Inter-Specific Hybridization in Cotton (Gossypium hirsutum) for Crop Improvement
Abstract
:1. Introduction
2. Taxonomy of Gossypium and Origin of Gossypium hirsutum
3. Domestication of Upland Cotton
4. Cotton Improvement
5. Development of Spinnable Fiber and Polyploidization
6. Gene Introgression and Inter-Specific Hybridization
7. Introgressive Breeding
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mensah, R. Travel: International Cotton Advisory Committee (ICAC) 77th Plenary Meeting, Present; New South Wales Department of Primary Industries: Orange, Australia, 2019.
- Townsend, T. World natural fibre production and employment. In Handbook of Natural Fibres; Elsevier: Amsterdam, The Netherlands, 2020; pp. 15–36. [Google Scholar]
- Baffes, J. Cotton: Market Setting, Trade Policies, and Issues; World Bank: Washington, DC, USA, 2004. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, S.; Devkar, V.; Kumar, A.; Alisha, A.; Sharma, S.; Deshmukh, R.K.; Patil, G.B. Advances and Applicability of Genotyping Technologies in Cotton Improvement. In Genotyping by Sequencing for Crop Improvement; John Wiley & Sons Ltd.: Chichester, UK, 2022; pp. 250–269. [Google Scholar] [CrossRef]
- Wendel, J.F.; Cronn, R.C. Polyploidy and the evolutionary history of cotton. Adv. Agron. 2003, 78, 78004–78008. [Google Scholar]
- Wendel, J.F.; Grover, C.E. Taxonomy and evolution of the cotton genus, Gossypium. Cotton 2015, 57, 25–44. [Google Scholar]
- Hu, Y.; Chen, J.; Fang, L.; Zhang, Z.; Ma, W.; Niu, Y.; Ju, L.; Deng, J.; Zhao, T.; Lian, J. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet. 2019, 51, 739–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, G.; Grover, C.E.; Yuan, D.; Dong, Y.; Miller, E.; Conover, J.L.; Wendel, J.F. Evolution and diversity of the cotton genome. In Cotton Precision Breeding; Springer: Berlin/Heidelberg, Germany, 2021; pp. 25–78. [Google Scholar]
- Paterson, A.H. Molecular genetic map of cotton. In DNA-Based Markers in Plants; Springer: Berlin/Heidelberg, Germany, 2001; pp. 239–253. [Google Scholar]
- Barroso, P.A.V.; Hoffmann, L.V.; da Costa, N.D.L. Challenges and Opportunities for in situ Maintenance of the Native Brazilian Cotton Gossypium mustelinum Miers. Front. Ecol. Evol. 2021, 9, 323. [Google Scholar] [CrossRef]
- Grover, C.; Zhu, X.; Grupp, K.; Jareczek, J.; Gallagher, J.; Szadkowski, E.; Seijo, J.G.; Wendel, J. Molecular confirmation of species status for the allopolyploid cotton species, Gossypium ekmanianum Wittmack. Genet. Resour. Crop Evol. 2015, 62, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Krapovickas, A.; SEIJO, G.; Seijo, J.G. Gossypium ekmanianum (Malvaceae), algodon silvestre de la Republica Dominicana. Bonplandia 2008, 17, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, J.P.; Grover, C.E.; Rex, K.; Moran, M.; Wendel, J.F. A new species of cotton from Wake Atoll, Gossypium stephensii (Malvaceae). Syst. Bot. 2017, 42, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Senchina, D.S.; Alvarez, I.; Cronn, R.C.; Liu, B.; Rong, J.; Noyes, R.D.; Paterson, A.H.; Wing, R.A.; Wilkins, T.A.; Wendel, J.F. Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol. Biol. Evol. 2003, 20, 633–643. [Google Scholar] [CrossRef]
- Reinisch, A.J.; Dong, J.M.; Brubaker, C.L.; Stelly, D.M.; Wendel, J.F.; Paterson, A.H. A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense: Chromosome organization and evolution in a disomic polyploid genome. Genetics 1994, 138, 829–847. [Google Scholar] [CrossRef]
- Hendrix, B.; Stewart, J.M. Estimation of the nuclear DNA content of gossypium species. Ann. Bot. 2005, 95, 789–797. [Google Scholar] [CrossRef]
- Geever, R.F.; Katterman, F.R.; Endrizzi, J.E. DNA hybridization analyses of a Gossypium allotetmploid and two closely related diploid species. TAG Theor. Appl. Genet. Theor. Und Angew. Genet. 1989, 77, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Rong, J.; Feltus, F.A.; Waghmare, V.N.; Pierce, G.J.; Chee, P.W.; Draye, X.; Saranga, Y.; Wright, R.J.; Wilkins, T.A.; May, O.L.; et al. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 2007, 176, 2577–2588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Zhang, D.; Wang, X.; Tan, X.; Guo, H.; Paterson, A.H. A whole-genome DNA marker map for cotton based on the D-genome sequence of Gossypium raimondii L. G3 2013, 3, 1759–1767. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.W. (Ed.) Cotton: Origin, History, Technology and Production; J. Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Desai, A.; Chee, P.W.; Rong, J.; May, O.L.; Paterson, A.H. Chromosome structural changes in diploid and tetraploid A genomes of Gossypium. Genome 2006, 49, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Hurt, R.D. A Companion to American Agricultural History; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Fryxell, P.A. The Natural History of the Cotton Tribe (Malvaceae, Tribe Gossypieae); Texas A & M University Press: College Station, TX, USA, 1979. [Google Scholar]
