Growth and Forage Value of Two Forage Rice Cultivars According to Harvest Time in Reclaimed Land of South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Agronomy
2.2. Soil Samples and Analysis
2.3. Measurement of Chlorophyll and LA
2.4. Chemical Analysis for Forage Quality
2.5. Statistical Analysis
3. Results
3.1. Weather and Paddy Field Condition
3.2. Growth and Development Characteristics
3.3. Chemical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kotb, T.H.S.; Watanabe, T.; Ogino, Y.; Tanji, K.K. Soil salinization in the Nile Delta and related policy issues in Egypt. Agric. Water Manag. 2000, 43, 239–261. [Google Scholar] [CrossRef]
- Rumanti, I.A.; Hairmansis, A.; Nugraha, Y.; Nafisah; Susanto, U.; Wardana, P.; Subandiono, R.E.; Zaini, Z.; Sembiring, H.; Khan, N.I.; et al. Development of tolerant rice varieties for stress-prone ecosystems in the coastal deltas of Indonesia. Field Crops Res. 2018, 223, 75–82. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Förster, H.; Sterzel, T.; Pape, C.A.; Moneo-Lain, M.; Niemeyer, I.; Boer, R.; Kropp, J.P. Sea-level rise in Indonesia: On adaptation priorities in the agricultural sector. Reg. Environ. Chang. 2011, 11, 893–904. [Google Scholar] [CrossRef]
- Representative Reclaimed Land of South Korea. Available online: http://nationalatlas.ngii.go.kr/pages/page_2275.php (accessed on 13 November 2022).
- Lie, H.-J.; Cho, C.-H.; Lee, S.; Kim, E.-S.; Koo, B.-J.; Noh, J.-H. Changes in Marine Environment by a Large Coastal Development of the Saemangeum Reclamation Project in Korea. Ocean Polar Res. 2008, 30, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Abdullah, Z. Salinity-sodicity induced changes in reproductive physiology of rice (Oryza sativa) under dense soil conditions. Environ. Exp. Bot. 2003, 49, 145–157. [Google Scholar] [CrossRef]
- Ali, S.; Park, S.K.; Kim, W.C. The pragmatic introduction and expression of microbial transgenes in plants. J. Microbiol. Biotechnol. 2018, 28, 1955–1970. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.-S.; Yang, H.I.; Park, H.-J.; Park, S.-I.; Seo, B.-S.; Lee, K.-S.; Lee, S.-H.; Lee, S.-M.; Kim, H.-Y.; Ryu, J.-H.; et al. Land-use management for sustainable rice production and carbon sequestration in reclaimed coastal tideland soils of South Korea: A review. Soil Sci. Plant Nutr. 2020, 66, 60–75. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C. Effect of natural and artificial afforestation reclamation on soil properties and vegetation in coastal saline silt soils. CATENA 2021, 198, 105066. [Google Scholar] [CrossRef]
- Matsumura, Y.; Minowa, T.; Yamamoto, H. Amount, availability, and potential use of rice straw (agricultural residue) biomass as an energy resource in Japan. Biomass Bioenergy 2005, 29, 347–354. [Google Scholar] [CrossRef]
- Arunrat, N.; Kongsurakan, P.; Sereenonchai, S.; Hatano, R. Soil organic carbon in sandy paddy fields of northeast Thailand: A review. Agronomy 2020, 10, 1061. [Google Scholar] [CrossRef]
- Arunrat, N.; Sansupa, C.; Kongsurakan, P.; Sereenonchai, S.; Hatano, R. Soil Microbial Diversity and Community Composition in Rice–Fish Co-Culture and Rice Monoculture Farming System. Biology 2022, 11, 1242. [Google Scholar] [CrossRef] [PubMed]
