The Effect of Variable Fertilizer and Irrigation Treatments on Greenhouse Gas Fluxes from Aridland Sorghum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Planting and Management
2.3. Water Applications
2.4. Nitrogen Application Timing
2.5. Gas Flux Measurements
2.6. Gas Flux Calculations and Data QA/QC
2.7. Soil Physio-Chemical Analysis
2.8. Biomass Sampling
2.9. Statistical Analysis
3. Results
3.1. Soil Response to Water and N Timing
3.2. Soil N at Harvest
3.3. Harvested Biomass
3.4. GHG Flux
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Hu, C.; Yang, P.; Ju, Z.; Olesen, J.E.; Tang, J. Effects of Experimental Warming and Nitrogen Addition on Soil Respiration and CH4 Fluxes from Crop Rotations of Winter Wheat–Soybean/Fallow. Agric. For. Meteorol. 2015, 207, 38–47. [Google Scholar] [CrossRef]
- Wang, G.; Liang, Y.; Zhang, Q.; Jha, S.K.; Gao, Y.; Shen, X.; Sun, J.; Duan, A. Mitigated CH4 and N2O Emissions and Improved Irrigation Water Use Efficiency in Winter Wheat Field with Surface Drip Irrigation in the North China Plain. Agric. Water Manag. 2016, 163, 403–407. [Google Scholar] [CrossRef]
- McGill, B.M.; Hamilton, S.K.; Millar, N.; Robertson, G.P. The Greenhouse Gas Cost of Agricultural Intensification with Groundwater Irrigation in a Midwest U.S. Row Cropping System. Glob. Chang. Biol. 2018, 24, 5948–5960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duval, B.D. Abiotic Pulses and Microbial Activity Lags in Greenhouse Gas Emissions Due to Tillage. Agrosys. Geosci. Environ. 2020, 3, e20037. [Google Scholar] [CrossRef]
- Johnson, J.M.-F.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural Opportunities to Mitigate Greenhouse Gas Emissions. Environ. Pollut. Barking Essex 1987 2007, 150, 107–124. [Google Scholar] [CrossRef] [PubMed]
- van Groenigen, J.W.; Velthof, G.L.; Oenema, O.; van Groenigen, K.J.; Kessel, C. van Towards an Agronomic Assessment of N2O Emissions: A Case Study for Arable Crops. Eur. J. Soil Sci. 2010, 61, 903–913. [Google Scholar] [CrossRef]
- Leon, E.; Vargas, R.; Bullock, S.; Lopez, E.; Panosso, A.R.; La Scala, N. Hot Spots, Hot Moments, and Spatio-Temporal Controls on Soil CO2 Efflux in a Water-Limited Ecosystem. Soil Biol. Biochem. 2014, 77, 12–21. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Blaszczak, J.R.; Ficken, C.D.; Fork, M.L.; Kaiser, K.E.; Seybold, E.C. Control Points in Ecosystems: Moving Beyond the Hot Spot Hot Moment Concept. Ecosystems 2017, 20, 665–682. [Google Scholar] [CrossRef]
- Sang, J.; Lakshani, M.M.T.; Chamindu Deepagoda, T.K.K.; Shen, Y.; Li, Y. Drying and Rewetting Cycles Increased Soil Carbon Dioxide Rather than Nitrous Oxide Emissions: A Meta-Analysis. J. Environ. Manag. 2022, 324, 116391. [Google Scholar] [CrossRef]
- Gaillard, R.; Duval, B.D.; Osterholz, W.R.; Kucharik, C.J. Simulated Effects of Soil Texture on Nitrous Oxide Emission Factors from Corn and Soybean Agroecosystems in Wisconsin. J. Environ. Qual. 2016, 45, 1540–1548. [Google Scholar] [CrossRef]
- Negassa, W.C.; Guber, A.K.; Kravchenko, A.N.; Marsh, T.L.; Hildebrandt, B.; Rivers, M.L. Properties of Soil Pore Space Regulate Pathways of Plant Residue Decomposition and Community Structure of Associated Bacteria. PLoS ONE 2015, 10, e0123999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Clough, T.J.; Moinet, G.Y.K.; Whitehead, D. Emissions of Nitrous Oxide, Dinitrogen and Carbon Dioxide from Three Soils Amended with Carbon Substrates under Varying Soil Matric Potentials. Eur. J. Soil Sci. 2021, 72, 2261–2275. [Google Scholar] [CrossRef]
- Moody, P.W.; Aitken, R.L. Soil Acidification under Some Tropical Agricultural Systems. 1. Rates of Acidification and Contributing Factors. Soil Res. 1997, 35, 163–174. [Google Scholar] [CrossRef]
