Effect of Sun Drying on Phytoconstituents and Antiviral Activity of Ginger against Low-Pathogenic Human Coronavirus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Isolation of Volatile Oil
2.3. GC-MS Analysis
2.4. Determination of Total Phenolic Content
2.5. Determination of Total Flavonoid
2.6. Determination of Antiviral by Crystal Violet Method on Low Pathogenic Corona Virus
2.7. Molecular Docking
2.8. Chemometric Analysis
3. Results and Discussion
3.1. Effect of Sun Drying on the Yield and Composition of Ginger Volatile Oil
3.2. Effect of Sun Drying on the Total Phenolic Content (TPC), Total Flavonoid Content (TFC) and Antiviral Activity of Ginger Extracts
3.3. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) and Pharmacokinetic Studies
3.4. In Silico Molecular Docking
3.5. Chemometric Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem. Toxicol. 2008, 46, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Muntean, D.; Licker, M.; Alexa, E.; Popescu, I.; Jianu, C.; Buda, V.; Dehelean, C.A.; Ghiulai, R.; Horhat, F.; Horhat, D.; et al. Evaluation of essential oil obtained from Mentha × piperita L. against multidrug-resistant strains. Infect. Drug Resist. 2019, 12, 2905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Ashmawy, A.; Mostafa, N.; Eldahshan, O. GC/MS Analysis and Molecular Profiling of Lemon Volatile Oil against Breast Cancer. J. Essent. Oil Bear. Plants 2019, 22, 903–916. [Google Scholar] [CrossRef]
- Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef] [PubMed]
- Dorman, H.D.; Koşar, M.; Kahlos, K.; Holm, Y.; Hiltunen, R. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agric. Food Chem. 2003, 51, 4563–4569. [Google Scholar] [CrossRef]
- Bhagat, M.; Sangral, M.; Arya, K.; Rather, R.A. Chemical characterization, biological assessment and molecular docking studies of essential oil of Ocimum viride for potential antimicrobial and anticancer activities. BioRxiv 2018, 390906. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.; Fang, F.; Kang, I. Ginger (Zingiber officinale) attenuates obesity and adipose tissue remodeling in high-fat diet-fed c57bl/6 mice. Int. J. Environ. Res. Public Health 2021, 18, 631. [Google Scholar] [CrossRef]
- Mošovská, S.; Nováková, D.; Kaliňák, M. Antioxidant activity of ginger extract and identification of its active components. Acta Chim. Slovaca 2015, 8, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Famurewa, A.V.; Emuekele, P.O.; Jaiyeoba, K.F. Effect of drying and size reduction on the chemical and volatile oil contents of ginger (Zingiber officinale). J. Med. Plants Res. 2011, 5, 2941–2944. [Google Scholar]
- Doymaz, İ. Air-drying characteristics of tomatoes. J. Food Eng. 2007, 78, 1291–1297. [Google Scholar] [CrossRef]
- Deshmukh, A.W.; Varma, M.N.; Yoo, C.K.; Wasewar, K.L. Investigation of Solar Drying of Ginger (Zingiber officinale): Emprical Modelling, Drying Characteristics, and Quality Study. Chin. J. Eng. 2014, 2014, 305823. [Google Scholar] [CrossRef] [Green Version]
- An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chem. 2016, 197, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Sarkar, C.; El-Kersh, D.M.; Jamaddar, S.; Uddin, S.J.; Shilpi, J.A.; Mubarak, M.S. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother. Res. 2020, 34, 2471–2492. [Google Scholar] [CrossRef]
- Rasool, A.; Khan, M.-U.; Ali, M.A.; Anjum, A.A.; Ahmed, I.; Aslam, A.; Mustafa, G.; Masood, S.; Ali, M.A.; Nawaz, M. Anti-Avian influenza virus H9N2 activity of aqueous extracts of Zingiber officinalis (Ginger) & Allium sativum (Garlic) in chick embryos. Pak. J. Pharm. Sci. 2017, 30, 1341–1344. [Google Scholar]