- Wendel, J.F.; Brubaker, C.; Alvarez, I.; Cronn, R.; Stewart, J.M. Evolution and natural history of the cotton genus. In Genetics and Genomics of Cotton; Springer: Berlin/Heidelberg, Germany, 2009; pp. 3–22. [Google Scholar]
- Stephens, S. Evolution under domestication of the New World cottons (Gossypium spp.). Cienc. Cult. 1967, 19, 118–134. [Google Scholar]
- Applequist, W.L.; Cronn, R.; Wendel, J.F. Comparative development of fiber in wild and cultivated cotton. Evol. Dev. 2001, 3, 3–17. [Google Scholar] [CrossRef]
- Hovav, R.; Udall, J.A.; Chaudhary, B.; Hovav, E.; Flagel, L.; Hu, G.; Wendel, J.F. The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism. PLoS Genet. 2008, 4, e25. [Google Scholar] [CrossRef] [Green Version]
- Waghmare, V.N. Cotton Breeding. In Fundamentals of Field Crop Breeding; Springer: Berlin/Heidelberg, Germany, 2022; pp. 609–676. [Google Scholar]
- Wendel, J.F.; Brubaker, C.L.; Percival, A.E. Genetic diversity in Gossypium hirsutum and the origin of upland cotton. Am. J. Bot. 1992, 79, 1291–1310. [Google Scholar] [CrossRef] [Green Version]
- Ware, J.O. Origin, Rise and Development of American Upland Cotton Varieties and Their Status at Present; University of Arkansas College of Agriculture, Agricultural Experiment Station: Fayetteville, NC, USA, 1951. [Google Scholar]
- Lubbers, E.L.; Chee, P.W.; Saranga, Y.; Paterson, A.H. Recent advances and future prospective in molecular breeding of cotton for drought and salinity stress tolerance. In Advances in Molecular Breeding toward Drought and Salt Tolerant Crops; Springer: Berlin/Heidelberg, Germany, 2007; pp. 775–796. [Google Scholar]
- Ware, J.O. Plant breeding and the cotton industry. In U.S. Dept. of Agriculture Yearbook 1936; GPO: Washington, DC, USA, 1936; pp. 657–744. [Google Scholar]
- Kulkarni, V.N.; Khadi, B.M.; Maralappanavar, M.S.; Deshapande, L.A.; Narayanan, S. The worldwide gene pools of Gossypium arboreum L. and G. herbaceum L. and their improvement. In Genetics and Genomics of Cotton; Springer: Berlin/Heidelberg, Germany, 2009; pp. 69–97. [Google Scholar]
- Zeng, L.; Wu, J.; Bourland, F.M.; Campbell, B.T.; Dever, J.K.; Hague, S.; Myers, G.O.; Raper, T.B.; Smith, W.; Zhang, J. Comparative study of transgenic and nontransgenic cotton. Crop Sci. 2021, 61, 2467–2477. [Google Scholar] [CrossRef]
- Bowman, D.T. Attributes of public and private cotton breeding programs. J. Cotton Sci. 2000, 4, 130–136. [Google Scholar]
- Mauney, J.R. Anatomy and Morphology of Cultivated Cottons. In Cotton; Fang, D.D., Percy, R.G., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 77–96. [Google Scholar]
- Bourland, F.; Myers, G.O. Conventional cotton breeding. Cotton 2015, 57, 205–228. [Google Scholar]
- Mason, A.S. Polyploidy and Hybridization for Crop Improvement; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Worley, S.; Culp, T.; Harrell, D. The relative contributions of yield components to lint yield of upland cotton, Gossypium hirsutum L. Euphytica 1974, 23, 399–403. [Google Scholar] [CrossRef]
- Culp, T.; Harrell, D.; Kerr, T. Some genetic implications in the transfer of high fiber strength genes to upland cotton 1. Crop Sci. 1979, 19, 481–484. [Google Scholar] [CrossRef]
- Zeng, L.; Stetina, S.R.; Erpelding, J.E.; Bechere, E.; Turley, R.B.; Scheffler, J. History and current research in the USDA-ARS cotton breeding program at Stoneville, MS. J. Cotton Sci. 2018, 22, 24–35. [Google Scholar] [CrossRef]
- Kearney, T. Lint index and lint percentage in cotton breeding. J. Hered. 1912, os-7, 25–29. [Google Scholar] [CrossRef]
- Culp, T.; Harrell, D. Influence of Lint Percentage, Boll Size, and Seed Size on Lint Yield of Upland Cotton with High Fiber Strength. Crop Sci. 1975, 15, 741–746. [Google Scholar] [CrossRef]
- Niu, H.; Ge, Q.; Shang, H.; Yuan, Y. Inheritance, QTLs, and Candidate Genes of Lint Percentage in Upland Cotton. Front. Genet. 2022, 13, 855574. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gao, Y.; Chen, P.; Zhou, J.; Zhang, C.; Song, Z.; Huo, X.; Du, Z.; Gong, J.; Zhao, C. Genome-wide association study reveals novel quantitative trait loci and candidate genes of lint percentage in upland cotton based on the CottonSNP80K array. Theor. Appl. Genet. 2022, 135, 2279–2295. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Wang, W.; Grover, C.E.; Jiang, K.; Pan, Z.; Guo, B.; Zhu, J.; Su, Y.; Wang, M.; Nie, H. Genomic and GWAS analyses demonstrate phylogenomic relationships of Gossypium barbadense in China and selection for fibre length, lint percentage and Fusarium wilt resistance. Plant Biotechnol. J. 2022, 20, 691. [Google Scholar] [CrossRef]
- Peng, R.; Jones, D.C.; Liu, F.; Zhang, B. From sequencing to genome editing for cotton improvement. Trends Biotechnol. 2021, 39, 221–224. [Google Scholar] [CrossRef]
