Effects of Previous Fall–Winter Crop on Spring–Summer Soybean Nutrition and Seed Yield under No-Till System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design, Treatments, and Crop Management
2.3. Plant Sampling, Measurements, and Analyses
2.4. Statistical Analyses
3. Results
3.1. Leaf Nutrient Concentrations
3.2. Aboveground Dry Matter
3.3. Aboveground Macronutrient Concentration and Uptake
3.4. Yield Components and Soybean Yield
3.5. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO—Food and Agriculture Organization of the United Nations. Food and Agriculture Data. Production-Crops; FAO: Rome, Italy, 2022; Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 24 September 2022).
- Chen, K.I.; Erh, M.H.; Su, N.W.; Liu, W.H.; Chou, C.C.; Cheng, K.C. Soyfoods and soybean products: From traditional use to modern applications. App. Microb. Biotec. 2012, 96, 9–22. [Google Scholar] [CrossRef] [PubMed]
- CONAB—Companhia Nacional de Abastecimento. Portal de Informações Agropecuárias, Safras 2020/21. Conab. 2022. Available online: https://portaldeinformacoes.conab.gov.br/safra-serie-historica-graos.html (accessed on 14 September 2022).
- Merten, G.H.; Araújo, A.G.; Biscaia, R.C.M.; Barbosa, G.M.C.; Conteb, O. No-till surface runoff and soil losses in southern Brazil. Soil Tillage Res. 2015, 152, 85–93. [Google Scholar] [CrossRef]
- Rosa, C.B.C.J.; Marchetti, M.E.; Serra, A.P.; Rosa, M.S.M.; Ensinas, S.C.; Conrad, V.A.; Altomar, P.H.; Potrich, D.C.; Martinez, M.A. Short-term effects of lime management in soybean no-tillage system implementation in Brazilian savannah. Aus. J. Crop Sci. 2015, 9, 232–241. [Google Scholar]
- Freitas, M.E.; Souza, L.C.F.; Salton, J.C.; Serra, A.P.; Mauad, M.; Cortez, J.W.; Marchetti, M.E. Crop rotation affects soybean performance in no-tillage system under optimal and dry cropping seasons. Aus. J. Crop Sci. 2016, 10, 353–361. [Google Scholar] [CrossRef]
- Fuentes-Llanillo, R.; Telles, T.S.; Soares Junior, D.; Melo, T.R.; Friedrich, T.; Kassam, A. Expansion of no-tillage practice in conservation agriculture in Brazil. Soil Tillage Res. 2021, 208, 104877. [Google Scholar] [CrossRef]
- Segatelli, C.R.; Câmara, G.M.S.; Aguila, L.S.H.D.; Aguila, J.S.D.; Francisco, E.A.B.; Piedade, S.M.S. Soybean yield under no-tillage system with an early Eleusine coracana fertilization. Rev. Caatinga 2022, 35, 308–319. [Google Scholar] [CrossRef]
- Calonego, J.C.; Rosolem, C.A. Estabilidade de agregados do solo após manejo com rotação de culturas e escarificação. Rev. Bras. Ciênc. Solo 2008, 32, 1399–1407. [Google Scholar] [CrossRef] [Green Version]
- Galdos, M.V.; Pires, L.F.; Cooper, H.V.; Calonego, J.C.; Rosolem, C.A.; Mooney, S.J. Assessing the long-term effects of zero-tillage on the macroporosity of Brazilian soils using X-ray Computed Tomography. Geoderma 2019, 337, 1126–1135. [Google Scholar] [CrossRef]
- Aranda, V.; Ayora-Cañada, M.J.; Domínguez-Vidal, A.; Martín-García, J.M.; Calero, J.; Delgado, R.; Verdejo, T.; González-Vila, F.J. Effect of soil type and management (organic vs. conventional) on soil organic matter quality in olive groves in a semi-arid environment in Sierra Mágina Natural Park (Spain). Geoderma 2011, 164, 54–63. [Google Scholar] [CrossRef]
- Cooper, H.V.; Sjögersten, S.; Lark, R.M.; Girkin, N.T.; Vane, C.H.; Calonego, J.C.; Rosolem, C.A.; Mooney, S.J. Long-term zero-tillage enhances the protection of soil carbon in tropical agriculture. Eur. J. Soil Sci. 2021, 72, 2477–2492. [Google Scholar] [CrossRef]
- Crusciol, C.A.C.; Nascente, A.S.; Borghi, E.; Soratto, R.P.; Martins, P.O. Improving soil fertility and crop yield in a tropical region with palisadegrass cover crops. Agron. J. 2015, 107, 2271–2280. [Google Scholar] [CrossRef]