- Mao, Q.-Q.; Xu, X.-Y.; Cao, S.-Y.; Gan, R.-Y.; Corke, H.; Beta, T.; Li, H.-B. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Cheng, V.C.C.; Lau, S.K.P.; Woo, P.C.Y.; Yuen, K.-Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 2007, 20, 660–694. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.; Hui, D.; Wu, A.; Chan, P.; Cameron, P.; Joynt, G.M.; Ahuja, A.; Yung, M.Y.; Leung, C.; To, K.; et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 2003, 348, 1986–1994. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Ye, D.; Liu, Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int. J. Antimicrob. Agents 2020, 55, 105948. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Huang, D.; Lian, X.; Song, F.; Ma, H.; Lian, Z.; Liang, Y.; Qin, T.; Chen, W.; Wang, S. Clinical features of severe patients infected with 2019 novel coronavirus: A systematic review and meta-analysis. Ann. Transl. Med. 2020, 8, 576. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020, 92, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Paul, E.; Steptoe, A.; Fancourt, D. Attitudes towards vaccines and intention to vaccinate against COVID-19: Implications for public health communications. Lancet Reg. Health Eur. 2021, 1, 100012. [Google Scholar] [CrossRef] [PubMed]
- Cvjetkovic, S.J.; Jeremic, V.L.; Tiosavljevic, D.V. Knowledge and attitudes toward vaccination: A survey of Serbian students. J. Infect. Public Health 2017, 10, 649–656. [Google Scholar] [CrossRef]
- Veeresham, C. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res. 2012, 3, 200–201. [Google Scholar] [CrossRef]
- Panyod, S.; Ho, C.-T.; Sheen, L.-Y. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. J. Tradit. Complement. Med. 2020, 30, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Islam, M.S.; Wang, J.; Li, Y.; Chen, X. Traditional Chinese medicine in the treatment of patients infected with 2019-New Coronavirus (SARS-CoV-2): A review and perspective. Int. J. Biol. Sci. 2020, 16, 1708–1717. [Google Scholar] [CrossRef]
- Bachir, B.; Atanasio, P. Medicinal Plants as Sources of Active Molecules Against COVID-19. Front. Pharmacol. 2020, 11, 1189. [Google Scholar]
- Llivisaca-Contreras, S.A.; Naranjo-Morán, J.; Pino-Acosta, A.; Pieters, L.; Vanden Berghe, W.; Manzano, P.; Vargas-Pérez, J.; León-Tamariz, F.; Cevallos, J.M. Plants and Natural Products with Activity against Various Types of Coronaviruses: A Review with Focus on SARS-CoV-2. Molecules 2021, 26, 4099. [Google Scholar] [CrossRef]
- Mostafa, N. Antibacterial Activity of Ginger (Zingiber officinale) Leaves Essential Oil Nanoemulsion against the Cariogenic Streptococcus mutans. J. Appl. Pharm. Sci. 2018, 8, 34–41. [Google Scholar]
- Attard, E. A rapid microtitre plate Folin-Ciocalteu method for the assessment of polyphenols. Open Life Sci. 2013, 8, 48–53. [Google Scholar] [CrossRef]
- Kiranmai, M.; Kumar, C.B.; Ibrahim, M. Comparison of total flavanoid content of Azadirachta indica root bark extracts prepared by different methods of extraction. Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 254–261. [Google Scholar]
- Donalisio, M. In vitro anti-Herpes simplex virus activity of crude extract of the roots of Nauclea latifolia Smith (Rubiaceae). BMC Complement. Altern. Med. 2013, 13, 266. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; Desmyter, J.; De Clercq, E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods 1988, 20, 309–321. [Google Scholar] [CrossRef]
- Singab, A.N.B.; Mostafa, N.M.; Elkhawas, Y.A.; Al-Sayed, E.; Bishr, M.M.; Elissawy, A.M.; Elnaggar, M.S.; Fawzy, I.M.; Salama, O.M.; Tsai, Y.-H.; et al. Cyclodepsipeptides: Isolation from Endophytic Fungi of Sarcophyton ehrenbergi and Verification of Their Larvicidal Activity via In-Vitro and In-Silico Studies. Mar. Drugs 2022, 20, 331. [Google Scholar] [CrossRef]
