Effects of Land Use on the Mineralization of Organic Matter in Ultisol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Soil Sample Collection
2.2. Basic Properties of Soils
2.3. Mineralization of Soil Organic Matter
2.4. Organic Carbon Pools and Dissolved Organic Matter of Soils
2.5. Microbial Communities and Enzyme Activities of Soils
2.6. Statistical Analysis
3. Results
3.1. Basic Properties of Soils under the Land-Use Types
3.2. Mineralization of Soil Organic Matter under the Land-Use Types
3.3. Organic Carbon Pools and Dissolved Organic Matter of Soils under the Land-Use Types
3.4. Microbial Communities and Enzyme Activities of Soils under the Land-Use Types
3.5. Relationships between Soil Properties, Organic Carbon Components, Microbial Community Compositions, and Mineralization
4. Discussion
4.1. Influences of the Land-Use Types on the Soil Organic Carbon Components
4.2. Influences of the Land-Use Types on the Soil Microbial Communities
4.3. Influences of the Land-Use Types on the Mineralization of Soil Organic Matter
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Zhong, M. Composition and mineralization of soil organic carbon pools in four single-tree species forest soils. J. For. Res. 2016, 27, 1277–1285. [Google Scholar] [CrossRef]
- Xiao, H.; Li, Z.; Dong, Y.; Chang, X.; Deng, L.; Huang, J.; Nie, X.; Liu, C.; Liu, L.; Wang, D.; et al. Changes in microbial communities and respiration following the revegetation of eroded soil. Agr. Ecosyst. Environ. 2017, 246, 30–37. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, J.; Pan, G.; Wang, G.; Liu, X.; Zhang, X.; Li, L.; Bian, R.; Cheng, K.; Zheng, J. A long-term hybrid poplar plantation on cropland reduces soil organic carbon mineralization and shifts microbial community abundance and composition. Appl. Soil Ecol. 2017, 111, 94–104. [Google Scholar] [CrossRef]
- Lin, Z.; Li, Y.; Tang, C.; Luo, Y.; Fu, W.; Cai, X.; Li, Y.; Yue, T.; Jiang, P.; Hu, S.; et al. Converting natural evergreen broadleaf forests to intensively managed moso bamboo plantations affects the pool size and stability of soil organic carbon and enzyme activities. Biol. Fertil. Soils 2018, 54, 467–480. [Google Scholar] [CrossRef]
- Ren, C.; Wang, T.; Xu, Y.; Deng, J.; Zhao, F.; Yang, G.; Han, X.; Feng, Y.; Ren, G. Differential soil microbial community responses to the linkage of soil organic carbon fractions with respiration across land-use changes. For. Ecol. Manag. 2018, 409, 170–178. [Google Scholar] [CrossRef]
- Rovira, P.; Vallejo, V.R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach. Geoderma 2002, 107, 109–141. [Google Scholar] [CrossRef]
- Xu, P.; Liu, Y.; Zhu, J.; Shi, L.; Fu, Q.; Chen, J.; Hu, H.; Huang, Q. Influence mechanisms of long-term fertilizations on the mineralization of organic matter in Ultisol. Soil Tillage Res. 2020, 201, 104594. [Google Scholar] [CrossRef]
- Xu, P.; Wu, J.; Wang, H.; Han, S.; Zhu, J.; Fu, Q.; Geng, M.; Hu, H.; Huang, Q. Long-term partial substitution of chemical fertilizer with green manure regulated organic matter mineralization in paddy soil dominantly by modulating organic carbon quality. Plant Soil 2021, 468, 459–473. [Google Scholar] [CrossRef]
- Jiang, L.; Zhu, J.; Qi, Y.; Fu, Q.; Hu, H.; Huang, Q. Increasing molecular structural complexity and decreasing nitrogen availability depress the mineralization of organic matter in subtropical forest soils. Soil Biol. Biochem. 2017, 108, 91–100. [Google Scholar] [CrossRef]
- Xu, P.; Zhu, J.; Fu, Q.; Chen, J.; Hu, H.; Huang, Q. Structure and biodegradability of dissolved organic matter from Ultisol treated with long-term fertilizations. J. Soils Sediments 2018, 18, 1865–1872. [Google Scholar] [CrossRef]
