Predicted Soil Greenhouse Gas Emissions from Climate × Management Interactions in Temperate Grassland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Field Experiment and DNDC Model
2.2. DNDC-Model Calibration, Validation and Sensitivity Tests
2.3. Long-Term Scenarios
2.4. Statistical Analysis
3. Results
3.1. Simulation of GHG (N2O, CO2 and CH4) Emissions from the Full-Factorial Field Experiment over Two Growing Seasons
3.2. Sensitivity Analysis to GHG Emissions
3.3. Simulation of Long-Term GHG Changes under Field Treatments
4. Discussion
4.1. DNDC Effectiveness for Simulating GHG Emissions
4.2. Long-Term Effect of the Interactions between Grassland Management and Climate Warming
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdalla, M.; Smith, P.; Williams, M. Emissions of Nitrous Oxide from Agriculture: Responses to Management and Climate Change. In Understanding Greenhouse Gas Emissions from Agricultural Management; Guo, L., Gunasekara, A., McConnell, L., Eds.; American Chemical Society: Washington, DC, USA, 2011; Volume 1072, pp. 343–370. ISBN 9780841226548. [Google Scholar]
- Wang, X.; Liu, L.; Piao, S.; Janssens, I.A.; Tang, J.; Liu, W.; Chi, Y.; Wang, J.; Xu, S. Soil Respiration under Climate Warming: Differential Response of Heterotrophic and Autotrophic Respiration. Glob. Chang. Biol. 2014, 20, 3229–3237. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, F.A.; Morgan, J.A.; Follett, R.F.; Lecain, D.R. Climate Change Reduces the Net Sink of CH4 and N2O in a Semiarid Grassland. Glob. Chang. Biol. 2013, 19, 1816–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdalla, M.; Wattenbach, M.; Smith, P.; Ambus, P.; Jones, M.; Williams, M. Application of the DNDC Model to Predict Emissions of N2O from Irish Agriculture. Geoderma 2009, 151, 327–337. [Google Scholar] [CrossRef]
- Bai, E.; Li, S.; Xu, W.; Li, W.; Dai, W.; Jiang, P. A Meta-Analysis of Experimental Warming Effects on Terrestrial Nitrogen Pools and Dynamics. New Phytol. 2013, 199, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Rustad, L.E.; Campbell, J.L.; Marion, G.M.; Norby, R.J.; Mitchell, M.J.; Hartley, A.E.; Cornelissen, J.H.C.; Gurevitch, J. Gcte-News A Meta-Analysis of the Response of Soil Respiration, Net Nitrogen Mineralization, and Aboveground Plant Growth to Experimental Ecosystem Warming. Oecologia 2001, 126, 543–562. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.L.; Hunt, J.E.; Millard, P.; McSeveny, T.; Tylianakis, J.M.; Whitehead, D. Effects of Soil Warming and Nitrogen Addition on Soil Respiration in a New Zealand Tussock Grassland. PLoS ONE 2014, 9, e91204. [Google Scholar] [CrossRef] [Green Version]
- Blankinship, J.C.; Brown, J.R.; Dijkstra, P.; Hungate, B.A. Effects of Interactive Global Changes on Methane Uptake in an Annual Grassland. J. Geophys. Res. Biogeosci. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Guitian, R.; Bardgett, R.D. Plant and Soil Microbial Responses to Defoliation in Temperate Semi-Natural Grassland. Plant Soil 2000, 220, 271. [Google Scholar] [CrossRef]
- Bahn, M.; Knapp, M.; Garajova, Z.; Pfahringer, N.; Cernusca, A. Root Respiration in Temperate Mountain Grasslands Differing in Land Use. Glob. Chang. Biol. 2006, 12, 995–1006. [Google Scholar] [CrossRef]
