Attempts to Reduce the Systemic Spread of Xylella fastidiosa in Olive Trees by Pruning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olive Orchard
- -
- heading cuts of the secondary and tertiary branches with symptoms (HEADN);
- -
- thinning cuts of the secondary and tertiary branches with symptoms (THINN);
- -
- thinning cuts of the suckers and the shoots placed at a distance ≤2 m from the soil (CLEAN).
2.2. Diagnostic Tests
2.3. Vegetative and Production Assessment
2.4. Data Analysis
3. Results
3.1. Symptoms on Pruned Trees
3.2. Infection Status of Pruned Trees
3.3. Vegetative and Reproductive Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EFSA (European Food Safety Authority) Panel on Plant Health (EFSA PLH Panel); Delbianco, A.; Gibin, D.; Pasinato, L.; Morelli, M. Update of the Xylella spp. host plant database—Systematic literature search up to 31 December 2020. EFSA J. 2021, 19, e06674. [Google Scholar] [PubMed]
- Purcell, A. Xylella fastidiosa, a regional problem or global threat? J. Plant Pathol. 1997, 79, 99–105. [Google Scholar]
- Schaad, N.W.; Postnikova, E.; Lacy, G.; Fatmi, M.B.; Chung-Jan, C. Xylella fastidiosa subspecies: X. Fastidiosa subsp. piercei, subsp. Nov., X. Fastidiosa subsp. Multiplex sub-sp. Nov., and X. Fastidiosa subsp. pauca subsp. Nov. Syst. Appl. Microbiol. 2004, 27, 290–300. [Google Scholar]
- Saponari, M.; Boscia, D.; Nigro, F.; Martelli, G.P. Identification of DNA sequence related to Xylella fastidiosa in oleander, almond, and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J. Plant Pathol. 2013, 93, 668. [Google Scholar]
- Haelterman, R.M.; Tolocka, P.A.; Roca, M.E.; Guzman, F.A.; Fernandez, F.D.; Otero, M.L. First presumptive diagnosis of Xylella fastidiosa causing olive scorch in Argentina. J. Plant Pathol. 2015, 97, 393. [Google Scholar]
- Coletta-Filho, H.D.; Francisco, C.S.; Lopes, J.R.S.; De Oliveira, A.F.; de Oliveira Da Silva, L.F. First report of olive leaf scorch in Brazil, associated with Xylella fastidiosa subsp. pauca. Phytopathol. Mediterr. 2016, 55, 130–135. [Google Scholar]
- Martelli, G.P.; Boscia, D.; Porcelli, F.; Saponari, M. The olive quick decline syndrome in south-east Italy: A threatening phytosanitary emergency. Eur. J. Plant Pathol. 2016, 144, 235–243. [Google Scholar] [CrossRef]
- Cavalieri, V.; Altamura, G.; Fumarola, G.; di Carolo, M.; Saponari, M.; Cornara, D.; Bosco, D.; Dongiovanni, C. Transmission of Xylella fastidiosa Subspecies pauca Sequence Type 53 by Different Insect Species. Insects 2019, 10, 324. [Google Scholar] [CrossRef] [Green Version]
- Saponari, M.; Giampetruzzi, A.; Loconsole, G.; Boscia, D.; Saldarelli, P. Xylella fastidiosa in olive in Apulia: Where we stand. Phytopathology 2019, 109, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Famiani, F.; Farinelli, D.; Rollo, S.; Camposeo, S.; Di Vaio, C.; Inglese, P. Evaluation of different mechanical fruit harvesting systems and oil quality in very large size olive trees. Span. J. Agric. Res. 2014, 12, 960–972. [Google Scholar] [CrossRef] [Green Version]
- Mazzeo, A.; Palasciano, M.; Gallotta, A.; Camposeo, S.; Pacifico, A.; Ferrara, G. Amount and quality of pollen grains in four olive (Olea europaea L.) cultivars as affected by ‘on’ and ‘off’ years. Sci. Hortic. 2014, 170, 89–93. [Google Scholar] [CrossRef]