- Xu, P.; Zhu, J.; Wang, H.; Shi, L.; Zhuang, Y.; Fu, Q.; Chen, J.; Hu, H.; Huang, Q. Regulation of soil aggregate size under different fertilizations on dissolved organic matter, cellobiose hydrolyzing microbial community and their roles in organic matter mineralization. Sci. Total Environ. 2021, 755, 142595. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, S.; Fan, B.; Yu, X. Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China: Effect of planting conifers with broadleaved species. Plant Soil 2007, 297, 201–211. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.R.; Delgado-Baquerizo, M.; Wang, J.T.; Hu, H.W.; Yang, Z.; He, J.Z. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol. Biochem. 2018, 118, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Baldrian, P.; Valášková, V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 2008, 32, 501–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldrian, P.; Kolařík, M.; Štursová, M.; Kopecký, J.; Valášková, V.; Větrovský, T.; Žifčáková, L.; Šnajdr, J.; Rídl, J.; Vlček, Č.; et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 2012, 6, 248–258. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Nie, C.; Liu, Y.; Du, W.; He, P. Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland. Sci. Total Environ. 2019, 654, 264–274. [Google Scholar] [CrossRef]
- Wang, J.; Song, Y.; Ma, T.; Raza, W.; Li, J.; Howland, J.G.; Huang, Q.; Shen, Q. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Appl. Soil Ecol. 2017, 112, 42–50. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Kjeldahl, J. Neue methode zur bestimmung des stickstoffs in organischen körpern. Fresen. J. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S.; He, T.; Liu, L.; Wu, J. Response of organic carbon mineralization and microbial community to leaf litter and nutrient additions in subtropical forest soils. Soil Biol. Biochem. 2014, 71, 13–20. [Google Scholar] [CrossRef]
- Senesi, N.; Miano, T.M.; Provenzano, M.R.; Brunetti, G. Characterization, differentiation and classification of humic substances by fluorescence spectroscopy. Soil Sci. 1991, 152, 259–271. [Google Scholar] [CrossRef]
- D’Orazio, V.; Traversa, A.; Senesi, N. Forest soil organic carbon dynamics as affected by plant species and their corresponding litters: A fluorescence spectroscopy approach. Plant Soil 2013, 374, 473–484. [Google Scholar] [CrossRef]
- Guan, S. Soil Enzymes and Their Methodology; Agricultural Press: Beijing, China, 1986. (In Chinese) [Google Scholar]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Zhang, J.; Meng, M.; Guo, X.; Wu, Y.; Liu, X.; Zhao, K.; Ding, L.; Shao, Y.; Fu, W. Forest-type shift and subsequent intensive management affected soil organic carbon and microbial community in southeastern China. Eur. J. For. Res. 2017, 136, 689–697. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.R.; Mo, J.M.; Wang, J.X.; Makeschin, F.; Wolff, M. Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China. Ecol. Res. 2010, 25, 1071–1079. [Google Scholar] [CrossRef]
- Li, D.; Chen, L.; Xu, J.; Ma, L.; Olk, D.C.; Zhao, B.; Zhang, J.; Xin, X. Chemical nature of soil organic carbon under different long-term fertilization regimes is coupled with changes in the bacterial community composition in a Calcaric Fluvisol. Biol. Fertil. Soils 2018, 54, 999–1012. [Google Scholar] [CrossRef]
- Fontaine, S.; Mariotti, A.; Abbadie, L. The priming effect of organic matter: A question of microbial competition? Soil Biol. Biochem. 2003, 35, 837–843. [Google Scholar] [CrossRef]