- Barneze, A.S.; Whitaker, J.; McNamara, N.P.; Ostle, N.J. Interactions between Climate Warming and Land Management Regulate Greenhouse Gas Fluxes in a Temperate Grassland Ecosystem. Sci. Total Environ. 2022, 833, 155212. [Google Scholar] [CrossRef]
- Imer, D.; Merbold, L.; Eugster, W.; Buchmann, N. Temporal and Spatial Variations of Soil CO2, CH4 and N2O Fluxes at Three Differently Managed Grasslands. Biogeosciences 2013, 10, 5931–5945. [Google Scholar] [CrossRef] [Green Version]
- Rees, R.M.; Augustin, J.; Alberti, G.; Ball, B.C.; Boeckx, P.; Cantarel, A.; Castaldi, S.; Chirinda, N.; Chojnicki, B.; Giebels, M.; et al. Nitrous Oxide Emissions from European Agriculture—An Analysis of Variability and Drivers of Emissions from Field Experiments. Biogeosciences 2013, 10, 2671–2682. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, M.; Richards, M.; Pogson, M.; Smith, J.U.; Smith, P. Estimating the Effect of Nitrogen Fertilizer on the Greenhouse Gas Balance of Soils in Wales under Current and Future Climate. Reg. Environ. Chang. 2016, 16, 2357–2368. [Google Scholar] [CrossRef] [Green Version]
- Fitton, N.; Datta, A.; Cloy, J.M.; Rees, R.M.; Topp, C.F.E.; Bell, M.J.; Cardenas, L.M.; Williams, J.; Smith, K.; Thorman, R.; et al. Modelling Spatial and Inter-Annual Variations of Nitrous Oxide Emissions from UK Cropland and Grasslands Using DailyDayCent. Agric. Ecosyst. Environ. 2017, 250, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; House, J.I.; Bustamante, M.; Sobocká, J.; Harper, R.; Pan, G.; West, P.C.; Clark, J.M.; Adhya, T.; Rumpel, C.; et al. Global Change Pressures on Soils from Land Use and Management. Glob. Chang. Biol. 2016, 22, 1008–1028. [Google Scholar] [CrossRef]
- Smith, P.; Davies, C.A.; Ogle, S.; Zanchi, G.; Bellarby, J.; Bird, N.; Boddey, R.M.; McNamara, N.P.; Powlson, D.; Cowie, A.; et al. Towards an Integrated Global Framework to Assess the Impacts of Land Use and Management Change on Soil Carbon: Current Capability and Future Vision. Glob. Chang. Biol. 2012, 18, 2089–2101. [Google Scholar] [CrossRef]
- Li, C.; Frolking, S.; Frolking, T.A. A Model of Nitrous Oxide Evolution from Soil Driven by Rainfall Events: 1. Model Structure and Sensitivity. J. Geophys. Res. Atmos. 1992, 97, 9759–9776. [Google Scholar] [CrossRef]
- Li, C.; Frolking, S.; Harriss, R. Modeling Carbon Biogeochemistry in Agricultural Soils. Glob. Biogeochem. Cycles 1994, 8, 237–254. [Google Scholar] [CrossRef]
- Li, C.S.; Aber, J.; Stange, F.; Butterbach-Bahl, K.; Papen, H. A Process-Oriented Model of N2O and NO Emissions from Forest Soils: 1. Model Development. J. Geophys. Res. Atmos. 2000, 105, 4369–4384. [Google Scholar] [CrossRef]
- Li, C.; Zhuang, Y.; Cao, M.; Crill, P.; Dai, Z.; Frolking, S.; Moore, B.; Salas, W.; Song, W.; Wang, X. Comparing a Process-Based Agro-Ecosystem Model to the IPCC Methodology for Developing a National Inventory of N2O Emissions from Arable Lands in China. Nutr. Cycl. Agroecosystems 2001, 60, 159–175. [Google Scholar] [CrossRef]
- Smith, W.N.; Grant, B.B.; Desjardins, R.L.; Worth, D.; Li, C.; Boles, S.H.; Huffman, E.C. A Tool to Link Agricultural Activity Data with the DNDC Model to Estimate GHG Emission Factors in Canada. Agric. Ecosyst. Environ. 2010, 136, 301–309. [Google Scholar] [CrossRef]