- Scortichini, M. Predisposing Factors for “Olive Quick Decline Syndrome” in Salento (Apulia, Italy). Agronomy 2020, 10, 1445. [Google Scholar] [CrossRef]
- Scortichini, M. The Multi-Millennial Olive Agroecosystem of Salento (Apulia, Italy) Threatened by Xylella fastidiosa subsp. pauca: A Working Possibility of Restoration. Sustainability 2020, 12, 6700. [Google Scholar]
- Morelli, M.; García-Madero, J.M.; Jos, Á.; Saldarelli, P.; Dongiovanni, C.; Kovacova, M.; Saponari, M.; Arjona, A.B.; Hackl, E.; Webb, S.; et al. Xylella fastidiosa in Olive: A Review of Control Attempts and Current Management. Microorganisms 2021, 9, 1771. [Google Scholar] [CrossRef]
- Alves, E.; Marucci, C.R.; Lopes, J.R.S.; Leite, B. Leaf Symptoms on Plum, Coffee and Citrus and the Relationship with the Extent of Xylem Vessels Colonized by Xylella fastidiosa. J. Phytopathol. 2004, 152, 291–297. [Google Scholar] [CrossRef]
- Giampetruzzi, A.; Morelli, M.; Saponari, M.; Loconsole, G.; Chiumenti, M.; Boscia, D.; Savino, V.N.; Martelli, G.P.; Saldarelli, P. Transcriptome profiling of two olive cultivars in response to infection by the CoDiRO strain of Xylella fastidiosa subsp. pauca. BMC Genom. 2016, 17, 475. [Google Scholar] [CrossRef]
- Grebus, M.E.; Henry, J.M. Evaluation of Pruning as a Method to Reduce Damage by Oleander Leaf Scorch. Slosson Rep. 1999, 98–99, 1–3. Available online: http://slosson.ucdavis.edu/newsletters/Grebus_199929055.pdf (accessed on 10 October 2022).
- Feil, H.; Feil, W.S.; Purcell, A.H. Effects of date of inoculation on the within plant movement of Xylella fastidiosa and persistence of Pierce’s disease within field grapevines. Phytopathology 2003, 93, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Haviland, D.H.; Viveros, M.A. Surveys for Almond Leaf Scorch in Kern County, CA, and Implications on Pruning as a Tool for Management. Annual Report Submitted to the Almond Board of California. 2005. Available online: https://cekern.ucanr.edu/files/98498.pdf (accessed on 10 October 2022).
- Queiroz-Voltan, R.B.; Cabral, L.P.; Paradela Filho, O.; Fazuoli, L.C. Prune efficiency in the control of Xylella fastidiosa in coffee trees. Bragantia 2006, 65, 433–440. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, L.B.P.; Zambolim, L.; Badel, J.L. Bacterial citrus diseases: Major threats and recent progress. J. Bacteriol. Mycol. 2017, 5, 340–350. [Google Scholar]
- Marucci, R.C.; Lopes, J.R.; Vendramim, J.D.; Corrente, J.E. Feeding site preference of Dilobopterus costalimai Young and Oncometopia facialis (Signoret) (Hemiptera: Cicadellidae) on citrus plants. Neotrop. Entomol. 2004, 33, 759–768. [Google Scholar] [CrossRef]
- Harper, S.J.; Ward, L.I.; Clover, G.R.G. Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology 2010, 100, 1282–1288. [Google Scholar] [CrossRef] [PubMed]
- Issa, T.; Almadi, L.; Jarrar, S.; Tucci, M.; Buonaurio, R.; Famiani, F. Factors affecting Venturia oleaginea infections on olive and effects of the disease on floral biology. Phytopathol. Mediterr. 2019, 58, 221–229. [Google Scholar]
- Young, J.M. Olive knot and its pathogens. Australas. Plant Pathol. 2004, 33, 33–39. [Google Scholar] [CrossRef]
- Vanneste, J.L. The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). Annu. Rev. Phytopathol. 2017, 55, 377–399. [Google Scholar] [CrossRef]