- Majeed, S.; Rana, I.A.; Mubarik, M.S.; Atif, R.M.; Yang, S.-H.; Chung, G.; Jia, Y.; Du, X.; Hinze, L.; Azhar, M.T. Heat stress in cotton: A review on predicted and unpredicted growth-yield anomalies and mitigating breeding strategies. Agronomy 2021, 11, 1825. [Google Scholar] [CrossRef]
- Li, C.; Fu, Y.; Liu, Q.; Du, L.; Trotsenko, V. A review of genetic mechanisms of early maturity in cotton (Gossypium hirsutum L.). Euphytica 2020, 216, 120. [Google Scholar] [CrossRef]
- Negm, M. Cotton breeding. In Handbook of Natural Fibres; Elsevier: Amsterdam, The Netherlands, 2020; pp. 579–603. [Google Scholar]
- Gwathmey, C.O.; Bange, M.P.; Brodrick, R. Cotton crop maturity: A compendium of measures and predictors. Field Crops Res. 2016, 191, 41–53. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, L.; Du, M.; Evers, J.B.; van der Werf, W.; Tian, X.; Li, Z. Managing mepiquat chloride and plant density for optimal yield and quality of cotton. Field Crops Res. 2013, 149, 1–10. [Google Scholar] [CrossRef]
- Constable, G.; Llewellyn, D.; Walford, S.A.; Clement, J.D. Cotton breeding for fiber quality improvement. In Industrial Crops; Springer: Berlin/Heidelberg, Germany, 2015; pp. 191–232. [Google Scholar]
- Culp, T.; Harrell, D. Breeding methods for improving yield and fiber quality of upland cotton (Gossypium hirsutum L.) 1. Crop Sci. 1973, 13, 686–689. [Google Scholar] [CrossRef]
- Geng, X.; Sun, G.; Qu, Y.; Sarfraz, Z.; Jia, Y.; He, S.; Pan, Z.; Sun, J.; Iqbal, M.S.; Wang, Q. Genome-wide dissection of hybridization for fiber quality-and yield-related traits in upland cotton. Plant J. 2020, 104, 1285–1300. [Google Scholar] [CrossRef]
- Chee, P.W.; Campbell, B.T. Bridging classical and molecular genetics of cotton fiber quality and development. In Genetics and Genomics of Cotton; Springer: Berlin/Heidelberg, Germany, 2009; pp. 283–311. [Google Scholar]
- Campbell, B.T. Examining the relationship between agronomic performance and fiber quality in ten cotton breeding populations. Crop Sci. 2021, 61, 989–1001. [Google Scholar] [CrossRef]
- Campbell, B.; Chee, P.; Lubbers, E.; Bowman, D.; Meredith, W., Jr.; Johnson, J.; Fraser, D.; Bridges, W.; Jones, D. Dissecting genotype× environment interactions and trait correlations present in the Pee Dee cotton germplasm collection following seventy years of plant breeding. Crop Sci. 2012, 52, 690–699. [Google Scholar] [CrossRef] [Green Version]
- Meredith, W.R., Jr.; Bridge, R. Yield, Yield Component and Fiber Property Variation of Cotton (Gossypium hirsutum L.) within and among Environments. Crop Sci. 1973, 13, 307–312. [Google Scholar] [CrossRef]
- Meredith, W.R., Jr.; Bridge, R. Recurrent Selection for Lint Percent within a Cultivar of Cotton (Gossypium hirsutum L.). Crop Sci. 1973, 13, 698–701. [Google Scholar] [CrossRef]
- Chandnani, R.; Zhang, Z.; Patel, J.D.; Adhikari, J.; Khanal, S.; He, D.; Brown, N.; Chee, P.W.; Paterson, A.H. Comparative genetic variation of fiber quality traits in reciprocal advanced backcross populations. Euphytica 2017, 213, 1–9. [Google Scholar] [CrossRef]
- Wang, L.; He, S.; Dia, S.; Sun, G.; Liu, X.; Wang, X.; Pan, Z.; Jia, Y.; Wang, L.; Pang, B. Alien genomic introgressions enhanced fiber strength in upland cotton (Gossypium hirsutum L.). Ind. Crops Prod. 2021, 159, 113028. [Google Scholar] [CrossRef]
- Konan, N.; Baudoin, J.-P.; Mergeai, G. Potential of ten wild diploid cotton species for the improvement of fiber fineness of upland cotton through interspecific hybridisation. J. Plant Breed. Crop Sci. 2020, 12, 97–105. [Google Scholar]
- Mergeai, G. Forty years of genetic improvement of cotton through interspecific hybridization at Gembloux Agricultural University: Achievement and prospects. In Proceedings of the World Cotton Research Conference, Cape Town, South Africa, 9–13 March 2003. [Google Scholar]
- Chen, Z.J.; Sreedasyam, A.; Ando, A.; Song, Q.; De Santiago, L.M.; Hulse-Kemp, A.M.; Ding, M.; Ye, W.; Kirkbride, R.C.; Jenkins, J. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat. Genet. 2020, 52, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Patel, G.; Thakar, B. Cotton improvement through interspecific hybridization. Indian Cotton Grow. Rev. 1950, 4, 185–198. [Google Scholar]
- Thiyagu, K.; Nadarajan, N.; Rajarathinam, S.; Sudhakar, D.; Rajendran, K. Association and path analysis for seed cotton yield improvement in interspecific crosses of cotton (Gossypium spp.). Electron. J. Plant Breed. 2010, 1, 1001–1005. [Google Scholar]
- Choudki, V.; Sangannavar, P.; Savita, S.; Khadi, B.; Vamadevaiah, H.; Katageri, I. Genetic improvement of fibre traits in diploid cotton (G. herbaceum L.) through interspecific hybridization using G. barbadense tetraploid species. Electron. J. Plant Breed. 2012, 3, 686–691. [Google Scholar]
- Paterson, A.H.; Wendel, J.F.; Gundlach, H.; Guo, H.; Jenkins, J.; Jin, D.; Llewellyn, D.; Showmaker, K.C.; Shu, S.; Udall, J. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 2012, 492, 423–427. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Wright, R.J.; El-Zik, K.M.; Paterson, A.H. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc. Natl. Acad. Sci. USA 1998, 95, 4419–4424. [Google Scholar] [CrossRef] [Green Version]
