A Model for the Effect of Low Temperature and Poor Light on the Growth of Cucumbers in a Greenhouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design
2.3. The Methods of Measurement
2.3.1. Determination of Leaf Area
2.3.2. Determination of Dry Weight
2.4. Introduction to the Three Growth Models
2.4.1. Light and Temperature Effect Model
2.4.2. Growing Degree Days Model
2.4.3. Product of Thermal Effectiveness and PAR Model
2.5. Simulation of the Stress Effect
2.6. The Dry Weight Simulation of Three Models
2.6.1. Light and Temperature Effect Model
2.6.2. Growing Degree Days Model
2.6.3. Product of Thermal Effectiveness and PAR Model
2.7. Simulation Equations for the Dry Weight and LTE of Various Organs of Cucumber
2.7.1. Simulation Equations for Leaf Dry Weight and LTE
2.7.2. Simulation Equations for Steam Dry Weight and LTE
2.7.3. Simulation Equations for Fruit Dry Weight and LTE
2.8. Simulation Equations for Cucumber Leaf Area
2.9. Method to Model Texting
3. Results
3.1. Effect of Low Temperature and Poor Light on the Degree of Stress
3.2. Comparison of Each Model
3.3. Changes of Dry Weight in Cucumber under Low Temperature and Poor Light Stresses
3.3.1. Patterns of Change in Leaf Dry Weight
3.3.2. Patterns of Change in Steam Dry Weight
3.3.3. Patterns of Change in Fruit Dry Weight
3.4. Simulation of Dry Weight Distribution Ratio in Different Organs under Low Temperature and Poor Light Stress
3.4.1. Leaf Dry Weight Distribution Ratio Simulation
3.4.2. Steam Dry Weight Distribution Ratio Simulation
3.4.3. Fruit Dry Weight Distribution Ratio Simulation
3.4.4. Comparison of Simulated and Measured Values
3.5. Leaf Area Model for Facility Cucumber under Low Temperature and Poor Light Stress
3.5.1. Leaf Area Variation Patterns
3.5.2. Testing of the Leaf Area Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gou, C.X.; Zhu, P.Y.; Meng, Y.J.; Yang, F.; Xu, Y.; Xia, P.F.; Chen, J.F.; Li, J. Evaluation and genetic analysis of parthenocarpic germplasms in cucumber. Genes 2022, 13, 225. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.W.; Ming, F.Y.; Liang, Y.G.; Wang, Y.X.; Gan, Y.W.; Qiu, Z.K.; Yan, S.S.; Cao, B.H. Heat stress resistance mechanisms of two cucumber varieties from different regions. Int. J. Mol. Sci. 2022, 23, 1817. [Google Scholar] [CrossRef]
- Qu, H. Exploration of the effect of environmental temperature on the growth and development of cucumber. Mod. Agric. Sci. Technol. 2015, 23, 104–108. [Google Scholar] [CrossRef]
- Farazmand, A. Effect of the temperature on development ofTetranychus urticae (Acari: Tetranychidae) feeding on cucumber leaves. Int. J. Acarol. 2020, 46, 381–386. [Google Scholar] [CrossRef]
- Zhou, X.; Feng, G.L.; Li, Z.H.; Liu, S.X.; Zhao, S.; Li, Y.; Wei, M. Effects of environmental conditions on absorption and distribution of silicon and formation of bloom on fruit surface of cucumber. J. Appl. Ecol. 2020, 31, 124–126. [Google Scholar] [CrossRef]
- Mou, M.M. Studies on the Mechanism of Heat Injury and Heat Adaptation and Summer Cultivation Techniques of Cucumber(Cucumis sativus L.). Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2000. [Google Scholar]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Effects of cooling systems on greenhouse microclimate and cucumber growth under mediterranean climatic conditions. Agronomy 2019, 9, 300. [Google Scholar] [CrossRef] [Green Version]
- Hamedalla, A.M.; Ali, M.M.; Ali, W.M.; Ahmed, M.A.A.; Kaseb, M.O.; Kalaji, H.M.; Gajc-Wolska, J.; Yousef, A.F. Increasing the performance of cucumber (Cucumis sativus L.) seedlings by LED illumination. Sci. Rep. 2022, 12, 12–17. [Google Scholar] [CrossRef]