- Kesik, M.; Brüggemann, N.; Forkel, R.; Kiese, R.; Knoche, R.; Li, C.; Seufert, G.; Simpson, D.; Butterbach-Bahl, K. Future Scenarios of N2O and NO Emissions from European Forest Soils. J. Geophys. Res. Biogeosci. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.; Jarvis, S.C.; Headon, D. A Farm-Scale Basis for Predicting Nitrous Oxide Emissions from Dairy Farms. Nutr. Cycl. Agroecosystems 2001, 60, 149–158. [Google Scholar] [CrossRef]
- Giltrap, D.L.; Li, C.; Saggar, S. DNDC: A Process-Based Model of Greenhouse Gas Fluxes from Agricultural Soils. Agric. Ecosyst. Environ. 2010, 136, 292–300. [Google Scholar] [CrossRef]
- Levy, P.E.; Mobbs, D.C.; Jones, S.K.; Milne, R.; Campbell, C.; Sutton, M.A. Simulation of Fluxes of Greenhouse Gases from European Grasslands Using the DNDC Model. Agric. Ecosyst. Environ. 2007, 121, 186–192. [Google Scholar] [CrossRef]
- Saggar, S.; Giltrap, D.L.; Li, C.; Tate, K.R. Modelling Nitrous Oxide Emissions from Grazed Grasslands in New Zealand. Agric. Ecosyst. Environ. 2007, 119, 205–216. [Google Scholar] [CrossRef]
- Cai, Z.C.; Sawamoto, T.; Li, C.S.; Kang, G.D.; Boonjawat, J.; Mosier, A.; Wassmann, R.; Tsuruta, H. Field Validation of the DNDC Model for Greenhouse Gas Emissions in East Asian Cropping Systems. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yang, J.Y.; Drury, C.F.; Yang, X.M.; Reynolds, W.D.; Li, X.; Hu, C. Evaluation of the DNDC Model for Simulating Soil Temperature, Moisture and Respiration from Monoculture and Rotational Corn, Soybean and Winter Wheat in Canada. Ecol. Model. 2017, 360, 230–243. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.-G.; Qiu, J.-J. Estimation of CO2 and N2O emissions from farmland soils in Hebei Province in Huang-Huai-Hai Plain. Chin J Appl Ecol 2007, 18, 1994–2000. [Google Scholar]
- Lu, X.Y.; Cheng, G.W.; Xiao, F.P.; Huo, C.F. Simulating Carbon Sequestration and GHGs Emissions in Abies Fabric Forest on the Gongga Mountains Using a Biogeochemical Process Model Forest-DNDC. J. Mt. Sci. 2008, 5, 249–256. [Google Scholar] [CrossRef]
- Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, J.; Zhou, C.-Y. Dependence of Soil Respiration on Soil Temperature and Soil Moisture in Successional Forests in Southern China. J. Integr. Plant Biol. 2006, 48, 654–663. [Google Scholar] [CrossRef]
- Abdalla, M.; Jones, M.; Williams, M. Simulation of N2O Fluxes from Irish Arable Soils: Effect of Climate Change and Management. Biol. Fertil. Soils 2010, 46, 247–260. [Google Scholar] [CrossRef]
- Molina-Herrera, S.; Haas, E.; Klatt, S.; Kraus, D.; Augustin, J.; Magliulo, V.; Tallec, T.; Ceschia, E.; Ammann, C.; Loubet, B.; et al. A Modeling Study on Mitigation of N2O Emissions and NO3 Leaching at Different Agricultural Sites across Europe Using LandscapeDNDC. Sci. Total Environ. 2016, 553, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Marion, G.M.; Henry, G.H.R.; Freckman, D.W.; Johnstone, J.; Jones, G.; Jones, M.H.; Levesque, E.; Molau, U.; Molgaard, P.; Parsons, A.N.; et al. Open-Top Designs for Manipulating Field Temperature in High-Latitude Ecosystems. Glob. Chang. Biol. 1997, 3, 20–32. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Li, C.S. Modeling Trace Gas Emissions from Agricultural Ecosystems. Nutr. Cycl. Agroecosystems 2000, 58, 259–276. [Google Scholar] [CrossRef]