- Porter, P.M.; Lauer, J.G.; Lueschen, W.E.; Ford, J.H.; Hoverstad, T.R.; Oplinger, E.S.; Crookston, R.K. Environment affects the corn and soybean rotation effect. Agron. J. 1997, 89, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Riedell, W.R.; Osborne, S.L.; Pikul, J.L., Jr. Soil attributes, soybean mineral nutrition, and yield in diverse crop rotations under no-till conditions. Agron. J. 2013, 105, 1231–1236. [Google Scholar] [CrossRef]
- Sindelar, A.J.; Schmer, M.R.; Jin, V.L.; Wienhold, B.J.; Varvel, G.E. Long-term corn and soybean response to crop rotation and tillage. Agron. J. 2015, 107, 2241–2252. [Google Scholar] [CrossRef] [Green Version]
- Fan, R.; Zhang, X.; Liang, A.; Shi, X.; Chen, X.; Bao, K.; Yang, X.; Jia, S. Tillage and rotation effects on crop yield and profitability on a Black soil in northeast China. Can. J. Soil Sci. 2012, 92, 463–470. [Google Scholar] [CrossRef]
- Guidorizzi, F.V.C.; Soratto, R.P.; Silva, M.M.; Pinto, L.O.G.; Fernandes, A.M.; Souza, E.F.C. Biomass and nutrient accumulation and partitioning of fall-winter safflower in a double-cropping system of southeastern Brazil. Agron. J. 2021, 113, 451–463. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Frizzas, M.R. Eight decades of Dalbulus maidis (DeLong & Wolcott) (Hemiptera, Cicadellidae) in Brazil: What we know and what we need to know. Neotrop. Entomol. 2022, 51, 1–17. [Google Scholar] [CrossRef]
- Soratto, R.P.; Souza-Schlick, G.D.; Fernandes, A.M.; Souza, E.F.C. Effect of fertilization at sowing on nutrition and yield of crambe in second season. Rev. Bras. Ciênc. Solo 2013, 37, 658–666. [Google Scholar] [CrossRef]
- Silva, I.R.; Mendonça, E.S. Matéria orgânica do solo. In Fertilidade do Solo, 1st ed.; Novais, F.R., Alvarez, V.V.H., Barros, N.F., Fontes, R.L.F., Cantarutti, R.B., Neves, J.C.L., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2007; pp. 275–356. [Google Scholar]
- Marcelo, V.A.; Corá, J.E.; Fernandes, C.; Martins, M.R.; Jorge, R.F. Crop sequences in no-tillage system: Effects on soil fertility and soybean, maize and rice yield. Rev. Bras. Ciênc. Solo 2009, 33, 417–428. [Google Scholar] [CrossRef] [Green Version]
- FAO—Food and Agriculture Organization of the United Nations. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015; Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 24 September 2022).
- van Raij, B.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química Para Avaliação da Fertilidade de Solos Tropicais; Instituto Agronômico: Campinas, Brazil, 2001. [Google Scholar]
- EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária. Manual de métodos de análise de solo; Embrapa-CNPS: Rio de Janeiro, Brasil, 1997; Available online: https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/1085209/manual-de-metodos-de-analise-de-solo (accessed on 24 September 2022).
- Fehr, W.R.; Caviness, C.E.; Burmood, D.T.; Pennington, J.S. Stage of development descriptions ofsoybeans, Glycine max (L.) Merr. Crop Sci. 1971, 11, 929–931. [Google Scholar] [CrossRef]
- Munger, P.; Bleiholder, H.; Hack, H.; Hess, M.; Stauss, R.; van den Boom, T.; Weber, E. Phenological growth stages of the soybean plant {Glycine max L. Merr.): Codification and description according to the BBCH scale. J. Agron. Crop Sci. 1997, 179, 209–217. [Google Scholar] [CrossRef]
- Quaggio, J.A.; Cantarella, H.; Rosolem, C.A.; Crusciol, S. Boletim 100: Recomendação de Adubação e Calagem Para o Estado de São Paulo; Cantarella, H., Quaggio, J.A., Mattos, D., Jr., Boaretto, R.M., van Raij, B., Eds.; Instituto Agronômico: Campinas, Brazil, 2022; pp. 209–212. [Google Scholar]
- Malavolta, E.; Vitti, G.C.; Oliveira, S.A. Avaliação do Estado Nutricional das Plantas: Princípios e Aplicações, 2nd ed.; Associação Brasileira para Pesquisa da Potassa e do Fosfato: Piracicaba, Brazil, 1997. [Google Scholar]
- Ferreira, D.F. Sisvar: A Guide for its Bootstrap procedures in multiple comparisons. Ciênc. Agrotecnol. 2014, 38, 109–112. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 11 September 2021).