- Rousk, J.; Baath, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Urbanová, M.; Šnajdr, J.; Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 2015, 84, 53–64. [Google Scholar] [CrossRef]
- Dang, P.; Yu, X.; Le, H.; Liu, J.; Shen, Z.; Zhao, Z. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau. PLoS ONE 2017, 12, e0186501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, N.L.; Challacombe, J.F.; Janssen, P.H.; Henrissat, B.; Coutinho, P.M.; Wu, M.; Xie, G.; Haft, D.H.; Sait, M.; Badger, J.; et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol. 2009, 75, 2046–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Sui, Y.; Yu, Z.; Shi, Y.; Chu, H.; Jin, J.; Liu, X.; Wang, G. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol. Biochem. 2014, 70, 113–122. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Antibus, R.K.; Linkins, A.E. An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agric. Ecosyst. Environ. 1991, 34, 43–54. [Google Scholar] [CrossRef]
TOC (g kg−1) | TN (g kg−1) | C/N | pH | |
---|---|---|---|---|
Bam | 9.67 c | 0.94 c | 10.26 a | 4.55 b |
Cam | 12.70 b | 1.42 b | 8.93 c | 4.85 a |
Tea | 13.29 a | 1.45 a | 9.16 b | 4.29 c |
Fitting Parameters | C0/TOC (%) | |||
---|---|---|---|---|
C0 (mg CO2-C kg−1) | k (d−1) | R2 | ||
Bam | 568.5 | 0.0180 | 0.996 | 5.88 |
Cam | 1181.3 | 0.0126 | 0.997 | 9.30 |
Tea | 1595.3 | 0.0081 | 0.997 | 12.00 |
LP I-C (g kg−1) | LP II-C (g kg−1) | RP-C (g kg−1) | DOM (mg C kg−1) | |
---|---|---|---|---|
Bam | 3.43 c | 1.83 b | 4.40 c | 92.99 b |
Cam | 4.35 a | 2.37 a | 5.98 b | 96.48 b |
Tea | 4.15 b | 2.34 a | 6.80 a | 123.79 a |
Bacteria Diversity | Fungi Diversity | Cellulase | Phenol Oxidase | |||||
---|---|---|---|---|---|---|---|---|
OTUs | Chao 1 | Shannon | OTUs | Chao 1 | Shannon | (mg Glucose g−1 72 h−1) | (mg Purple Pyrogallol g−1 2 h−1) | |
Bam | 1009 b | 1314 b | 5.08 c | 244 a | 292 a | 2.79 a | 0.23 b | 0.29 b |
Cam | 1256 a | 1533 a | 5.99 a | 225 a | 299 a | 2.33 c | 0.38 a | 0.31 b |
Tea | 1021 b | 1221 c | 5.73 b | 158 b | 192 b | 2.51 b | 0.42 a | 0.36 a |
r | p | |
---|---|---|
TOC | 0.996 | <0.001 |
TN | 0.993 | <0.001 |
C/N | −0.951 | <0.001 |
pH | −0.073 | 0.852 |
LP I-C | 0.935 | <0.001 |
LPII-C | 0.904 | 0.001 |
DOM | 0.667 | 0.050 |
Cellulase | 0.851 | 0.004 |
Phenol oxidase | 0.641 | 0.063 |
Acidobacteria | 0.438 | 0.238 |
Actinobacteria | −0.558 | 0.119 |
Chloroflexi | −0.141 | 0.718 |
Firmicutes | 0.261 | 0.497 |
Gemmatimonadetes | 0.742 | 0.027 |
Planctomycetes | 0.037 | 0.925 |
Proteobacteria | 0.192 | 0.621 |
Verrucomicrobia | −0.644 | 0.061 |
Ascomycota | 0.109 | 0.780 |
Basidiomycota | 0.147 | 0.706 |
Zygomycota | 0.223 | 0.564 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, P.; Ma, S.; Rao, X.; Liao, S.; Zhu, J.; Yang, C. Effects of Land Use on the Mineralization of Organic Matter in Ultisol. Agronomy 2022, 12, 2915. https://doi.org/10.3390/agronomy12122915
Xu P, Ma S, Rao X, Liao S, Zhu J, Yang C. Effects of Land Use on the Mineralization of Organic Matter in Ultisol. Agronomy. 2022; 12(12):2915. https://doi.org/10.3390/agronomy12122915
Chicago/Turabian StyleXu, Peidong, Shihao Ma, Xiongfei Rao, Shipeng Liao, Jun Zhu, and Chunlei Yang. 2022. "Effects of Land Use on the Mineralization of Organic Matter in Ultisol" Agronomy 12, no. 12: 2915. https://doi.org/10.3390/agronomy12122915
APA StyleXu, P., Ma, S., Rao, X., Liao, S., Zhu, J., & Yang, C. (2022). Effects of Land Use on the Mineralization of Organic Matter in Ultisol. Agronomy, 12(12), 2915. https://doi.org/10.3390/agronomy12122915