- EFSA Panel on Plant Health (PLH). Scientific opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory, with the identification and evaluation of risk reduction options. EFSA J. 2015, 13, 3989. [Google Scholar] [CrossRef]
- Vashisth, T.; Livingston, T. Assessment of pruning and controlled-release fertilizer to rejuvenate Huanglongbing-affected sweet orange. HortTechnology 2019, 29, 933–940. [Google Scholar] [CrossRef] [Green Version]
- Coletta-Filho, H.D.; Castillo, A.I.; Laranjeira, F.F.; de Andrade, E.C.; Silva, N.T.; de Souza, A.A.; Bossi, M.E.; Almeida, R.P.; Lopes, J.R. Citrus variegated chlorosis: An overview of 30 years of research and disease management. Trop. Plant Pathol. 2020, 45, 175–191. [Google Scholar] [CrossRef]
- Holland, R.M.; Christiano, R.S.C.; Gamliel-Atinsky, E.; Sherm, H. Distribution of Xylella fastidiosa in blueberry stem and root sections in relation to disease severity in the field. Plant Dis. 2014, 98, 443–447. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Purcell, A.H. Xylella fastidiosa: Cause of Pierce’s Disease of Grapevine and Other Emergent Diseases. Plant Dis. 2002, 86, 1056–1066. [Google Scholar] [CrossRef] [Green Version]
- Martelli, G.P. The current status of the quick decline syndrome of olive in southern Italy. Phytoparasitica 2016, 44, 1–10. [Google Scholar] [CrossRef]
- Martino, G.; Polinori, P.; Bufacchi, M.; Rossetti, E. The biomass potential availability from olive cropping in Italy in a business perspective: Methodological approach and tentative estimates. Renew. Energy 2020, 156, 526–534. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; Fernández-González, E.; López-Cortés, I.; Salazar-Hernández, D.M. Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass Bioenergy 2011, 35, 3208–3217. [Google Scholar] [CrossRef]
- Godini, A. Apulian traditional olive training systems. Acta Hortic. 2002, 586, 311–315. [Google Scholar] [CrossRef]
- Jiménez-Brenes, F.M.; Lopez-Granados, F.; de Castro, A.I.; Torres-Sanchez, J.; Serrano, N.; Pena, J.M. Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D modelling. Plant Methods 2017, 13, 55. [Google Scholar] [CrossRef] [Green Version]
- Chesney, P.; Vasquez, N. Dynamics of non-structural carbohydrate reserves in pruned Erythrina poeppigiana and Gliricidia sepium trees. Agrofor. Syst. 2007, 69, 89–105. [Google Scholar] [CrossRef]
- Schädel, C.; Blöchl, A.; Richter, A.; Hoch, G. Short-term dynamics of nonstructural carbohydrates and hemicelluloses in young branches of temperate forest trees during bud break. Tree Physiol. 2009, 29, 901–911. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L. Effects of pruning intensity on nonstructural carbohydrates of Populus alba× P. talassica in the arid desert region of Northwest China. J. For. Res. 2021, 32, 823–830. [Google Scholar] [CrossRef]
- Vivaldi, G.A.; Strippoli, G.; Pascuzzi, S.; Stellacci, A.M.; Camposeo, S. Olive genotypes cultivated in an adult high-density orchard respond differently to canopy restraining by mechanical and manual pruning. Sci. Hortic. 2015, 192, 391–399. [Google Scholar] [CrossRef]
- Tombesi, A.; Farinelli, D.; Ruffolo, M.; Sforna, A. First results of olive mechanical pruning. Acta Hortic. 2012, 949, 409–414. [Google Scholar] [CrossRef]
- Albarracín, V.; Hall, A.J.; Searles, P.S.; Rousseaux, M.C. Responses of vegetative growth and fruit yield to winter and summer mechanical pruning in olive trees. Sci. Hortic. 2017, 225, 185–194. [Google Scholar] [CrossRef]