- Zwick, W.R.; Velicer, W.F. Factors influencing four rules for determining the number of components to retain. Multivariate Behav. Res. 1982, 17, 253–269. [Google Scholar] [CrossRef]
- Hair, J.F. Multivariate Data Analysis: An Overview. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin, Heidelberg, 2011. [Google Scholar] [CrossRef]
- Teixeira, M.B.; Loss, A.; Pereira, M.G.; Pimentel, C. Decomposição e ciclagem de nutrientes dos resíduos de quatro plantas de cobertura do solo. Idesia 2012, 30, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Miguel, A.S.D.C.S.; Pacheco, L.P.; Carvalho, I.C.; Souza, E.D.; Feitosa, P.B.; Petter, F.A. Phytomass and nutrient release in soybean cultivation systems under no-tillage. Pesqu. Agropec. Bras. 2018, 53, 1119–1131. [Google Scholar] [CrossRef]
- Mauad, M.; Vitoriono, A.C.T.; Souza, L.C.F.; Heinz, R.; Garbiate, M.V. Straw persistence and nutrient release from crambe abyssinica acoording to the time of management. Rev. Ciênc. Agrár. 2013, 56, 53–60. [Google Scholar] [CrossRef]
- Cantarella, H. Nitrogênio. Fertilidade do Solo, 1st ed.; Novais, F.R., Alvarez, V.V.H., Barros, N.F., Fontes, R.L.F., Cantarutti, R.B., Neves, J.C.L., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2007; pp. 375–470. [Google Scholar]
- Nunes, J.C.S.; Araujo, E.F.; Souza, C.M.; Bertini, L.A.; Ferreira, F.A. Efeito da palhada de sorgo localizada na superfície do solo em características de plantas de soja e milho. Rev. Ceres 2003, 50, 115–128. [Google Scholar]
- Bossolani, J.W.; Lazarini, E.; Souza, L.G.M.; Parente, T.L.; Caioni, S.; Biazi, N.Q. Potassium doses in previous crops and effect on soybean in succession. Rev. Bras. Eng. Agríc. Amb. 2018, 22, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Heinz, R.; Garbiate, M.V.; Neto, A.L.V.; Mota, L.H.S.; Correia, A.M.P.; Vitorino, A.C.T. Decomposição e liberação de nutrientes de resíduos culturais de crambe e nabo forrageiro. Ciênc. Rural 2011, 41, 1549–1555. [Google Scholar] [CrossRef]
- Zobiole, L.H.S.; Castro, C.; Oliveira, F.A.; Oliveira Junior, A. Marcha de absorção de macronutrientes na cultura do girassol. R. Bras. Ci. Solo 2010, 34, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Bortolon, L.; Bortolon, E.S.O.; Camargo, F.P.C.; Seraglio, N.A.; Lima, A.O.; Rocha, P.H.F.; Souza, J.P.; Sousa, W.C.; Tomazzi, M.; Lago, B.C.; et al. Yield and nutrient uptake of soybean cultivars under intensive cropping systems. J. Agr. Sci. 2018, 10, 344–357. [Google Scholar] [CrossRef]
- Sodré Filho, J.; Cardoso, A.N.; Carmona, R.; Carvalho, A.M. Fitomassa de cobertura do solo de culturas de sucessão ao milho na região do cerrado. Pesqu. Agropec. Bras. 2004, 39, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Raphael, J.P.A.; Calonego, J.C.; Milori, D.M.B.P.; Rosolen, C.A. Soil organic matter in crop rotations under no-till. Soil Tillage Res. 2016, 155, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Babu, S.; Rana, D.S.; Yadav, G.S.; Singh, R.; Yadav, S.K. A review on recycling of sunflower residue for sustaining soil health. Inter. J. Agron. 2014, 2014, 601049. [Google Scholar] [CrossRef]