- Lynch, M.; Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science 2000, 290, 1151–1155. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.P.; Si, Y.; Hanson, R.E.; Crane, C.F.; Price, H.J.; Stelly, D.M.; Wendel, J.F.; Paterson, A.H. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Res. 1998, 8, 479–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, R.E.; Zhao, X.p.; Islam-Faridi, M.N.; Paterson, A.H.; Zwick, M.S.; Crane, C.F.; McKnight, T.D.; Stelly, D.M.; Price, H.J. Evolution of interspersed repetitive elements in Gossypium (Malvaceae). Am. J. Bot. 1998, 85, 1364–1368. [Google Scholar] [CrossRef] [PubMed]
- Small, R.L.; Ryburn, J.A.; Wendel, J.F. Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium, L.). Mol. Biol. Evol. 1999, 16, 491–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Rong, J.; Waghmare, V.N.; Chee, P.W.; May, O.L.; Wright, R.J.; Gannaway, J.R.; Paterson, A.H. QTL alleles for improved fiber quality from a wild Hawaiian cotton, Gossypium tomentosum. TAG Theor. Appl. Genet. Theor. Und Angew. Genet. 2011, 123, 1075–1088. [Google Scholar] [CrossRef]
- Guo, H.; Wang, X.; Gundlach, H.; Mayer, K.F.X.; Peterson, D.G.; Scheffler, B.E.; Chee, P.W.; Paterson, A.H. Extensive and biased intergenomic nonreciprocal DNA exchanges shaped a nascent polyploid genome, Gossypium (cotton). Genetics 2014, 197, 1153–1163. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, J. Intra-specific differentiation in Gossypium hirsutum. Heredity 1951, 5, 161–193. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, P.; Gore, M.A.; Bowman, D.T.; Campbell, B.T.; Udall, J.A.; Kuraparthy, V. Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.). TAG Theor. Appl. Genet. Theor. Und Angew. Genet. 2014, 127, 283–295. [Google Scholar] [CrossRef]
- Fang, D.D.; Hinze, L.L.; Percy, R.G.; Li, P.; Deng, D.; Thyssen, G. A microsatellite-based genome-wide analysis of genetic diversity and linkage disequilibrium in Upland cotton (Gossypium hirsutum L.) cultivars from major cotton-growing countries. Euphytica 2013, 191, 391–401. [Google Scholar] [CrossRef]
- Aslam, S.; Khan, S.H.; Ahmed, A.; Dandekar, A.M. The tale of cotton plant: From wild type to domestication, leading to its improvement by genetic transformation. Am. J. Mol. Biol. 2020, 10, 91–127. [Google Scholar] [CrossRef] [Green Version]
- Lubbers, E.L.; Chee, P.W. The worldwide gene pool of G. hirsutum and its improvement. In Genetics and Genomics of Cotton; Springer: Berlin/Heidelberg, Germany, 2009; pp. 23–52. [Google Scholar]
- Zhao, Y.; Wang, H.; Chen, W.; Li, Y.; Gong, H.; Sang, X.; Huo, F.; Zeng, F. Genetic diversity and population structure of elite cotton (Gossypium hirsutum L.) germplasm revealed by SSR markers. Plant Syst. Evol. 2015, 301, 327–336. [Google Scholar] [CrossRef]
- Bowman, D.T.; Gutiérrez, O.A. Sources of fiber strength in the US upland cotton crop from 1980 to 2000. J. Cotton Sci. 2003, 7, 164–169. [Google Scholar]
- Zhang, J.; Fang, H.; Zhou, H.; Hughs, S.; Jones, D.C. Inheritance and transfer of thrips resistance from Pima cotton to Upland cotton. J. Cotton Sci 2013, 17, 163–169. [Google Scholar]
- Islam, M.S.; Fang, D.D.; Jenkins, J.N.; Guo, J.; McCarty, J.C.; Jones, D.C. Evaluation of genomic selection methods for predicting fiber quality traits in Upland cotton. Mol. Genet. Genom. MGG 2020, 295, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Raska, D.A.; Stelly, D.M. Upland Cotton (Gossypium hirsutum L.) × Hawaiian Cotton (G. tomentosum Nutt. Ex. Seem.) F1 hybrid hypoaneuploid chromosome substitution series. J. Cotton Sci. 2006, 10, 263–272. [Google Scholar]
- Muthuraj, M.; Mahalingam, L.; Premalatha, N.; Senguttuvan, K.; Kumar, M. F1 Interspecific hybridity confirmation in cotton through morphological, cytological and molecular analysis. Electron. J. Plant Breed. 2019, 10, 862–873. [Google Scholar] [CrossRef]
- Newaskar, G.S.; Chimote, V.P.; Mehetre, S.S.; Jadhav, A.S. Interspecific hybridization in G. ossypium L.: Characterization of progenies with different ploidy-confirmed multigenomic backgrounds. Plant Breed. 2013, 132, 211–216. [Google Scholar] [CrossRef]
- Draye, X.; Chee, P.; Jiang, C.-X.; Decanini, L.; Delmonte, T.A.; Bredhauer, R.; Smith, C.W.; Paterson, A.H. Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: II. Fiber fineness. Theor. Appl. Genet. 2005, 111, 764–771. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, M.; Yu, J.; Li, X.; Pei, W. Breeding potential of introgression lines developed from interspecific crossing between upland cotton (Gossypium hirsutum) and Gossypium barbadense: Heterosis, combining ability and genetic effects. PLoS ONE 2016, 11, e0143646. [Google Scholar] [CrossRef] [Green Version]