- Peripolli, V.; Jardim Barcellos, J.O.; Prates, Ê.R.; McManus, C.; da Silva, L.P.; Stella, L.A.; Gonçalves Costa, J.B.; Lopes, R.B. Nutritional value of baled rice straw for ruminant feed. Rev. Bras. Zootec. 2016, 45, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Gomaa, R.; Gado, H.; El-Sayed, H.; Abd El Mawla, S. Usage of treated rice straw with exogenous anaerobic bacterial enzymes (ZAD) for Ossimi sheep. Ann. Agric. Sci. 2012, 57, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Agbagla-Dohnani, A.; Nozière, P.; Clément, G.; Doreau, M. In sacco degradability, chemical and morphological composition of 15 varieties of European rice straw. Anim. Feed Sci. Technol. 2001, 94, 15–27. [Google Scholar] [CrossRef]
- Wanapat, M.; Polyorach, S.; Boonnop, K.; Mapato, C.; Cherdthong, A. Effects of treating rice straw with urea or urea and calcium hydroxide upon intake, digestibility, rumen fermentation and milk yield of dairy cows. Livest. Sci. 2009, 125, 238–243. [Google Scholar] [CrossRef]
- Park, H.-S.; Kim, K.-Y.; Shin, M.-S.; Noh, T.H.; Jeung, J.-U.; Kim, W.-J.; Suh, J.-P.; Ha, K.-Y.; Baek, M.-K.; Baek, S.-H.; et al. Variation of Yield and Grain Quality by the Inoculation of K1 and K3a Races of Bacterial Blight in Early Maturing japonica Rice Varieties. Korean J. Breed. Sci. 2012, 44, 516–525. [Google Scholar] [CrossRef]
- Shin, W.-C.; Kim, W.-J.; Park, H.-S.; Kim, B.-K.; Kim, J.-J.; Nam, J.-K.; Ko, J.-K.; Ha, K.-Y.; Baek, M.-K.; Baek, S.-H.; et al. A New Early-Maturing Rice Cultivar with Multi-Diseases Resistant and High Grain Quality ‘Sanhomi’. Korean J. Breed. Sci. 2014, 46, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.-W.; Oh, Y.-K. Effects of Feeding Whole Crop Rice Silage Harvested at Different Mature Stages on Rumen Fermentation and Blood Metabolites in Hanwoo Steers. J. Korean Soc. Grassl. Forage Sci. 2011, 31, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Ahn, E.-K.; Won, Y.-J.; Kang, K.-H.; Park, H.-M.; Jung, K.-H.; Hyun, U.-J.; Lee, Y.-S. Feed Value of the Different Plant Parts of Main Forage Rice Varieties. KOREAN J. Crop Sci. 2022, 67, 1–8. [Google Scholar]
- Lee, S.-B.; Yang, C.-I.; Lee, J.-H.; Kim, M.-K.; Shin, Y.-S.; Lee, K.-S.; Choi, Y.-H.; Jeong, O.-Y.; Jeon, Y.-H.; Hong, H.-C.; et al. A Late-Maturing and Whole Crop Silage Rice Cultivar “Mogwoo”. J. Korean Soc. Grassl. Forage Sci. 2013, 33, 81–86. [Google Scholar] [CrossRef]
- Yang, C.-I.; Lee, S.-B.; Won, Y.-J.; Ahn, E.-K.; Kim, M.-K.; Kim, Y.-G.; Hyun, U.-J.; Jeong, J.-M.; Hwang, H.-G.; Shin, Y.-S.; et al. A High Biomass Yield and Whole Crop Silage Rice Cultivar ‘Mogyang’. Korean J. Breed. Sci. 2013, 45, 405–409. [Google Scholar] [CrossRef] [Green Version]
- Huckle, J.M.; Potter, J.A.; Marrs, R.H. Influence of environmental factors on the growth and interactions between salt marsh plants: Effects of salinity, sediment and waterlogging. J. Ecol. 2000, 88, 492–505. [Google Scholar] [CrossRef]
- Velmurugan, A.; Swarnam, T.P.; Ambast, S.K.; Kumar, N. Managing waterlogging and soil salinity with a permanent raised bed and furrow system in coastal lowlands of humid tropics. Agric. Water Manag. 2016, 168, 56–67. [Google Scholar] [CrossRef]