- Samarappuli, D.; Zanetti, F.; Berzuini, S.; Berti, M.T. Crambe (Crambe abyssinica Hochst): A non-food oilseed crop with great potential: A review. Agronomy 2020, 10, 1380. [Google Scholar] [CrossRef]
- Campbell, C.A.; Biederbeck, V.O.; Wen, G.; Zentner, R.P.; Schoenau, J.; Hahn, D. Seasonal trends in selected soil biochemical attributes: Effects of crop rotation in the semiarid prairie. Can. J. Soil Sci. 1999, 79, 73–84. [Google Scholar] [CrossRef]
- Cordeiro, M.A.S.; Corá, J.E.; Nahas, E. Atributos bioquímicos e químicos do solo rizosférico e não rizosférico de culturas em rotação no sistema de semeadura direta. Rev. Bras. Cienc. Solo 2012, 36, 1794–1803. [Google Scholar] [CrossRef] [Green Version]
- Gross, M.R.; Van, R.A.; Woodley, A.L.; Jordan, D. Winter crop effect on soybean production in the Southeast United States. Agron. J. 2022, 114, 662–677. [Google Scholar] [CrossRef]
- Anda, J.E.; Soós, G.; Menyhárt, L.; Kucserka, T.; Simon, B. Yield features of two soybean varieties under different water supplies and field conditions. Field Crops Res. 2020, 245, 107673. [Google Scholar] [CrossRef]
- Cover, J.E.; Aguiar, C.D.; Silva, A.V.; Silva, C.M.; Mielezrski, F. Productive potential and seed quality of soybean genotypes with different maturity groups. Aus. J. Crop Sci. 2019, 13, 1155–1161. [Google Scholar] [CrossRef]
- Souza, R.; Teixeira, I.; Reis, E.; Silva, A. Soybean morphophysiology and yield response to seeding systems and plant populations. Chil. J. Agric. Res. 2016, 76, 3–8. [Google Scholar] [CrossRef]
- Leolato, L.S.; Sangoi, L.; Souza, C.A.; Kuneski, H.F.; Scherer, R.L.; Oliveira, V.L.; Martins Junior, M.C.; Kandler, R. Soybean tolerance to defoliation at the vegetative and reproductive stages as a function of water restriction. Acta Scient. Agron. 2022, 44, e55639. [Google Scholar] [CrossRef]
- Silva, A.J.; Magalhães Filho, J.R.; Sales, C.R.G.; Pires, R.C.M.; Machado, E.C. Source-sink relationships in two soybean cultivars with indeterminate growth under water deficit. Bragantia 2018, 77, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, L.P.; Barbosa, J.M.; Leandro, W.M.; Machado, P.L.O.A.; Assis, R.L.; Madari, B.E.; Petter, F.A. Ciclagem de nutrientes por plantas de cobertura e produtividade de soja e arroz em plantio direto. Pesqu. Agropec. Bras. 2013, 48, 1228–1236. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, W.S.; Braz, A.J.B.P.; Assis, R.L.; Costa, K.A.P.; Silva, A.G.; Torres, J.L.R. Cultivo do milho e da soja em sucessão as culturas de safrinha em Rio Verde-GO. Energ. Agric. 2016, 31, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Calonego, J.C.; Rosolem, C.A. Soybean root growth and yield in rotation with cover crops under chiseling and no-till. Eur. J. Agron. 2010, 33, 242–249. [Google Scholar] [CrossRef]
- Calonego, J.C.; Raphael, J.P.A.; Rigon, J.P.G.; Oliveira Neto, L.; Rosolem, C.A. Soil compaction management and soybean yields with cover crops under no-till and occasional chiseling. Eur. J. Agron. 2017, 85, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Zegada-Lizarazu, W.; Monti, A. Energy crops in rotation. A review. Biomass Bioenergy 2011, 35, 12–25. [Google Scholar] [CrossRef]