- Hulse-Kemp, A.M.; Lemm, J.; Plieske, J.; Ashrafi, H.; Buyyarapu, R.; Fang, D.D.; Frelichowski, J.; Giband, M.; Hague, S.; Hinze, L.L. Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3 Genes Genomes Genet. 2015, 5, 1187–1209. [Google Scholar] [CrossRef] [Green Version]
- Hinze, L.L.; Hulse-Kemp, A.M.; Wilson, I.W.; Zhu, Q.-H.; Llewellyn, D.J.; Taylor, J.M.; Spriggs, A.; Fang, D.D.; Ulloa, M.; Burke, J.J. Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array. BMC Plant Biol. 2017, 17, 37. [Google Scholar] [CrossRef]
- Zhu, D.; Li, X.; Wang, Z.; You, C.; Nie, X.; Sun, J.; Zhang, X.; Zhang, D.; Lin, Z. Genetic dissection of an allotetraploid interspecific CSSLs guides interspecific genetics and breeding in cotton. BMC Genom. 2020, 21, 431. [Google Scholar] [CrossRef] [PubMed]
- Desalegn, Z.; Ratanadilok, N.; Kaveeta, R. Correlation and heritability for yield and fiber quality parameters of Ethiopian cotton (Gossypium hirsutum L.) estimated from 15 (diallel) crosses. Agric. Nat. Resour. 2009, 43, 1–11. [Google Scholar]
- Ulloa, M. Heritability and correlations of agronomic and fiber traits in an okra-leaf upland cotton population. Crop Sci. 2006, 46, 1508–1514. [Google Scholar] [CrossRef] [Green Version]
- Ulloa, M.; De Santiago, L.M.; Hulse-Kemp, A.M.; Stelly, D.M.; Burke, J.J. Enhancing Upland cotton for drought resilience, productivity, and fiber quality: Comparative evaluation and genetic dissection. Mol. Genet. Genom. 2020, 295, 155–176. [Google Scholar] [CrossRef]
- Shim, J.; Mangat, P.K.; Angeles-Shim, R. Natural variation in wild Gossypium species as a tool to broaden the genetic base of cultivated cotton. J. Plant Sci. Curr. Res 2018, 2, 9. [Google Scholar]
- Yin, X.; Zhan, R.; He, Y.; Song, S.; Wang, L.; Ge, Y.; Chen, D. Morphological description of a novel synthetic allotetraploid (A1A1G3G3) of Gossypium herbaceum L. and G. nelsonii Fryx. suitable for disease-resistant breeding applications. PLoS ONE 2020, 15, e0242620. [Google Scholar] [CrossRef]
- Huang, G.; Huang, J.-Q.; Chen, X.-Y.; Zhu, Y.-X. Recent advances and future perspectives in cotton research. Annu. Rev. Plant Biol. 2021, 72, 437–462. [Google Scholar] [CrossRef]
- Meredith, W., Jr. Use of insect resistant germplasm in reducing the cost of production in the 1980s. In Proceedings of the Beltwide Cotton Conference, St. Louis, MO, USA, 6 January 1980; pp. 4–8. [Google Scholar]
- Levin, D.A. Somatic Cell Hybridization: Application in Plant Systematics. Taxon 1975, 24, 261–270. [Google Scholar] [CrossRef]
- Jiang, C.X.; Chee, P.W.; Draye, X.; Morrell, P.L.; Smith, C.W.; Paterson, A.H. Multilocus interactions restrict gene introgression in interspecific populations of polyploid Gossypium (cotton). Evol. Int. J. Org. Evol. 2000, 54, 798–814. [Google Scholar] [CrossRef]
- Brown, H.; Ware, J. Cotton; Mc Graw, Hill, Book Company Inc.: New York, NY, USA, 1958. [Google Scholar]
- Brubaker, C.L.; Wendel, J.F. Reevaluating the origin of domesticated cotton (Gossypium hirsutum; Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). Am. J. Bot. 1994, 81, 1309–1326. [Google Scholar] [CrossRef]
- Percy, R.G. The worldwide gene pool of Gossypium barbadense L. and its improvement. In Genetics and Genomics of Cotton; Springer: Berlin/Heidelberg, Germany, 2009; pp. 53–68. [Google Scholar]
- Wang, G.L.; Dong, J.M.; Paterson, A.H. The distribution of Gossypium hirsutum chromatin in G. barbadense germ plasm: Molecular analysis of introgressive plant breeding. TAG Theor. Appl. Genet. Theor. Und Angew. Genet. 1995, 91, 1153–1161. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.; Zhang, W.; Hu, Y.; Chang, L.; Fang, L.; Wang, Q.; Lv, F.; Wu, H.; Si, Z.; et al. Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biol. 2015, 16, 108. [Google Scholar] [CrossRef]
- Cao, Z.; Zhu, X.; Chen, H.; Zhang, T. Fine mapping of clustered quantitative trait loci for fiber quality on chromosome 7 using a Gossypium barbadense introgressed line. Mol. Breed. 2015, 35, 215. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, R.; Lubbers, E.L.; Shen, X.; Paterson, A.H.; Campbell, B.T.; Jones, D.C.; Chee, P.W. Mapping and validation of fiber strength quantitative trait loci on chromosome 24 in upland cotton. Crop Sci. 2012, 52, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- Paterson, A.H.; Boman, R.K.; Brown, S.M.; Chee, P.W.; Gannaway, J.R.; Gingle, A.R.; May, O.L.; Smith, C.W. Reducing the genetic vulnerability of cotton. Crop Sci 2004, 44, 1900–1901. [Google Scholar] [CrossRef]
- Tanksley, S.D.; Nelson, J.C. Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. TAG Theor. Appl. Genet. Theor. Und Angew. Genet. 1996, 92, 191–203. [Google Scholar] [CrossRef]
- Baohua, W.; Peng, W.C. Application of advanced backcross QTL analysis in crop improvement. J. Plant Breed. Crop Sci. 2010, 2, 221–232. [Google Scholar]
- Chee, P.W.; Draye, X.; Jiang, C.-X.; Decanini, L.; Delmonte, T.A.; Bredhauer, R.; Smith, C.W.; Paterson, A.H. Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length. Theor. Appl. Genet. 2005, 111, 772–781. [Google Scholar] [CrossRef]
