 23rd ed.American Public Health Association, American Water Works Association, Water Environment Federation: 2017: Washington, DC, USA; ISBN 978-0-87553-287-5.
- EN ISO 9963-1:1996; Water Quality—Determination of Alkalinity—Part 1: Determination of Total and Composite Alkalinity; ISO: Geneva, Switzerland, 1996.
- EN ISO 9297:1989; Water Quality—Determination of Chloride—Silver Nitrate Titration with Chromate Indicator (Mohr’s Method); ISO: Geneva, Switzerland, 1989.
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 5th ed.; CRC Press: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Volesky, B.; Weber, J.; Park, J.M. Continuous-flow metal biosorption in a regenerable Sargassum column. Water Res. 2003, 37, 297–306. [Google Scholar] [CrossRef]
- Tiruta-Barna, L. Using PHREEQC for modelling and simulation of dynamic leaching tests and scenarios. J. Hazard. Mater. 2008, 157, 525–533. [Google Scholar] [CrossRef]
- Ciesielski, H.; Sterckeman, T.; Santerne, M.; Willery, J.P. A comparison between three methods for the determination of cation exchange capacity and exchangeable cations in soils. Agronomy 1997, 17, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Marks, E.A.N.; Kinigopoulou, V.; Akrout, H.; Azzaz, A.A.; Doulgeris, C.; Jellali, S.; Rad, C.; Zulueta, P.S.; Tziritis, E.; El-Bassi, L.; et al. Potential for production of biochar-based fertilizers from olive millwaste in mediterranean basin countries: An initial assessment for Spain, Tunisia, and Greece. Sustainability 2020, 12, 6081. [Google Scholar] [CrossRef]
- Roig, A.; Cayuela, M.L.; Sánchez-Monedero, M.A. An overview on olive mill wastes and their valorisation methods. Waste Manag. 2006, 26, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Dutournié, P.; Jeguirim, M.; Khiari, B.; Goddard, M.-L.; Jellali, S. Olive Mill Wastewater: From a Pollutant to Green Fuels, Agricultural Water Source, and Bio-Fertilizer. Part 2: Water Recovery. Water 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Azzaz, A.A.; Khiari, B.; Jellali, S.; Ghimbeu, C.M.; Jeguirim, M. Hydrochars production, characterization and application for wastewater treatment: A review. Renew. Sustain. Energy Rev. 2020, 127, 109882. [Google Scholar] [CrossRef]
- Haddad, K.; Jeguirim, M.; Jellali, S.; Thevenin, N.; Ruidavets, L.; Limousy, L. Biochar production from Cypress sawdust and olive mill wastewater: Agronomic approach. Sci. Total Environ. 2021, 752, 141713. [Google Scholar] [CrossRef]
- European Commission. The post-2020 common agricultural policy: Environmental benefits what the future CAP will bring to the table, European Commission. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/key_policies/documents/cap-post-2020-environ-benefits-simplification_en.pdf (accessed on 1 January 2022).