- Crusciol, C.A.C.; Cottica, R.L.; Lima, E.V.; Andreotti, M.; Moro, E.; Marcon, E. Persistência de palhada e liberação de nutrientes do nabo forrageiro no plantio direto. Pesqu. Agropec. Bras. 2005, 40, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Collier, L.S.; Castro, D.V.; Dias Neto, J.J.; Brito, D.R.; Ribeiro, P.A.A. Manejo da adubação nitrogenada para milho sob palhada de leguminosas em plantio direto em Gurupi, TO. Cienc. Rural 2006, 36, 1100–1105. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, C.E.A.; Melém Júnior, N.J.; Azevedo, M.C.B.; Andrade, E.A.; Koguishi, M.C.; Diehl, R.C.; Ricce, W.; Passarin, A.L.; Vaz, R.H.M.; Stelmachuk, T.L.L.; et al. Efeitos dos sistemas de manejo sobre o carbono orgânico total e carbono residual de um Latossolo Vermelho eutroférrico. Semina 2009, 30, 5–10. [Google Scholar] [CrossRef]
- Gura, I.; Mnkeni, P.N.S. Crop rotation and residue management effects under no till on the soil quality of a Haplic Cambisol in Alice, Eastern Cape, South Africa. Geoderma 2019, 337, 927–934. [Google Scholar] [CrossRef]
- Weisberger, D.; Nichols, V.; Liebman, M. Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS ONE 2019, 14, e0219847. [Google Scholar] [CrossRef] [PubMed]
Practice | Growing Season | ||
---|---|---|---|
2014–2015 | 2015–2016 | 2016–2017 | |
Previous crop sowing | 04 Apr. 2014 | 17 Apr. 2015 | 13 Apr. 2016 |
Previous crop fertilization | 8 kg N, 12.4 kg P, and 13.4 kg K per ha | ||
Spontaneous weeds termination | 5 Nov. 2014 | 21 Oct. 2015 | 10 Nov. 2016 |
Soybean cultivar | BMX Potência RR | TMG2158IPRO | M5917IPRO |
Soybean sowing | 17 Nov. 2014 | 27 Oct. 2015 | 25 Nov. 2016 |
Soybean fertilization | 4 kg N, 17.8 kg P, and 33.4 kg K per ha |
Treatment | Nutrient Concentration in Leaves (g kg−1) | Aboveground Dry Matter | ||||||
---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | S | (g plant−1) | (kg ha−1) | |
Growing season | ||||||||
2014–2015 | 48.6a | 3.0a | 23.8 | 12.8b | 3.5ab | 2.5ab | 29.1 | 7933 |
2015–2016 | 48.7a | 2.8b | 26.1 | 14.5a | 3.7a | 2.3b | 36.0 | 7866 |
2016–2017 | 49.2a | 3.1a | 21.4 | 11.3c | 3.4b | 2.6a | 25.2 | 8441 |
Previous crop | ||||||||
Fallow | 48.6ab | 2.8a | 22.8 | 12.6a | 3.4a | 2.4abc | 28.5 | 7369 |
Crambe | 50.5a | 2.9a | 23.4 | 12.9a | 3.7a | 2.4abc | 35.3 | 8852 |
Maize | 46.6b | 3.1a | 23.9 | 12.6a | 3.7a | 2.8a | 32.8 | 7728 |
Safflower | 49.6ab | 3.0a | 24.5 | 12.3a | 3.4a | 2.1c | 29.6 | 8357 |
Sorghum | 48.2ab | 3.0a | 24.6 | 13.5a | 3.7a | 2.6ab | 24.8 | 7591 |
Sunflower | 49.2ab | 2.9a | 23.3 | 13.2a | 3.4a | 2.4abc | 29.6 | 8582 |
Source of variation | P > F | |||||||
Growing season (GS) | 0.758 | <0.001 | <0.001 | <0.001 | 0.021 | 0.028 | <0.001 | 0.033 |
Previous crop (PC) | 0.049 | 0.091 | 0.159 | 0.107 | 0.089 | <0.001 | <0.001 | <0.001 |
GS × PC | 0.575 | 0.984 | 0.021 | 0.560 | 0.054 | 0.103 | <0.001 | 0.002 |
Treatment | Nutrient Concentration (g kg−1) | Nutrient Uptake (kg ha−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | S | N | P | K | Ca | Mg | S | |
Growing season | ||||||||||||
2014–2015 | 30.0a | 1.9a | 38.1a | 13.7 | 4.2b | 1.4b | 241a | 15 | 301 | 109 | 33 | 11b |