- Agus, F.; Subagjo, H.; Rachman, A.; Subiksa, I.G.M. Properties of tsunami affected soils and the management implication. In Proceedings of the International Salinity Forum, Adelaide, Australia, 30 March–3 April 2008; pp. 1–2. [Google Scholar]
- Cho, K.-M.; Back, N.-H.; Yang, C.-H.; Shin, P.; Noh, T.-H.; Lee, G.-H.; Lee, K.-B.; Park, K.-H. Growth Characteristics and Feed Value of Whole Crop Silage Rice on Paddy Field and Reclaimed Tidal Land. Korean J. Crop Sci. 2014, 59, 526. [Google Scholar] [CrossRef]
- Nayak, D.R.; Adhya, T.K.; Babu, Y.J.; Datta, A.; Ramakrishnan, B.; Rao, V.R. Methane emission from a flooded field of Eastern India as influenced by planting date and age of rice (Oryza sativa L.) seedlings. Agric. Ecosyst. Environ. 2006, 115, 79–87. [Google Scholar] [CrossRef]
- Abdullah, Z.; Khan, M.A.; Flowers, T.J. Causes of sterility in seed set of rice under salinity stress. J. Agron. Crop Sci. 2001, 187, 25–32. [Google Scholar] [CrossRef]
- Ali, Y.; Aslam, Z.; Ashraf, M.Y.; Tahir, G.R. Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. Int. J. Environ. Sci. Technol. 2004, 1, 221–225. [Google Scholar] [CrossRef] [Green Version]
- Cui, K.; Peng, S.; Ying, Y.; Yu, S.; Xu, C. Molecular dissection of the relationships among tiller number, plant height and heading date in rice. Plant Prod. Sci. 2004, 7, 309–318. [Google Scholar] [CrossRef]
- Zeng, L.; Shannon, M.C. Salinity Effects on Seedling Growth and Yield Components of Rice. Crop Sci. 2000, 40, 996–1003. [Google Scholar] [CrossRef] [Green Version]
- Back, N.-H.; Cho, K.-M.; Yang, C.-H.; Shin, P.; Noh, T.-H.; Lee, G.-H.; Park, K.-H. Research on Adaptability of Major Varieties for Whole Crop Silage Rice to Wet Seeding in Newly Reclaimed Tidal Land. J. Korean Soc. Int. Agric. 2014, 26, 258–261. [Google Scholar] [CrossRef]
- Kim, C.-S.; Lee, J.-S.; Ko, J.-Y.; Yun, E.-S.; Yeo, U.-S.; Lee, J.H.; Kwak, D.-Y.; Shin, M.-S.; and Oh, B.-G. Evaluation of Optimum Rice Heading Period under Recent Climatic Change in Yeongnam Area. Korean J. Agric. For. Meteorol. 2007, 9, 17–28. [Google Scholar] [CrossRef]
- Nakhoda, B.; Leung, H.; Mendioro, M.S.; Mohammadi-nejad, G.; Ismail, A.M. Isolation, characterization, and field evaluation of rice (Oryza sativa L., Var. IR64) mutants with altered responses to salt stress. Field Crops Res. 2012, 127, 191–202. [Google Scholar] [CrossRef]
- Fishman, R. More uneven distributions overturn benefits of higher precipitation for crop yields. Environ. Res. Lett. 2016, 11, 24004. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Tubiello, F.N.; Goldberg, R.; Mills, E.; Bloomfield, J. Increased crop damage in the US from excess precipitation under climate change. Glob. Environ. Chang. 2002, 12, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Coleman, S.W.; Moore, J.E. Feed quality and animal performance. Field Crops Res. 2003, 84, 17–29. [Google Scholar] [CrossRef]
- Adjorlolo, L.K.; Amaning-Kwarteng, K.; Fianu, F.K. In vivo digestibility and effect of supplemental mucuna forage on treated rice straw degradation. Small Rumin. Res. 2001, 41, 239–245. [Google Scholar] [CrossRef]
- Ahn, E.-K.; Won, Y.-J.; Park, H.-M.; Jung, K.-H.; Hyun, U.-J. Feed value and yield potential of main whole-crop silage rice cultivars with harvesting time in the central plains of Korea. Korean J. Crop Sci. 2018, 63, 294–303. [Google Scholar]