Parameters | Olive Pomace Raw | Parameters | Olive Pomace Biochar at 450 °C |
---|---|---|---|
C a (wt %) | 47.04 | C a (wt %) | 80.4 |
H a (wt %) | 5.73 | H a (wt %) | 2.87 |
N a (wt %) | 0.87 | N (wt %) | 0.42 |
S a (wt %) | <0.06 | S a (wt %) | 0.027 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Sand (%) | 44.8 | Exchangable Na (cmol/kg) | 0.109 |
Silt (%) | 29.6 | Exchangable K (cmol/kg) | 0.315 |
Clay (%) | 25.6 | Exchangable Ca (cmol/kg) | 8.92 |
Texture | loam | Exchangable Mg (cmol/kg) | 2.28 |
pH | 7.07 | POlsen (mg/kg) | 27.5 |
Electrical Conductivity (mS/cm) | 0.38 | N total (mg/kg) | 1.40 |
Organic Matter (humified) (%) | 2.12 | NO3-N (mg/kg) | 7.25 |
Organic Carbon (%) | 1.06 | B (mg/kg) | 0.927 |
CaCO3 equivalent (%) | 0.48 | Fe (mg/kg) | 8.30 |
ESP (%) | 1.13 | Mn (mg/kg) | 5.62 |
Cation Exchange Capacity (cmol/kg) | 18.5 | Zn (mg/kg) | 4.06 |
Wilting Point at 15 atm (% w/w) | 24.8 | Cu (mg/kg) | 1.70 |
Field Capacity at 0.3 atm (% w/w) | 33.8 | Cd (mg/kg) | 0.11 |
Bulk density (g/cm3) | 1.63 | Pb (mg/kg) | 6.59 |
Saturation (% w/w) | 45.6 | Ni (mg/kg) | 1.86 |
Biochar Fraction in Soils | K | Na | Ca | Mg | CEC |
---|---|---|---|---|---|
0% | 159 | 48 | 470 | 224 | 18.50 |
0.5% | 196 | 52 | 472 | 223 | 18.48 |
1% | 232 | 57 | 473 | 222 | 18.46 |
2% | 306 | 66 | 477 | 221 | 18.42 |
10% | 893 | 136 | 505 | 208 | 18.09 |
Parameter | Value | Parameter | Value |
---|---|---|---|
pH | 7.49 | Na (mg/L) | 83.6 |
Temperature (°C) | 22.2 | K (mg/L) | 1.2 |
Electrical Conductivity (mS/cm) | 1.229 | Ca (mg/L) | 139.2 |
Cl (mg/L) | 192.9 | Mg (mg/L) | 27.2 |
HCO3 (mg/L) | 279.7 | NO3 (mg/L) | 122.7 |
SO4 (mg/L) | 46.7 | NH4 (mg/L) | 0.2 |
Biochar Fraction in Soils | Model E.E. | Model K.E. | ||
---|---|---|---|---|
tex (Days) | K (g) | tex (Days) | K (g) | |
0% | 8.2 | 13.7 | 100 | 14.09 |
0.5% | 8.2 | 16.8 | 100 | 17.46 |
1% | 8.2 | 20.0 | 100 | 20.75 |
2% | 8.2 | 26.4 | 100 | 27.32 |
10% | 12.6 | 78.8 | 125 | 80.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kypritidou, Z.; Doulgeris, C.; Tziritis, E.; Kinigopoulou, V.; Jellali, S.; Jeguirim, M. Geochemical Modelling of Inorganic Nutrients Leaching from an Agricultural Soil Amended with Olive-Mill Waste Biochar. Agronomy 2022, 12, 480. https://doi.org/10.3390/agronomy12020480
Kypritidou Z, Doulgeris C, Tziritis E, Kinigopoulou V, Jellali S, Jeguirim M. Geochemical Modelling of Inorganic Nutrients Leaching from an Agricultural Soil Amended with Olive-Mill Waste Biochar. Agronomy. 2022; 12(2):480. https://doi.org/10.3390/agronomy12020480
Chicago/Turabian StyleKypritidou, Zacharenia, Charalampos Doulgeris, Evangelos Tziritis, Vasiliki Kinigopoulou, Salah Jellali, and Mejdi Jeguirim. 2022. "Geochemical Modelling of Inorganic Nutrients Leaching from an Agricultural Soil Amended with Olive-Mill Waste Biochar" Agronomy 12, no. 2: 480. https://doi.org/10.3390/agronomy12020480
APA StyleKypritidou, Z., Doulgeris, C., Tziritis, E., Kinigopoulou, V., Jellali, S., & Jeguirim, M. (2022). Geochemical Modelling of Inorganic Nutrients Leaching from an Agricultural Soil Amended with Olive-Mill Waste Biochar. Agronomy, 12(2), 480. https://doi.org/10.3390/agronomy12020480