- Minchin, A.; Simon, E.W. Chilling injury in cucumber leaves in relation to temperature. J. Exp. Bot. 1973, 24, 1231–1235. [Google Scholar] [CrossRef]
- Zhao, L.J.; Sun, Y.P.; Hernandez-Viezcas, J.A.; Servin, A.D.; Hong, J.; Niu, G.H.; Peralta-Videa, J.R.; Duarte-Gardea, M.; Gardea-Torresdey, J.L. Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: A life cycle study. J. Agric. Food Chem. 2013, 61, 11945–11951. [Google Scholar] [CrossRef]
- Gajc-Wolska, J.; Kowalczyk, K.; Przybysz, A.; Mirgos, M.; Orliński, P. Photosynthetic Efficiency and Yield of Cucumber (Cucumis sativus L.) Grown under HPS and LED Lighting in Autumn–Winter Cultivation. Plants 2021, 10, 2042. [Google Scholar] [CrossRef]
- Yan, Z.N.; Wang, L.; Wang, Y.F.; Chu, Y.Y.; Lin, D.; Yang, Y.J. Morphological and physiological properties of Greenhouse-Grown cucumber seedlings as influenced by supplementary Light-Emitting diodes with same daily light integral. Horticulturae 2021, 7, 361. [Google Scholar] [CrossRef]
- Górnik, K. Sensitivity of ‘Monika’ Cucumis sativus seedlings to low temperature and induction of chilling tolerance. Plant Breed. Seed Sci. 2015, 71, 3–11. [Google Scholar] [CrossRef]
- Zhao, H.L.; Yang, Z.Q. Effect of low temperature and weak light single factor stress on photosynthesis characteristics, dry weight distribution and fruit quality of greenhouse cucumber leaves. North. Hortic. 2018, 2, 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Henke, M.; Li, Y.M.; Xu, D.M.; Liu, A.H.; Liu, X.G.; Li, T.L. Towards the maximization of energy performance of an energy-saving Chinese solar greenhouse: A systematic analysis of common greenhouse shapes. Sol. Energy 2022, 236, 320–334. [Google Scholar] [CrossRef]
- Hui, A.B. Temperature and Light Characteristics of Assembly Sunlight Greenhouse and Its Effect on Tomato Production. Master’s Thesis, Northeast Agricultural University, Haerbin, China, 2019. [Google Scholar]
- Zhang, Z.; Wang, P.; Chen, Y.; Zhang, S.; Tao, F.L.; Liu, X.F. Spatial pattern and decadal change of agro-meteorological disasters in the main wheat production area of China during 1991–2009. J. Geogr. Sci. 2014, 24, 387–396. [Google Scholar] [CrossRef]
- Fan, S.X.; Yang, C.X.; Yang, Q.L.; Han, S.C. Prediction model of Panax notoginseng leaf area growth based on particle swarm-optimization random forest algorithm and meteorological data. Chin. Tradit. Herb. Drugs 2022, 53, 3103–3110. [Google Scholar] [CrossRef]
- Hang, T.; Lu, N.; Takagaki, M.; Mao, H.P. Leaf area model based on thermal effectiveness and photosynthetically active radiation in lettuce grown in mini-plant factories under different light cycles. Sci. Hortic. 2019, 252, 113–120. [Google Scholar] [CrossRef]
- Liu, Y.; Yun, X.F.; Wang, Y. Analysis of model between dry weight accumulation and thermal radiation accumulation for greenhouse tomato. J. Agric. Mech. Res. 2020, 42, 29–33. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, M.Z.; Wang, Y.H.; Bai, Y.L.; Lu, Y.L.; Wang, L. Quantitative study on effective accumulated temperature and dry weight and nitrogen accumulation of summer maize under different nitrogen supply levels. Sci. Agric. Sin. 2022, 55, 2973–2987. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Luo, W.H.; Chen, F.D.; Xie, Y.P.; Gu, J.J. A photo-thermal based model for predicting the dry weight production and partitioning of multi-stem cut Chrysanthemum in greenhouse. Acta Ecol. Sin. 2009, 29, 1478–1485. [Google Scholar] [CrossRef]
- Ding, B.; Liang, H.H.; Zhao, X.; Li, S.L.; Sun, R.D.; Guo, S.N.; Chen, B.Y.; Wang, H.J.; Wang, N.; Sun, M.Q.; et al. Effect of different coverage methods on dry weight accumulation and yield of maize in low temperature cold zone. Mol. Plant Breed. 2022, 20, 1358–1362. [Google Scholar] [CrossRef]