- Sanz, J.; Muntifering, R.B.; Bermejo, V.; Gimeno, B.S.; Elvira, S. Ozone and increased nitrogen supply effects on the yield and nutritive quality of Trifolium subterraneum. Atmos. Environ. 2005, 39, 5899–5907. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, Z.; Li, J.; Chen, L.; Bai, Y.; Jia, Y.; Shao, T. Ensiling as pretreatment of rice straw: The effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion. Bioresour. Technol. 2018, 266, 158–165. [Google Scholar] [CrossRef]
- Nakano, H.; Morita, S.; Hattori, I.; Sato, K. Effects of planting time and cultivar on dry matter yield and estimated total digestible nutrient content of forage rice in southwestern Japan. Field Crops Res. 2008, 105, 116–123. [Google Scholar] [CrossRef]
- Nakano, H.; Hattori, I.; Sato, K.; Morita, S.; Kitagawa, H.; Takahashi, M. Effects of cutting height of the first crop on estimated total digestible nutrient concentration and yield in double-harvested rice. Agron. J. 2010, 102, 972–980. [Google Scholar] [CrossRef]
- Nakano, H.; Hattori, I.; Sato, K.; Morita, S. Forage rice yield and quality response to harvest timing and nitrogen management. Agron. J. 2011, 103, 593–603. [Google Scholar] [CrossRef]
- Akay, H. Grain and Straw Yield of Paddy Cultivars and Feed Quality Traits of Paddy Straw. Gesunde Pflanz. 2022, 74, 549–560. [Google Scholar] [CrossRef]
Cultivar | Systemic Name | Cross Combination | Provider | Maturity Classification |
---|---|---|---|---|
Mogwoo | Suweon 519 | SR14495-51-1-2-1-2-1//Suweon431/IR71190-45-2-1 | Rural Development Administration, Korea | Late maturity variety |
Mogyang | Suweon 525 | SR24592-HB2319/IR73165-B-6-1-1 |
Year | Cultivar | Transplanting | Heading Stage | Milk Stage | Dough Stage |
---|---|---|---|---|---|
2019 | |||||
Mogwoo | 13 June | 4 September | 18 September | 28 September | |
Mogyang | 3 September | 13 September | 26 September | ||
2020 | |||||
Mogwoo | 19 June | 15 September | 29 September | 9 October | |
Mogyang | 13 September | 26 September | 7 October |
Year | Growth Stage | pH | EC | AP | OM | Exchangeable Cation | |||
---|---|---|---|---|---|---|---|---|---|
K | Ca | Mg | Na | ||||||
1:5; w/w | dS/m | mg/kg | % | cmol+/kg | |||||
2019 | |||||||||
HS | 7.4 | 4.1 | 340 | 2.9 | 1.29 | 7.9 | 3.5 | 2.2 | |
MS | 6.9 | 5.1 | 254 | 2.9 | 1.31 | 8.3 | 3.7 | 2.4 | |
DS | 6.6 | 4.2 | 212 | 2.0 | 1.09 | 7.4 | 2.9 | 1.4 | |
2020 | |||||||||
HS | 5.8 | 1.8 | 273 | 1.3 | 1.11 | 4.1 | 2.6 | 0.7 | |
MS | 5.7 | 4.3 | 311 | 1.7 | 1.65 | 4.9 | 3.4 | 3.1 | |
DS | 5.7 | 2.6 | 240 | 1.5 | 1.19 | 4.6 | 2.9 | 1.7 | |
ANOVA | |||||||||
Year (Y) | ** | * | ns | *** | ns | *** | ns | ns | |
Growth stage (G) | ns | ns | ns | ns | ns | ns | ns | ns | |
Y × G | ns | ns | ns | ns | ns | ns | ns | ns | |
CV(%) | 6.9 | 30.6 | 19.0 | 13.7 | 12.7 | 9.15 | 12.4 | 37.1 |
Year | Cultivar | Growth Stage | Tiller Number | Plant Height | Culm Length | LA | Chlorophyll | Dry Weight | |
---|---|---|---|---|---|---|---|---|---|
Flag Leaf | Third Leaf | ||||||||
No./m2 | cm | cm | g/m2 | ||||||
2019 | |||||||||
Mogwoo | HS | 513 | 108.0 | 83.2 | 7.2 | 34.3 | 44.9 | 1935 | |
MS | 315 | 116.1 | 87.4 | 3.0 | 36.1 | 41.6 | 1545 | ||
DS | 367 | 109.8 | 81.9 | 3.6 | 34.7 | 40.6 | 2090 | ||
Mogyang | |||||||||
HS | 301 | 109.4 | 76.4 | 5.4 | 31.5 | 40.0 | 1573 | ||