- Qian, Y. Long-Term Effects of Recycled Wastewater Irrigation on Soil Chemical Properties on Golf Course Fairways. Agron. J. AGRON J. 2005, 97, 717–721. [Google Scholar] [CrossRef]
- Heiniger, R.; McBride, R.; Clay, D. Using Soil Electrical Conductivity to Improve Nutrient Management. Agron. J. 2003, 95, 508–519. [Google Scholar] [CrossRef]
- Borchers, M.R.; Bewley, J.M. An Assessment of Producer Precision Dairy Farming Technology Use, Prepurchase Considerations, and Usefulness. J. Dairy Sci. 2015, 98, 4198–4205. [Google Scholar] [CrossRef] [Green Version]
- Barnes, A.P.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.T.; Sanchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gómez-Barbero, M. Influencing Incentives for Precision Agricultural Technologies within European Arable Farming Systems. Environ. Sci. Policy 2019, 93, 66–74. [Google Scholar] [CrossRef]
- Scharf, P.C.; Wiebold, W.J.; Lory, J.A. Corn Yield Response to Nitrogen Fertilizer Timing and Deficiency Level. Agron. J. 2002, 94, 435–441. [Google Scholar] [CrossRef]
- Lin, M. Impacts of Nitrogen Fertilization and Conservation Tillage on the Agricultural Soils of the United States: A Review; IntechOpen: London, UK, 2018; ISBN 978-1-78923-038-3. [Google Scholar]
- Deser, C.; Phillips, A.; Bourdette, V.; Teng, H. Uncertainty in Climate Change Projections: The Role of Internal Variability. Clim. Dyn. 2012, 38, 527–546. [Google Scholar] [CrossRef] [Green Version]
- Wuebbles, D.J.; Kunkel, K.; Wehner, M.; Zobel, Z. Severe Weather in United States Under a Changing Climate. Eos Trans. Am. Geophys. Union 2014, 95, 149–150. [Google Scholar] [CrossRef]
- Duval, B.D.; Ghimire, R.; Hartman, M.D.; Marsalis, M.A. Water and Nitrogen Management Effects on Semiarid Sorghum Production and Soil Trace Gas Flux under Future Climate. PLoS ONE 2018, 13, e0195782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meehl, G.A.; Covey, C.; Taylor, K.E.; Delworth, T.; Stouffer, R.J.; Latif, M.; McAvaney, B.; Mitchell, J.F.B. The WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bull. Am. Meteorol. Soc. 2007, 88, 1383–1394. [Google Scholar] [CrossRef] [Green Version]
- Azhar, F.M.; McNeilly, T. The Genetic Basis of Variation for Salt Tolerance in Sorghum bicolor (L.) Moench Seedlings. Plant Breed. 1988, 101, 114–121. [Google Scholar] [CrossRef]
- Maranville, J.W.; Clark, R.B.; Ross, W.M. Nitrogen Efficiency in Grain Sorghum. J. Plant Nutr. 1980, 2, 577–589. [Google Scholar] [CrossRef]
- Abd El-Lattief, E.A. Growth and Fodder Yield of Forage Pearl Millet in Newly Cultivated Land as Affected by Date of Planting and Integrated Use of Mineral and Organic Fertilizers. Asian J. Crop Sci. 2011, 3, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Le Mer, J.; Roger, P. Production, Oxidation, Emission and Consumption of Methane by Soils: A Review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Dunfield, P.; Knowles, R. Kinetics of Inhibition of Methane Oxidation by Nitrate, Nitrite, and Ammonium in a Humisol. Appl. Environ. Microbiol. 1995, 61, 3129–3135. [Google Scholar] [CrossRef] [Green Version]
- Bodelier, P.; Libochant, J.A.; Blom, C.; Laanbroek, H.J. Dynamics of Nitrification and Denitrification in Root-Oxygenated Sediments and Adaptation of Ammonia-Oxidizing Bacteria to Low-Oxygen or Anoxic Habitats. Appl. Environ. Microbiol. 1996, 62, 4100–4107. [Google Scholar] [CrossRef] [Green Version]
- Boyrahmadi, M.; Raiesi, F. Plant Roots and Species Moderate the Salinity Effect on Microbial Respiration, Biomass, and Enzyme Activities in a Sandy Clay Soil. Biol. Fertil. Soils 2018, 54, 509–521. [Google Scholar] [CrossRef]
- Xu, Q.; O’Sullivan, J.B.; Wang, X.; Tang, C. Elevated CO2 Alters the Rhizosphere Effect on Crop Residue Decomposition. Plant Soil 2019, 436, 413–426. [Google Scholar] [CrossRef]
- Available online: https://browningseed.com/index.php/store/ (accessed on 1 September 2022).