- Chee, P.; Draye, X.; Jiang, C.-X.; Decanini, L.; Delmonte, T.A.; Bredhauer, R.; Smith, C.W.; Paterson, A.H. Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: I. Fiber elongation. Theor. Appl. Genet. 2005, 111, 757–763. [Google Scholar] [CrossRef]
- Shen, X.; Guo, W.; Zhu, X.; Yuan, Y.; Yu, J.Z.; Kohel, R.J.; Zhang, T. Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers. Mol. Breed. 2005, 15, 169–181. [Google Scholar] [CrossRef]
- Zhang, T.; Yuan, Y.; Yu, J.; Guo, W.; Kohel, R.J. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. TAG Theor. Appl. Genet. Theor. Und Angew. Genet. 2003, 106, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Chandnani, R.; Kim, C.; Guo, H.; Shehzad, T.; Wallace, J.G.; He, D.; Zhang, Z.; Patel, J.D.; Adhikari, J.; Khanal, S. Genetic analysis of gossypium fiber quality traits in reciprocal advanced backcross populations. Plant Genome 2018, 11, 170057. [Google Scholar] [CrossRef] [PubMed]
- Chandnani, R.; Wang, B.; Draye, X.; Rainville, L.K.; Auckland, S.; Zhuang, Z.; Lubbers, E.L.; May, O.L.; Chee, P.W.; Paterson, A.H. Segregation distortion and genome-wide digenic interactions affect transmission of introgressed chromatin from wild cotton species. Theor. Appl. Genet. 2017, 130, 2219–2230. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Draye, X.; Zhuang, Z.; Zhang, Z.; Liu, M.; Lubbers, E.L.; Jones, D.; May, O.L.; Paterson, A.H.; Chee, P.W. QTL analysis of cotton fiber length in advanced backcross populations derived from a cross between Gossypium hirsutum and G. mustelinum. Theor. Appl. Genet. 2017, 130, 1297–1308. [Google Scholar] [CrossRef]
- Wang, B.; Zhuang, Z.; Zhang, Z.; Draye, X.; Shuang, L.-S.; Shehzad, T.; Lubbers, E.L.; Jones, D.; May, O.L.; Paterson, A.H. Advanced backcross QTL analysis of fiber strength and fineness in a cross between Gossypium hirsutum and G. mustelinum. Front. Plant Sci. 2017, 8, 1848. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Wang, W.; Khanal, S.; Han, J.; Zhang, M.; Chen, Y.; Li, Z.; Wang, K.; Paterson, A.H.; Yu, J. Transcriptome analysis reveals genes potentially related to high fiber strength in a Gossypium hirsutum line IL9 with Gossypium mustelinum introgression. Genome 2021, 64, 985–995. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, R.; Shen, C.; Li, X.; Zhu, D.; Lin, Z. Transcriptome and QTL analyses reveal candidate genes for fiber quality in Upland cotton. Crop J. 2020, 8, 98–106. [Google Scholar] [CrossRef]
- Lu, Q.; Xiao, X.; Gong, J.; Li, P.; Zhao, Y.; Feng, J.; Peng, R.; Shi, Y.; Yuan, Y. Identification of candidate cotton genes associated with fiber length through quantitative trait loci mapping and RNA-sequencing using a chromosome segment substitution line. Front. Plant Sci. 2021, 12, 796722. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, J.; Chen, Y.; Zhang, C.; Gong, J.; Song, Z.; Zhou, J.; Wang, J.; Zhao, C.; Jiao, M. Identification of candidate genes for key fibre-related QTL s and derivation of favourable alleles in Gossypium hirsutum recombinant inbred lines with G. barbadense introgressions. Plant Biotechnol. J. 2020, 18, 707–720. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Cao, Z.; Singh, R.; Lubbers, E.L.; Xu, P.; Smith, C.W.; Paterson, A.H.; Chee, P.W. Efficacy of qFL-chr1, a quantitative trait locus for fiber length in cotton (Gossypium spp.). Crop Sci. 2011, 51, 2005–2010. [Google Scholar] [CrossRef]
- Blanco-Montenegro, I.; De Ritis, R.; Chiappini, M. Imaging and modelling the subsurface structure of volcanic calderas with high-resolution aeromagnetic data at Vulcano (Aeolian Islands, Italy). Bull. Volcanol. 2007, 69, 643–659. [Google Scholar] [CrossRef]
- Knight, R. The Genetics Of Blackarm Resistance Ix The Gene B6M From Gossypium Arboreum. J. Genet. 1953, 51, 270–275. [Google Scholar] [CrossRef]
- Knight, R. The genetics of blackarm resistance XII. Transference of resistance from Gossypium herbaceum to G. barbadense. J. Genet. 1963, 58, 328–346. [Google Scholar] [CrossRef]
- Zhang, J.; Bourland, F.; Wheeler, T.; Wallace, T. Bacterial blight resistance in cotton: Genetic basis and molecular mapping. Euphytica 2020, 216, 1–19. [Google Scholar] [CrossRef]
- Delannoy, E.; Lyon, B.; Marmey, P.; Jalloul, A. Resistance of cotton towards Xanthomonas campestris pv. malvacearum. Annu. Rev. Phytopathol. 2005, 43, 63. [Google Scholar] [CrossRef]
- Wang, C.; Roberts, P. A Fusarium wilt resistance gene in Gossypium barbadense and its effect on root-knot nematode-wilt disease complex. Phytopathology 2006, 96, 727–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Idowu, J.; Flynn, R.; Wedegaertner, T. Progress in breeding for glandless cotton in New Mexico. In Proceedings of the Beltwide Cotton Conference, San Antonio, TX, USA, 3–5 January 2018; pp. 566–572. [Google Scholar]
- Zhang, J. Fighting Fusarium wilt through breeding in cotton: A successful story in China. In Proceedings of the Beltwide Cotton Conference, San Antonio, TX, USA, 3–5 January 2018; pp. 877–879. [Google Scholar]