2015–2016 | 30.0a | 2.0a | 25.8c | 7.6 | 4.1b | 1.5b | 239a | 16 | 203 | 59 | 32 | 12b |
2016–2017 | 29.6a | 2.0a | 27.6b | 8.1 | 4.7a | 2.1a | 250a | 17 | 232 | 68 | 40 | 18a |
Previous crop | ||||||||||||
Fallow | 30.2a | 1.9a | 29.8a | 9.5 | 4.3a | 1.8ab | 222a | 14 | 217 | 69 | 32 | 13ab |
Crambe | 30.6a | 2.0a | 30.8a | 10.0 | 4.4a | 1.7ab | 273a | 18 | 269 | 86 | 39 | 15ab |
Maize | 30.8a | 2.0a | 29.8a | 10.4 | 4.2a | 1.8ab | 238a | 15 | 232 | 82 | 32 | 14ab |
Safflower | 27.5a | 2.0a | 31.0a | 9.6 | 4.4a | 1.4b | 230a | 16 | 260 | 80 | 37 | 12b |
Sorghum | 29.7a | 2.0a | 31.5a | 8.7 | 4.3a | 1.6ab | 224a | 15 | 238 | 65 | 33 | 12b |
Sunflower | 31.7a | 2.0a | 30.0a | 10.7 | 4.4a | 1.8a | 272a | 17 | 259 | 90 | 38 | 16a |
Source of variation | P > F | |||||||||||
Growing season (GS) | 0.786 | 0.084 | <0.001 | <0.001 | <0.001 | <0.001 | 0.669 | 0.025 | <0.001 | <0.001 | <0.001 | <0.001 |
Previous crop (PC) | 0.217 | 0.273 | 0.365 | <0.001 | 0.803 | 0.036 | 0.012 | <0.001 | <0.001 | <0.001 | 0.001 | 0.014 |
GS × PC | 0.218 | 0.410 | 0.225 | 0.019 | 0.326 | 0.452 | 0.227 | 0.044 | 0.009 | 0.034 | 0.036 | 0.194 |
Treatment | Plant Population (Thousand Plants ha−1) | No. of Pods per Plant | No. of Seeds per Pod | 1000-Seed Weight (g) | Seed Yield (kg ha−1) |
---|---|---|---|---|---|
Growing season | |||||
2014–2015 | 273.8b | 36.0 | 1.4 | 169.1a | 2285 |
2015–2016 | 226.5c | 59.6 | 1.8 | 146.3b | 3350 |
2016–2017 | 335.9a | 35.1 | 1.9 | 170.1a | 3792 |
Previous crop | |||||
Fallow | 263.9bc | 41.4 | 1.6 | 161.1a | 2731 |
Crambe | 261.1bc | 45.5 | 1.7 | 162.2a | 3063 |
Maize | 254.4c | 52.0 | 1.7 | 163.5a | 3209 |
Safflower | 287.5abc | 43.0 | 1.7 | 165.4a | 3367 |
Sorghum | 310.2a | 37.1 | 1.7 | 160.3a | 3082 |
Sunflower | 295.4ab | 42.3 | 1.7 | 158.4a | 3403 |
Source of variation | P > F | ||||
Growing season (GS) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Previous crop (PC) | <0.001 | 0.001 | 0.434 | 0.389 | 0.004 |
GS × PC | 0.082 | <0.001 | 0.037 | 0.129 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soratto, R.P.; Guidorizzi, F.V.C.; Sousa, W.S.; Gilabel, A.P.; Job, A.L.G.; Calonego, J.C. Effects of Previous Fall–Winter Crop on Spring–Summer Soybean Nutrition and Seed Yield under No-Till System. Agronomy 2022, 12, 2974. https://doi.org/10.3390/agronomy12122974
Soratto RP, Guidorizzi FVC, Sousa WS, Gilabel AP, Job ALG, Calonego JC. Effects of Previous Fall–Winter Crop on Spring–Summer Soybean Nutrition and Seed Yield under No-Till System. Agronomy. 2022; 12(12):2974. https://doi.org/10.3390/agronomy12122974
Chicago/Turabian StyleSoratto, Rogério P., Fernando V. C. Guidorizzi, Westefann S. Sousa, Amanda P. Gilabel, André L. G. Job, and Juliano C. Calonego. 2022. "Effects of Previous Fall–Winter Crop on Spring–Summer Soybean Nutrition and Seed Yield under No-Till System" Agronomy 12, no. 12: 2974. https://doi.org/10.3390/agronomy12122974
APA StyleSoratto, R. P., Guidorizzi, F. V. C., Sousa, W. S., Gilabel, A. P., Job, A. L. G., & Calonego, J. C. (2022). Effects of Previous Fall–Winter Crop on Spring–Summer Soybean Nutrition and Seed Yield under No-Till System. Agronomy, 12(12), 2974. https://doi.org/10.3390/agronomy12122974