- Daugherty, M.P.; Almeida, R.P.P.; Smith, R.J.; Weber, E.A.; Purcell, A.H. Severe pruning of infected grapevines has limited efficacy for managing Pierce’s disease. Am. J. Enol. Vitic. 2018, 69, 289–294. [Google Scholar] [CrossRef]
- Saponari, M.; Boscia, D.; Altamura, G.; Loconsole, G.; Zicca, S.; D’Attoma, G.; Morelli, M.; Palmisano, F.; Saponari, A.; Tavano, D.; et al. Isolation and pathogenicity of Xylella fastidiosa associated to the olive quick decline syndrome in southern Italy. Sci. Rep. 2017, 7, 17723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA Panel on Plant Health (EFSA PLH Panel); Jeger, M.; Caffier, D.; Candresse, T.; Chatzivassiliou, E.; Dehnen-Schmutz, K.; Gilioli, G.; Grégoire, J.C.; Jaques Miret, J.A.; MacLeod, A.; et al. Updated pest categorisation of Xylella fastidiosa. EFSA J. 2018, 16, e05357. [Google Scholar] [PubMed] [Green Version]
- De Nadal Gasparini dos Santos, B.; Anguita-Maeso, M.; Della Coletta Filho, H. Transmission and distribution of Xylella fastidiosa subsp. pauca in olive trees as a parameter for managing olive quick decline syndrome. Plant Pathol. 2022, 71, 1849–1858. [Google Scholar]
- Sion, S.; Taranto, F.; Montemurro, C.; Mangini, G.; Camposeo, S.; Falco, V.; Gallo, A.; Mita, G.; Saddoud Debbabi, O.; Ben Amar, F.; et al. Genetic characterization of Apulian olive germplasm as potential source in new breeding programs. Plants 2019, 8, 268. [Google Scholar] [CrossRef]
Pruning Treatment | Bacterial Concentration (Cq) | |
---|---|---|
2017 | 2018 | |
HEADN | 5.45 ± 0.6 × 105 b | 1.92 ± 0.4 × 106 a |
THINN | 6.00 ± 1.1 × 105 b | 1.14 ± 0.3 × 106 a |
CLEAN | 6.42 ± 0.9 × 105 b | 1.60 ± 0.3 × 106 a |
Mean | 5.96 ± 1.3 × 105 b | 1.64 ± 0.7 × 106 a |
Pruning Treatment | Fresh Weight (kg Tree−1) | Diameter (cm) |
---|---|---|
HEADN | 14.4 ± 1.2 b | 3.09 ± 0.19 a |
THINN | 19.4 ± 0.9 a | 3.46 ± 0.16 a |
CLEAN | 10.1 ± 0.5 c | 1.87 ± 0.06 b |
Pruning Treatment | Sprout Growth (cm) | Node Number (n) | Internode Length (cm) |
---|---|---|---|
HEADN | 10.6 ± 0.6 a | 4.6 ± 0.4 a | 2.3 ± 0.08 a |
THINN | 8.3 ± 0.3 b | 3.8 ± 0.2 b | 2.2 ± 0.07 a |
CLEAN | 8.8 ± 0.4 b | 4.0 ± 0.2 b | 2.1 ± 0.09 a |
Pruning Treatment | Olive Yield (kg tree−1) | Oil Content (% Fresh Weight) |
---|---|---|
HEADN | 19.4 ± 1.9 b | 14.5 |
THINN | 14.7 ± 2.5 c | 14.4 |
CLEAN | 32.3 ± 3.0 a | 16.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camposeo, S.; Vivaldi, G.A.; Saponari, M. Attempts to Reduce the Systemic Spread of Xylella fastidiosa in Olive Trees by Pruning. Agronomy 2022, 12, 2917. https://doi.org/10.3390/agronomy12122917
Camposeo S, Vivaldi GA, Saponari M. Attempts to Reduce the Systemic Spread of Xylella fastidiosa in Olive Trees by Pruning. Agronomy. 2022; 12(12):2917. https://doi.org/10.3390/agronomy12122917
Chicago/Turabian StyleCamposeo, Salvatore, Gaetano Alessandro Vivaldi, and Maria Saponari. 2022. "Attempts to Reduce the Systemic Spread of Xylella fastidiosa in Olive Trees by Pruning" Agronomy 12, no. 12: 2917. https://doi.org/10.3390/agronomy12122917
APA StyleCamposeo, S., Vivaldi, G. A., & Saponari, M. (2022). Attempts to Reduce the Systemic Spread of Xylella fastidiosa in Olive Trees by Pruning. Agronomy, 12(12), 2917. https://doi.org/10.3390/agronomy12122917