- Ulloa, M.; Hutmacher, R.B.; Roberts, P.A.; Wright, S.D.; Nichols, R.L.; Michael Davis, R. Inheritance and QTL mapping of Fusarium wilt race 4 resistance in cotton. Theor. Appl. Genet. 2013, 126, 1405–1418. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.S.e.A.; Naqvi, R.Z.; Asif, M.; Strickler, S.; Shakir, S.; Shafiq, M.; Khan, A.M.; Amin, I.; Mishra, B.; Mukhtar, M.S. Molecular insight into cotton leaf curl geminivirus disease resistance in cultivated cotton (Gossypium hirsutum). Plant Biotechnol. J. 2020, 18, 691–706. [Google Scholar] [CrossRef] [Green Version]
- Vij, S.; Pathak, D.; Rathore, P.; Kumar, H.; Sekhon, P.; Bhatia, D.; Chhuneja, P.; Singh, K. Molecular mapping of CLCuD resistance introgressed from synthetic cotton polyploid in upland cotton. J. Genet. 2022, 101, 25. [Google Scholar] [CrossRef]
- Nazeer, W.; Ahmad, S.; Mahmood, K.; Tipu, A.; Mahmood, A.; Zhou, B. Introgression of genes for cotton leaf curl virus resistance and increased fiber strength from Gossypium stocksii into upland cotton (G. hirsutum). Genet. Mol. Res. 2014, 13, 1133–1143. [Google Scholar] [CrossRef]
- Ahmad, S.; Mahmood, K.; Hanif, M.; Nazeer, W.; Malik, W.; Qayyum, A.; Hanif, K.; Mahmood, A.; Islam, N. Introgression of cotton leaf curl virus-resistant genes from Asiatic cotton (Gossypium arboreum) into upland cotton (G. hirsutum). Genet. Mol. Res. 2011, 10, 2404–2414. [Google Scholar] [CrossRef]
- Brown, J.K.; Khan, Z. Breeding Cotton for Cotton Leaf Curl Disease Resistance. In Cotton Breeding and Biotechnology; CRC Press: Boca Raton, FL, USA, 2022; pp. 171–197. [Google Scholar]
- Cai, Y.; Cai, X.; Wang, Q.; Wang, P.; Zhang, Y.; Cai, C.; Xu, Y.; Wang, K.; Zhou, Z.; Wang, C. Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis. Plant Biotechnol. J. 2020, 18, 814–828. [Google Scholar] [CrossRef] [Green Version]
- Bolek, Y.; Bell, A.; El-Zik, K.; Thaxton, P.; Magill, C. Reaction of cotton cultivars and an F2 population to stem inoculation with isolates Verticillium dahliae. J. Phytopathol. 2005, 153, 269–273. [Google Scholar] [CrossRef]
- Abdelraheem, A.; Elassbli, H.; Zhu, Y.; Kuraparthy, V.; Hinze, L.; Stelly, D.; Wedegaertner, T.; Zhang, J. A genome-wide association study uncovers consistent quantitative trait loci for resistance to Verticillium wilt and Fusarium wilt race 4 in the US Upland cotton. Theor. Appl. Genet. 2020, 133, 563–577. [Google Scholar] [CrossRef]
- Dong, Q.; Magwanga, R.O.; Cai, X.; Lu, P.; Nyangasi Kirungu, J.; Zhou, Z.; Wang, X.; Wang, X.; Xu, Y.; Hou, Y. RNA-sequencing, physiological and RNAi analyses provide insights into the response mechanism of the ABC-mediated resistance to Verticillium dahliae infection in cotton. Genes 2019, 10, 110. [Google Scholar] [CrossRef] [Green Version]
- Grover, C.E.; Pan, M.; Yuan, D.; Arick, M.A.; Hu, G.; Brase, L.; Stelly, D.M.; Lu, Z.; Schmitz, R.J.; Peterson, D.G. The Gossypium longicalyx genome as a resource for cotton breeding and evolution. G3 Genes Genomes Genet. 2020, 10, 1457–1467. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, O.A.; Jenkins, J.N.; McCarty, J.C.; Wubben, M.J.; Hayes, R.W.; Callahan, F.E. SSR markers closely associated with genes for resistance to root-knot nematode on chromosomes 11 and 14 of Upland cotton. Theor. Appl. Genet. 2010, 121, 1323–1337. [Google Scholar] [CrossRef]
- Turcotte, E.; Harold, W.; O’Bannon, J.; Feaster, C. Evaluation of cotton root knot nematode resistance of a strain of G. barbadense. var. darwinni. In Proceedings of the 15th Cotton Improvement Conference, Dallas, TX, USA, 8–9 January 1963; National Cotton Council of America: Memphis, TN, USA, 1963; pp. 36–44. [Google Scholar]
- He, Y.; Kumar, P.; Shen, X.; Davis, R.F.; Van Becelaere, G.; May, O.L.; Nichols, R.L.; Chee, P.W. Re-evaluation of the inheritance for root-knot nematode resistance in the Upland cotton germplasm line M-120 RNR revealed two epistatic QTLs conferring resistance. Theor. Appl. Genet. 2014, 127, 1343–1351. [Google Scholar] [CrossRef]
- Romano, G.B.; Sacks, E.J.; Stetina, S.R.; Robinson, A.; Fang, D.D.; Gutierrez, O.A.; Scheffler, J.A. Identification and genomic location of a reniform nematode (Rotylenchulus reniformis) resistance locus (Ren ari) introgressed from Gossypium aridum into upland cotton (G. hirsutum). Theor. Appl. Genet. 2009, 120, 139–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacks, E.J.; Robinson, A.F. Introgression of resistance to reniform nematode (Rotylenchulus reniformis) into upland cotton (Gossypium hirsutum) from Gossypium arboreum and a G. hirsutum/Gossypium aridum bridging line. Field Crops Res. 2009, 112, 1–6. [Google Scholar] [CrossRef]
- Fang, D.D.; Xiao, J.; Canci, P.C.; Cantrell, R.G. A new SNP haplotype associated with blue disease resistance gene in cotton (Gossypium hirsutum L.). Theor. Appl. Genet. 2010, 120, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, J.; Liu, J.; Wu, Z. Genetic analysis of cotton resistance to spider mites. J. Huazhong Agric. Univ. 1992, 11, 127–133. [Google Scholar]