- Sionit, N.; Strain, B.R.; Flint, E.P. Interaction of temperature and co2 enrichment on soybean: Growth and dry weight partitioning. Can. J. Plant Sci. 1987, 67, 59–67. [Google Scholar] [CrossRef]
- Liu, K.Z.; Zhang, C.X.; Guan, B.B.; Yang, R.; Liu, K.; Wang, Z.Z.; Li, X.; Xue, K.Y.; Yin, L.J.; Wang, X.Y. The effect of different sowing dates on dry weight and nitrogen dynamics for winter wheat: An experimental simulation study. PeerJ 2021, 9, e11700. [Google Scholar] [CrossRef]
- Chen, Z.W.; Wang, Y.F.; Zhang, X.; Yu, H.S. Progress on Study of production of Cucumber Hybrid Seeds. Chin. Agric. Sci. Bull. 2005, 32, 245–248. [Google Scholar] [CrossRef]
- Odhiambo, J.A.; Aguyoh, J.N. Soil moisture levels affect growth, flower production and yield of cucumber. Agric. Trop. Subtrop. 2022, 55, 1–8. [Google Scholar] [CrossRef]
- Liu, R.; Wang, H.; Guzmán, J.L.; Li, M. A model-based methodology for the early warning detection of cucumber downy mildew in greenhouses. Comput. Electron. Agric. 2022, 194, 106751. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Yu, J.Q.; Qian, Q.Q.; Huang, L.F. Effects of chilling and low light on cucumber seedlings growth and their antioxidative enzyme activities. Chin. J. Appl. Ecol. 2003, 49, 921–924. [Google Scholar]
- Xue, X.P.; Li, N.; Zhang, J.B.; Xiong, Y. Effects of sparse sunlight on the growth in the flowering and fruit set stage and the fruit quality of cucumber in solar greenhouse. J. Mar. Meteorol. 2020, 40, 77–83. [Google Scholar] [CrossRef]
- Laktionov, I.; Vovna, O.; Kabanets, M.; Derzhevetska, M.; Zori, A. Mathematical model of measuring monitoring and temperature control of growing vegetables in greenhouses. Int. J. Des. Nat. Ecodyn. 2020, 15, 325–336. [Google Scholar] [CrossRef]
- Lee, S.S.; Yang, S.K.; Hong, S.B. A GDD model for super sweet corn grown under black PE film mulch. Korean J. Crop Sci. 2008, 53, 42–49. [Google Scholar]
Treatments | Temperature [°C] | Light [μmol·m−2·s−1] | Duration [d] |
---|---|---|---|
3-200-2d | 13/3 | 200 | 2 |
3-200-5d | 13/3 | 200 | 5 |
3-400-8d | 13/3 | 400 | 8 |
3-400-11d | 13/3 | 400 | 11 |
6-400-2d | 16/6 | 400 | 2 |
6-400-5d | 16/6 | 400 | 5 |
6-200-8d | 16/6 | 200 | 8 |
6-200-11d | 16/6 | 200 | 11 |
9-400-2d | 19/9 | 400 | 2 |
9-400-5d | 19/9 | 400 | 5 |
9-200-8d | 19/9 | 200 | 8 |
9-200-11d | 19/9 | 200 | 11 |
12-200-2d | 22/12 | 200 | 2 |
12-200-5d | 22/12 | 200 | 5 |
12-400-8d | 22/12 | 400 | 8 |
12-400-11d Control | 22/12 28/18 | 400 800 | 11 |
MODEL | RMSE [g·Plant−1] | R2 |
---|---|---|
LTE | 4.21 | 0.9487 |
GDD | 11.61 | 0.9391 |
TEP | 5.35 | 0.9350 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Luo, J.; Yuan, C.; Li, C.; Yang, Z. A Model for the Effect of Low Temperature and Poor Light on the Growth of Cucumbers in a Greenhouse. Agronomy 2022, 12, 2992. https://doi.org/10.3390/agronomy12122992
Zhang F, Luo J, Yuan C, Li C, Yang Z. A Model for the Effect of Low Temperature and Poor Light on the Growth of Cucumbers in a Greenhouse. Agronomy. 2022; 12(12):2992. https://doi.org/10.3390/agronomy12122992
Chicago/Turabian StyleZhang, Fengyin, Jing Luo, Changhong Yuan, Chunying Li, and Zaiqiang Yang. 2022. "A Model for the Effect of Low Temperature and Poor Light on the Growth of Cucumbers in a Greenhouse" Agronomy 12, no. 12: 2992. https://doi.org/10.3390/agronomy12122992
APA StyleZhang, F., Luo, J., Yuan, C., Li, C., & Yang, Z. (2022). A Model for the Effect of Low Temperature and Poor Light on the Growth of Cucumbers in a Greenhouse. Agronomy, 12(12), 2992. https://doi.org/10.3390/agronomy12122992