- Neal, C.; Skeffington, R.; Neal, M.; Wyatt, R.; Wickham, H.; Hill, L.; Hewitt, N. Rainfall and Runoff Water Quality of the Pang and Lambourn, Tributaries of the River Thames, South-Eastern England. Hydrol. Earth Syst. Sci. 2004, 8, 601–613. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Smith, P.; Smith, J.U.; Powlson, D.S.; McGill, W.B.; Arah, J.R.M.; Chertov, O.G.; Coleman, K.; Franko, U.; Frolking, S.; Jenkinson, D.S.; et al. A Comparison of the Performance of Nine Soil Organic Matter Models Using Datasets from Seven Long-Term Experiments. Geoderma 1997, 81, 153–225. [Google Scholar] [CrossRef]
- Hsieh, C.-I.; Leahy, P.; Kiely, G.; Li, C. The Effect of Future Climate Perturbations on N2O Emissions from a Fertilized Humid Grassland. Nutr. Cycl. Agroecosystems 2005, 73, 15–23. [Google Scholar] [CrossRef]
- De Vries, W.; Kros, J.; Kuikman, P.J.; Velthof, G.L.; Voogd, J.C.H.; Wieggers, H.J.J.; Butterbach-Bahl, K.; Denier Van Der Gon, H.A.C.; Van Amstel, A.R. Use of Measurements and Models to Improve the National IPCC Based Assessments of Soil Emissions of Nitrous Oxide. Environ. Sci. 2005, 2, 217–233. [Google Scholar] [CrossRef]
- Dobbie, K.E.; Smith, K.A. The Effects of Temperature, Water-Filled Pore Space and Land Use on N2O Emissions from an Imperfectly Drained Gleysol. Eur. J. Soil Sci. 2001, 52, 667–673. [Google Scholar] [CrossRef]
- Saggar, S.; Jha, N.; Deslippe, J.; Bolan, N.S.; Luo, J.; Giltrap, D.L.; Kim, D.G.; Zaman, M.; Tillman, R.W. Denitrification and N2O:N2 Production in Temperate Grasslands: Processes, Measurements, Modelling and Mitigating Negative Impacts. Sci. Total Environ. 2013, 465, 173–195. [Google Scholar] [CrossRef]
- Ruser, R.; Flessa, H.; Russow, R.; Schmidt, G.; Buegger, F.; Munch, J.C. Emission of N2O, N2 and CO2 from Soil Fertilized with Nitrate: Effect of Compaction, Soil Moisture and Rewetting. Soil Biol. Biochem. 2006, 38, 263–274. [Google Scholar] [CrossRef]
- Kröbel, R.; Sun, Q.; Ingwersen, J.; Chen, X.; Zhang, F.; Müller, T.; Römheld, V. Modelling Water Dynamics with DNDC and DAISY in a Soil of the North China Plain: A Comparative Study. Environ. Model. Softw. 2010, 25, 583–601. [Google Scholar] [CrossRef]
- Chirinda, N.; Kracher, D.; Lægdsmand, M.; Porter, J.R.; Olesen, J.E.; Petersen, B.M.; Doltra, J.; Kiese, R.; Butterbach-Bahl, K. Simulating Soil N2O Emissions and Heterotrophic CO2 Respiration in Arable Systems Using FASSET and MoBiLE-DNDC. Plant Soil 2011, 343, 139–160. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous Oxide Emissions from Soils: How Well Do We Understand the Processes and Their Controls? Philos. Trans. R Soc. Lond. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Liu, C.; Wang, K.; Meng, S.; Zheng, X.; Zhou, Z.; Han, S.; Chen, D.; Yang, Z. Effects of Irrigation, Fertilization and Crop Straw Management on Nitrous Oxide and Nitric Oxide Emissions from a Wheat–Maize Rotation Field in Northern China. Agric. Ecosyst. Environ. 2011, 140, 226–233. [Google Scholar] [CrossRef]
- Rafique, R.; Peichl, M.; Hennessy, D.; Kiely, G. Evaluating Management Effects on Nitrous Oxide Emissions from Grasslands Using the Process-Based DeNitrification–DeComposition (DNDC) Model. Atmos. Environ. 2011, 45, 6029–6039. [Google Scholar] [CrossRef]