- Meyer, V.G. Interspecific cotton breeding. Econ. Bot. 1974, 28, 56–60. [Google Scholar] [CrossRef]
- Hossain, A.; Maitra, S.; Pramanick, B.; Bhutia, K.L.; Ahmad, Z.; Moulik, D.; Syed, M.A.; Shankar, T.; Adeel, M.; Hassan, M.M. Wild relatives of plants as sources for the development of abiotic stress tolerance in plants. In Plant Perspectives to Global Climate Changes; Elsevier: Amsterdam, The Netherlands, 2022; pp. 471–518. [Google Scholar]
- Stanton, M.; Stewart, J.M.; Tugwell, N. Evaluation of Gossypium arboreum L. germplasm for resistance to thrips. Genet. Resour. Crop Evol. 1992, 39, 89–95. [Google Scholar]
- Bowman, D.T.; McCarty, J.C., Jr. Thrips (Thysanoptera: Thripidae) tolerance in cotton: Sources and heritability. J. Entomol. Sci. 1997, 32, 460–471. [Google Scholar] [CrossRef]
- Monga, D.; Sheo, R. Screening of germplasm lines against root rot of cotton (G. hirsutum). Adv. Plant Sci. 2000, 13, 603–607. [Google Scholar]
- Wilson, I.W.; Moncuquet, P.; Ellis, M.; White, R.G.; Zhu, Q.-H.; Stiller, W.; Llewellyn, D. Characterization and genetic mapping of black root rot resistance in Gossypium arboreum L. Int. J. Mol. Sci. 2021, 22, 2642. [Google Scholar] [CrossRef]
- Bodah, E.T. Root rot diseases in plants: A review of common causal agents and management strategies. Agric. Res. Technol. Open Access J. 2017, 5, 555661. [Google Scholar]
Genome Group | Ploidy (No. of Species) | Species Name | Geographical Distribution |
---|---|---|---|
A | 2X (2) | G. herbaceum, G. arboreum, | Asia, Africa |
B | 2X (3–4) | G. anomalum, G. capitis-viridis, G. triphyllum, G. trifurcatum | Cape Verde Island, Africa |
C | 2X (2) | G. robinsonii, G. sturtianum | Australia |
D | 2X (13–14) | G. armourianum, G. aridum, G. davidsonii, G. gossypioides, G. harknessii, G. klotzschianum, G. laxum, G. lobatum, (Gossypium sp. Nov), G. raimondii, G. schwendimanii, G. turneri, G. thurberi, G. trilobum | Mexico, Peru, Arizona, Galapagos Islands |
E | 2X (5–9) | G. areysianum Deflers, (G. benadirense), (G. bricchettii), G. incanum, G. stocksii, G. somalense, G. trifurcatum, (G. trifurcatum), (G. vollesenii) | Southwest Asia, Northeast Africa, Arabian Peninsula |
F | 2X (1) | G. longicalyx | East Africa |
G | 2X (3) | G. australe, G. bickii, G. nelsonii | Australia |
K | 2X (12) | G. anapoides, G. cunninghamii, G. costulatum, G. exiguum, G. enthyle, G. londonderriense, G. nobile, G. marchantii, G. populifolium, G. pilosum, G. pulchellum, G. rotundifolium. | Australia, Northern Territory, Cobourg Peninsula, Northwest Australia |
AD | 4X (7) | G. barbadense, G. darwinii, G. ekmanianum, G. hirsutum, G. mustelinum, G. tomentosum, G. stephensii. | New World tropics and subtropics, including Hawaii, Galapagos Islands and the Wake Atoll |
G. barbadense | G. tomentosum | |||||||
---|---|---|---|---|---|---|---|---|
Gh | Gb | Total | Gh | Gt | Total | |||
Fiber length | 17 | 11 | 28 | [113] | 4 | 0 | 4 | [76] |
Fiber strength | - | - | - | 4 | 0 | 4 | [76] | |
Micronaire | 1 | 8 | 9 | [89] | 1 | 3 | 4 | [76] |
Fiber elongation | 14 | 8 | 22 | [114] | 0 | 4 | 4 | [76] |
Disease/Pest | Causal Agents | Source 1 | Reference |
---|---|---|---|
Bacterial Blight | Xanthomonas campestris pathovar malvacearum | Ga, Gb | [127,128,129,130] |
Fusarium Wilt | Fusarium oxysporum f. sp. vasinfectum | Gb | [97,131,132,133,134] |
Leaf curl virus | Begomoviruses | Gh | [135,136,137,138,139] |
Verticulum wilt root knot | Verticillium dahliae | Gb, Ga, | [140,141,142,143] |
Nematodes | Meloidogyne incognita, Rotylenchulus reniformis | Gh, Gd, Gb | [144,145,146,147,148,149] |
Blue Viral Disease | Polerovirus | Gh | [150] |
Spider mites | Tetranychus urticae | Gb | [151,152,153] |
Suckig pest | Frankliniella occidentalis | Gb, Gm Gd, Gt | [27,84,154,155] |
Root rot | Rhizoctonia bataticola | Gh | [156,157,158] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, M.; Iqbal, M.Z.; Abro, A.A.; Memon, S.; Bhutto, L.A.; Memon, S.A.; Peng, Y. Inter-Specific Hybridization in Cotton (Gossypium hirsutum) for Crop Improvement. Agronomy 2022, 12, 3158. https://doi.org/10.3390/agronomy12123158
Anwar M, Iqbal MZ, Abro AA, Memon S, Bhutto LA, Memon SA, Peng Y. Inter-Specific Hybridization in Cotton (Gossypium hirsutum) for Crop Improvement. Agronomy. 2022; 12(12):3158. https://doi.org/10.3390/agronomy12123158
Chicago/Turabian StyleAnwar, Muhammad, Muhammad Zafar Iqbal, Aamir Ali Abro, Shabana Memon, Liaquat Ali Bhutto, Shamim Ara Memon, and Yan Peng. 2022. "Inter-Specific Hybridization in Cotton (Gossypium hirsutum) for Crop Improvement" Agronomy 12, no. 12: 3158. https://doi.org/10.3390/agronomy12123158
APA StyleAnwar, M., Iqbal, M. Z., Abro, A. A., Memon, S., Bhutto, L. A., Memon, S. A., & Peng, Y. (2022). Inter-Specific Hybridization in Cotton (Gossypium hirsutum) for Crop Improvement. Agronomy, 12(12), 3158. https://doi.org/10.3390/agronomy12123158