- Available online: https://sorghumpartners.com/products/sp1615/ (accessed on 1 September 2022).
- Gasmet Technologies—Know What’s in the Air. Available online: https://www.gasmet.com/ (accessed on 1 September 2022).
- METER Home. Available online: https://www.metergroup.com/ (accessed on 1 September 2022).
- Doane, T.A.; Horwáth, W.R. Spectrophotometric Determination of Nitrate with a Single Reagent. Anal. Lett. 2003, 36, 2713–2722. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol-Hypochlorite Reaction for Determination of Ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- AG, T.T. Tecan Group Home. Available online: https://www.tecan.com (accessed on 1 September 2022).
- JMP Statistical Thinking for Industrial Problem Solving. Available online: https://www.sas.com/en_us/certification/credentials/jmp/jmp-statistical-thinking.html (accessed on 1 September 2022).
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 1 September 2022).
- Moldrup, P.; Olesen, T.; Gamst, J.; Schjnning, P.; Yamaguchi, T.; Rolston, D.E. Predicting the Gas Diffusion Coefficient Inrepacked Soil Water-Induced Linear Reduction Model. Soil Sci. Soc. Am. J. 2000, 64, 1588–1594. Available online: https://www.scirp.org/%28S%28351jmbntvnsjt1aadkozje%29%29/reference/referencespapers.aspx?referenceid=1569983 (accessed on 1 September 2022). [CrossRef]
- Rudaz, A.O.; Davidson, E.A.; Firestone, M.K. Sources of Nitrous Oxide Production Following Wetting of Dry Soil. FEMS Microbiol. Ecol. 1991, 8, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.K.; Bardgett, R.D.; Smith, P.; Reay, D.S. Microorganisms and Climate Change: Terrestrial Feedbacks and Mitigation Options. Nat. Rev. Microbiol. 2010, 8, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Bardgett, R.D.; Freeman, C.; Ostle, N.J. Microbial Contributions to Climate Change through Carbon Cycle Feedbacks. ISME J. 2008, 2, 805–814. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duval, B.D.; Martin, J.; Marsalis, M.A. The Effect of Variable Fertilizer and Irrigation Treatments on Greenhouse Gas Fluxes from Aridland Sorghum. Agronomy 2022, 12, 3109. https://doi.org/10.3390/agronomy12123109
Duval BD, Martin J, Marsalis MA. The Effect of Variable Fertilizer and Irrigation Treatments on Greenhouse Gas Fluxes from Aridland Sorghum. Agronomy. 2022; 12(12):3109. https://doi.org/10.3390/agronomy12123109
Chicago/Turabian StyleDuval, Benjamin D., Jamie Martin, and Mark A. Marsalis. 2022. "The Effect of Variable Fertilizer and Irrigation Treatments on Greenhouse Gas Fluxes from Aridland Sorghum" Agronomy 12, no. 12: 3109. https://doi.org/10.3390/agronomy12123109
APA StyleDuval, B. D., Martin, J., & Marsalis, M. A. (2022). The Effect of Variable Fertilizer and Irrigation Treatments on Greenhouse Gas Fluxes from Aridland Sorghum. Agronomy, 12(12), 3109. https://doi.org/10.3390/agronomy12123109