- Beheydt, D.; Boeckx, P.; Sleutel, S.; Li, C.; Van Cleemput, O. Validation of DNDC for 22 Long-Term N2O Field Emission Measurements. Atmos. Environ. 2007, 41, 6196–6211. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Thomson, A. Temperature-Associated Increases in the Global Soil Respiration Record. Nature 2010, 464, 579. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Helmy, M.; Prescher, A.; Osborne, B.; Lanigan, G.; Forristal, D.; Killi, D.; Maratha, P.; Williams, M.; et al. Assessing the Combined Use of Reduced Tillage and Cover Crops for Mitigating Greenhouse Gas Emissions from Arable Ecosystem. Geoderma 2014, 223–225, 9–20. [Google Scholar] [CrossRef]
- Jabro, J.D.; Sainju, U.; Stevens, W.B.; Evans, R.G. Carbon Dioxide Flux as Affected by Tillage and Irrigation in Soil Converted from Perennial Forages to Annual Crops. J. Environ. Manag. 2008, 88, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.; Chen, M.; Xu, K.; Tang, J.; Saikawa, E.; Lu, Y.; Melillo, J.M.; Prinn, R.G.; McGuire, A.D. Response of Global Soil Consumption of Atmospheric Methane to Changes in Atmospheric Climate and Nitrogen Deposition. Glob. Biogeochem. Cycles 2013, 27, 650–663. [Google Scholar] [CrossRef]
- BEIS. 2019 UK Greenhouse Gas Emissions; BEIS: London, UK, 2019. [Google Scholar]
- BEIS. 2015 UK Greenhouse Gas Emissions; BEIS: London, UK, 2017. [Google Scholar]
- Soussana, J.F.; Tallec, T.; Blanfort, V. Mitigating the Greenhouse Gas Balance of Ruminant Production Systems through Carbon Sequestration in Grasslands. Animal 2010, 4, 334–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmett, B.A.; Beier, C.; Estiarte, M.; Tietema, A.; Kristensen, H.L.; Williams, D.; Penuelas, J.; Schmidt, I.; Sowerby, A. The Response of Soil Processes to Climate Change: Results from Manipulation Studies of Shrublands across an Environmental Gradient. Ecosystems 2004, 7, 625–637. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Moncrieff, J.B. The Dependence of Soil CO2 Efflux on Temperature. Soil Biol. Biochem. 2001, 33, 155–165. [Google Scholar] [CrossRef]
- Wu, Z.T.; Dijkstra, P.; Koch, G.W.; Hungate, B.A. Biogeochemical and Ecological Feedbacks in Grassland Responses to Warming. Nat. Clim. Chang. 2012, 2, 458–461. [Google Scholar] [CrossRef]
- Crowther, T.W.; Bradford, M.A. Thermal Acclimation in Widespread Heterotrophic Soil Microbes. Ecol. Lett. 2013, 16, 469–477. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.F. Soil Respiration under Prolonged Soil Warming: Are Rate Reductions Caused by Acclimation or Substrate Loss? Glob. Chang. Biol. 2004, 10, 1870–1877. [Google Scholar] [CrossRef]
- Yuste, J.C.; Ma, S.; Baldocchi, D.D.; Curiel Yuste, J.; Ma, S.; Baldocchi, D.D. Plant-Soil Interactions and Acclimation to Temperature of Microbial-Mediated Soil Respiration May Affect Predictions of Soil CO2 Efflux. Biogeochemistry 2010, 98, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Schmid, M.; Neftel, A.; Riedo, M.; Fuhrer, J. Process-Based Modelling of Nitrous Oxide Emissions from Different Nitrogen Sources in Mown Grassland. Nutr. Cycl. Agroecosystems 2001, 60, 177–187. [Google Scholar] [CrossRef]
- McSwiney, C.P.; Robertson, G.P. Nonlinear Response of N2O Flux to Incremental Fertilizer Addition in a Continuous Maize (Zea mays L.) Cropping System. Glob. Chang. Biol. 2005, 11, 1712–1719. [Google Scholar] [CrossRef]