MS | 257 | 113.6 | 83.8 | 3.2 | 32.3 | 36.4 | 1709 | ||
DS | 227 | 124.7 | 80.6 | 2.6 | 33.3 | 36.4 | 1538 | ||
ANOVA | |||||||||
Cultivar (C) | ** | ns | ns | ns | ns | * | * | ||
Growth stage (G) | ns | ns | ns | *** | ns | ns | ns | ||
C × G | ns | ns | ns | ns | ns | ns | * | ||
CV(%) | 26.1 | 7.2 | 7.9 | 26.5 | 9.1 | 11.3 | 10.6 | ||
2020 | |||||||||
Mogwoo | HS | 405 | 117.5 | 53.0 | 5.0 | 34.2 | 43.8 | 1247 | |
MS | 330 | 121.1 | 57.7 | 3.9 | 34.9 | 38.3 | 1247 | ||
DS | 497 | 121.2 | 67.5 | 9.0 | 32.8 | 31.4 | 2752 | ||
Mogyang | |||||||||
HS | 374 | 110.6 | 71.6 | 4.7 | 40.1 | 44.2 | 1303 | ||
MS | 330 | 81.7 | 62.4 | 3.8 | 31.5 | 35.3 | 1465 | ||
DS | 343 | 92.1 | 48.7 | 3.8 | 30.0 | 23.9 | 1815 | ||
ANOVA | |||||||||
Cultivar (C) | ns | *** | ns | ** | ns | ** | ns | ||
Growth stage (G) | ns | ** | ns | ** | ** | *** | *** | ||
C × G | ns | *** | *** | ** | * | * | ** | ||
CV(%) | 24.2 | 7.2 | 14.7 | 32.1 | 11.0 | 8.1 | 23.1 |
Year | Cultivar | Growth Stage | CP | NDF | ADF | TDN | RFV | PDM |
---|---|---|---|---|---|---|---|---|
% | % | % | % | % | ||||
2019 | ||||||||
Mogwoo | HS | 8.5 | 68.2 | 40.8 | 56.7 | 77.9 | 31.9 | |
MS | 7.8 | 54.3 | 36.5 | 60.1 | 103.8 | 38.7 | ||
DS | 9.7 | 68.2 | 42.7 | 55.1 | 76.3 | 37.3 | ||
Mogyang | ||||||||
HS | 9.1 | 71.5 | 38.4 | 58.6 | 76.7 | 33.1 | ||
MS | 8.5 | 65.7 | 41.9 | 55.8 | 79.8 | 35.4 | ||
DS | 4.8 | 59.3 | 37.4 | 59.4 | 94.0 | 44.1 | ||
ANOVA | ||||||||
Cultivar (C) | ** | ns | ns | ns | ns | ns | ||
Growth stage (G) | ** | *** | ns | ns | ** | ns | ||
C × G | *** | *** | *** | *** | *** | ns | ||
CV(%) | 7.7 | 5.2 | 4.7 | 2.5 | 6.5 | 19.9 | ||
2020 | ||||||||
Mogwoo | HS | 11.1 | 60.8 | 32.5 | 63.2 | 97.3 | 18.9 | |
MS | 9.6 | 55.7 | 26.2 | 68.2 | 114.4 | 27.8 | ||
DS | 8.6 | 59.9 | 29.5 | 65.6 | 102.5 | 28.9 | ||
Mogyang | ||||||||
HS | 9.6 | 66.3 | 36.8 | 59.8 | 84.5 | 22.2 | ||
MS | 8.4 | 64.2 | 35.8 | 60.6 | 88.5 | 29.9 | ||
DS | 7.0 | 64.8 | 35.6 | 60.8 | 88.0 | 34.3 | ||
ANOVA | ||||||||
Cultivar (C) | *** | *** | *** | *** | *** | *** | ||
Growth stage (G) | *** | * | * | * | *** | *** | ||
C × G | ns | ns | ns | ns | * | ns | ||
CV(%) | 5.2 | 2.8 | 6.2 | 2.6 | 3.6 | 7.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, Y.; Sharavdorj, K.; Nadalin, P.; Lee, S.; Cho, J. Growth and Forage Value of Two Forage Rice Cultivars According to Harvest Time in Reclaimed Land of South Korea. Agronomy 2022, 12, 3118. https://doi.org/10.3390/agronomy12123118
Jang Y, Sharavdorj K, Nadalin P, Lee S, Cho J. Growth and Forage Value of Two Forage Rice Cultivars According to Harvest Time in Reclaimed Land of South Korea. Agronomy. 2022; 12(12):3118. https://doi.org/10.3390/agronomy12123118
Chicago/Turabian StyleJang, Yeongmi, Khulan Sharavdorj, Priscilla Nadalin, Suhwan Lee, and Jinwoong Cho. 2022. "Growth and Forage Value of Two Forage Rice Cultivars According to Harvest Time in Reclaimed Land of South Korea" Agronomy 12, no. 12: 3118. https://doi.org/10.3390/agronomy12123118
APA StyleJang, Y., Sharavdorj, K., Nadalin, P., Lee, S., & Cho, J. (2022). Growth and Forage Value of Two Forage Rice Cultivars According to Harvest Time in Reclaimed Land of South Korea. Agronomy, 12(12), 3118. https://doi.org/10.3390/agronomy12123118