- LeCain, D.R.; Morgan, J.A.; Schuman, G.E.; Reeder, J.D.; Hart, R.H. Carbon Exchange and Species Composition of Grazed Pastures and Exclosures in the Shortgrass Steppe of Colorado. Agric. Ecosyst. Environ. 2002, 93, 421–435. [Google Scholar] [CrossRef]
- Kang, X.M.; Hao, Y.B.; Cui, X.Y.; Chen, H.; Li, C.S.; Rui, Y.C.; Tian, J.Q.; Kardol, P.; Zhong, L.; Wang, J.Z.; et al. Effects of Grazing on CO2 Balance in a Semiarid Steppe: Field Observations and Modeling. J. Soils Sediments 2013, 13, 1012–1023. [Google Scholar] [CrossRef]
- Li, R.H.; Li, X.B.; Li, G.Q.; Wen, W.Y. Simulation of Soil Nitrogen Storage of the Typical Steppe with the DNDC Model: A Case Study in Inner Mongolia, China. Ecol. Indic. 2014, 41, 155–164. [Google Scholar] [CrossRef]
- Han, Q.F.; Luo, G.P.; Li, C.F.; Xu, W.Q. Modeling the Grazing Effect on Dry Grassland Carbon Cycling with Biome-BGC Model. Ecol. Complex. 2014, 17, 149–157. [Google Scholar] [CrossRef]
- Graux, A.-I.; Lardy, R.; Bellocchi, G.; Soussana, J.-F. Global Warming Potential of French Grassland-Based Dairy Livestock Systems under Climate Change. Reg. Environ. Chang. 2012, 12, 751–763. [Google Scholar] [CrossRef]
- IPCC Special Report on Emission Scenarios. In A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Nakicenovic, N.; Swart, S. (Eds.) Cambridge University Press: Cambridge, UK, 2000; 599p. [Google Scholar]
- Gulzari, S.O.; Aby, B.A.; Persson, T.; Hoglind, M.; Mittenzwei, K. Combining Models to Estimate the Impacts of Future Climate Scenarios on Feed Supply, Greenhouse Gas Emissions and Economic Performance on Dairy Farms in Norway. Agric. Syst. 2017, 157, 157–169. [Google Scholar] [CrossRef]
Input Parameters | |
---|---|
Climate data | |
Latitude (degree) | 54°1′ N |
Mean annual air temperature (°C) | 9.75 |
Mean annual precipitation (mm) | 1333 |
N concentration in rainfall (mg N L−1) | 2 a |
Atmospheric CO2 concentrations (ppm) | 385 * |
Annual increase rate of atmospheric CO2 concentration (ppm y−1) | 2 |
Soil properties (0–10 cm) | |
Vegetation type | Moist pasture |
Soil texture | Clay loam |
Bulk density (g cm−3) | 1.06 |
Clay fraction (0–1) | 0.41 * |
Soil pH | 5.3 |
Initial organic C content at surface soil (kg C kg−1) | 0.038 |
Management | Sheep grazing/hay cutting |
WFPS at field capacity | 0.57 * |
WFPS at wilting point | 0.27 * |
Treatments | Cumulative N2O Emissions (g N2O-N ha−1) | Relative Deviation between Measured and Simulated Emissions (%) | ||
---|---|---|---|---|
Measured | Simulated | Difference | ||
2015 season | ||||
Control | 0.33 | 0.28 | −0.05 | −15 |
Cutting (D) | 1.63 | 0.57 | −1.06 | −65 |
Warming (W) | 0.32 | 0.28 | −0.03 | −11 |
Nitrogen (N) | 252.11 | 132.38 | −119.74 | −47 |
N × W | 141.67 | 73.99 | −67.68 | −48 |
D × N | 488.22 | 245.94 | −242.28 | −50 |
D ×W | 0.84 | 0.92 | 0.08 | 10 |
D × N × W | 245.09 | 132.82 | −112.26 | −46 |
2016 season | ||||
Control | −0.30 | 0.01 | 0.31 | >100 |
Cutting | 0.01 | 0.01 | 0.00 | −5 |
Warming | 0.23 | 0.33 | 0.10 | 41 |
Nitrogen | 1.21 | 1.71 | 0.50 | 42 |
N × W | 3.04 | 4.71 | 1.67 | 55 |
D × N | 5.13 | 5.84 | 0.71 | 14 |
D × W | 0.84 | 0.33 | −0.51 | −61 |
D × N × W | 3.34 | 6.48 | 3.14 | 94 |
Treatments | Cumulative CO2 Emissions (kg CO2-C ha−1) | Relative Deviation between Measured and Simulated Emissions (%) | ||
---|---|---|---|---|
Measured | Simulated | Difference | ||
2015 season | ||||
Control | 16.30 | 22.21 | 5.91 | 36 |
Cutting (D) | 15.67 | 22.21 | 6.54 | 42 |
Warming (W) | 20.53 | 30.36 | 9.83 | 48 |
Nitrogen (N) | 22.05 | 22.90 | 0.86 | 4 |
N × W | 26.71 | 27.33 | 0.62 | 2 |
D × N | 16.35 | 22.90 | 6.55 | 40 |
D × W | 16.32 | 26.00 | 9.68 | 59 |
D × N × W | 19.48 | 27.33 | 7.85 | 40 |
2016 season | ||||
Control | 15.87 | 18.31 | 2.44 | 15 |
Cutting | 11.74 | 18.31 | 6.57 | 56 |
Warming | 20.34 | 22.99 | 2.65 | 13 |
Nitrogen | 19.88 | 22.99 | 3.11 | 16 |
N × W | 26.95 | 25.27 | −1.68 | −6 |
D × N | 15.95 | 19.83 | 3.88 | 24 |
D × W | 14.85 | 22.99 | 8.14 | 55 |
D × N × W | 16.95 | 25.27 | 8.32 | 49 |
Treatments | Cumulative CH4 Emissions (g CH4-C ha−1) | Relative Deviation between Measured and Simulated Emissions (%) | ||
---|---|---|---|---|
Measured | Simulated | Difference | ||
2015 season | ||||
Control | −2.10 | −3.70 | −1.60 | 76 |
Cutting (D) | −2.47 | −3.90 | −1.43 | 58 |
Warming (W) | −2.41 | −5.86 | −3.45 | >100 |
Nitrogen (N) | −3.53 | −3.69 | −0.17 | 5 |
N × W | −5.84 | −6.21 | −0.37 | 6 |
D × N | −2.13 | −3.69 | −1.56 | 73 |
D × W | −0.15 | −6.30 | −6.15 | >100 |
D × N × W | −2.17 | −5.46 | −3.29 | >100 |
2016 season | ||||
Control | −6.75 | −7.06 | −0.30 | 5 |
Cutting | −4.06 | −6.46 | −2.40 | 59 |
Warming | −5.30 | −11.17 | −5.87 | >100 |
Nitrogen | −8.79 | −6.75 | 2.03 | −23 |
N ×W | −4.68 | −9.00 | −4.32 | 92 |
D × N | −4.28 | −6.75 | −2.47 | 58 |
D × W | −5.53 | −11.04 | −5.50 | 99 |
D × N × W | −4.13 | −10.08 | −5.95 | >100 |
Treatments | N2O (GWP100) | CH4 (GWP100) | CH4 (GWP20) | SOC | The Net GHG Emissions (GWP100) | The Net GHG Emissions (GWP20) |
---|---|---|---|---|---|---|
t CO2eq ha−1 y−1 | ||||||
Control (C) | 0.106 | −0.068 | −0.198 | 0.012 | 0.050 | −0.080 |
Cutting (D) | 0.109 | −0.069 | −0.200 | 0.012 | 0.052 | −0.079 |
Warming (W) | 0.147 | −0.080 | −0.231 | −0.025 | 0.043 | −0.109 |
Nitrogen (N) | 1.111 | −0.065 | −0.189 | 0.020 | 1.066 | 0.942 |
N × W | 1.463 | −0.077 | −0.223 | −0.002 | 1.385 | 1.238 |
D × N | 1.119 | −0.066 | −0.192 | 0.020 | 1.073 | 0.947 |
D × W | 0.164 | −0.080 | −0.234 | −0.025 | 0.059 | −0.095 |
D × N × W | 1.502 | −0.078 | −0.228 | −0.002 | 1.421 | 1.272 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barneze, A.S.; Abdalla, M.; Whitaker, J.; McNamara, N.P.; Ostle, N.J. Predicted Soil Greenhouse Gas Emissions from Climate × Management Interactions in Temperate Grassland. Agronomy 2022, 12, 3055. https://doi.org/10.3390/agronomy12123055
Barneze AS, Abdalla M, Whitaker J, McNamara NP, Ostle NJ. Predicted Soil Greenhouse Gas Emissions from Climate × Management Interactions in Temperate Grassland. Agronomy. 2022; 12(12):3055. https://doi.org/10.3390/agronomy12123055
Chicago/Turabian StyleBarneze, Arlete S., Mohamed Abdalla, Jeanette Whitaker, Niall P. McNamara, and Nicholas J. Ostle. 2022. "Predicted Soil Greenhouse Gas Emissions from Climate × Management Interactions in Temperate Grassland" Agronomy 12, no. 12: 3055. https://doi.org/10.3390/agronomy12123055
APA StyleBarneze, A. S., Abdalla, M., Whitaker, J., McNamara, N. P., & Ostle, N. J. (2022). Predicted Soil Greenhouse Gas Emissions from Climate × Management Interactions in Temperate Grassland. Agronomy, 12(12), 3055. https://doi.org/10.3390/agronomy12123055