- Meanwell, N.A. Improving Drug Candidates by Design: A Focus on Physicochemical Properties As a Means of Improving Compound Disposition and Safety. Chem. Res. Toxicol. 2011, 24, 1420–1456. [Google Scholar] [CrossRef] [PubMed]
- Kearns, E.H.; Di, L. Drug-Like Properties: Concepts, Structure Design and Methods; Elsevier: New York, NY, USA, 2008. [Google Scholar]
- Gleeson, M.P. Generation of a Set of Simple, Interpretable ADMET Rules of Thumb. J. Med. Chem. 2008, 51, 817–834. [Google Scholar] [CrossRef]
- Alrasheid, A.A.; Babiker, M.Y.; Awad, T.A. Evaluation of certain medicinal plants compounds as new potential inhibitors of novel corona virus (COVID-19) using molecular docking analysis. Silico Pharmacol. 2021, 9, 10. [Google Scholar] [CrossRef]
- Huang, B.; Wang, G.; Chu, Z.; Qin, L. Effect of oven drying, microwave drying, and silica gel drying methods on the volatile components of ginger (Zingiber officinale Roscoe) by HS-SPME-GC–MS. Dry. Technol. 2012, 30, 248–255. [Google Scholar] [CrossRef]
- Ding, S.; An, K.; Zhao, C.; Li, Y.; Guo, Y.; Wang, Z. Effect of drying methods on volatiles of Chinese ginger (Zingiber officinale Roscoe). Food Bioprod. Process. 2012, 90, 515–524. [Google Scholar] [CrossRef]
- Puengphian, C.; Sirichote, A. [6]-Gingerol content and bioactive properties of ginger (Zingiber officinale Roscoe) extracts from supercritical CO2 extraction. Asian J. Food Agro-Ind. 2008, 1, 29–36. [Google Scholar]
- Gümüşay, Ö.A.; Borazan, A.A.; Ercal, N.; Demirkol, O. Drying effects on the antioxidant properties of tomatoes and ginger. Food Chem. 2015, 173, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Toor, R.K.; Savage, G.P. Effect of semi-drying on the antioxidant components of tomatoes. Food Chem. 2006, 94, 90–97. [Google Scholar] [CrossRef]
- Zheng, G.; Chao, Y.; Liu, M.; Yang, Y.; Zhang, D.; Wang, K.; Tao, Y.; Zhang, J.; Li, Y.; Wei, M. Evaluation of dynamic changes in the bioactive components in Citri Reticulatae Pericarpium (Citrus reticulata ‘Chachi’) under different harvesting and drying conditions. J. Sci. Food Agric. 2021, 101, 3280–3289. [Google Scholar] [CrossRef]
- Nunes, J.C.; Lago, M.G.; Castelo-Branco, V.N.; Oliveira, F.R.; Torres, A.G.; Perrone, D.; Monteiro, M. Effect of drying method on volatile compounds, phenolic profile and antioxidant capacity of guava powders. Food Chem. 2016, 197, 881–890. [Google Scholar] [CrossRef]
- Rababah, T.M.; Alhamad, M.; Al-Mahasneh, M.; Ereifej, K.; Andrade, J.; Altarifi, B.; Almajwal, A.; Yang, W. Effects of drying process on total phenolics, antioxidant activity and flavonoid contents of common mediterranean herbs. Int. J. Agric. Biol. Eng. 2015, 8, 145–150. [Google Scholar]
- Jafarzadeh, A.; Jafarzadeh, S.; Nemati, M. Therapeutic potential of ginger against COVID-19: Is there enough evidence? J. Tradit. Chin. Med. Sci. 2021, 8, 267–279. [Google Scholar] [CrossRef]
- Douglas, E.V.P.; Tom, L.B.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Mohsen, H.T. Synthesis, crystal structure, and ADME prediction studies of novel imidazopyrimidines as antibacterial and cytotoxic agents. Arch. Pharm. 2020, 353, e1900271. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, L. Viral proteases. Chem. Rev. 2002, 102, 4609–4626. [Google Scholar] [CrossRef] [PubMed]
- Hilgenfeld, R. From SARS to MERS: Crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J. 2014, 281, 4085–4096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science 2003, 300, 1763–1767. [Google Scholar] [CrossRef]
a Compound | b Retention Index (RI) | Fresh Ginger | Dry Ginger | Identification | |
---|---|---|---|---|---|
1 | β-Butoxyethanol | 665 | 1 ± 0.040 | 1.01 ± 0.064 | MS, RI |
2 | n-Caproaldehyde | 806 | 0.4 ± 0.016 | 0.26 ± 0.0163 | MS, RI |
3 | 2-Methyl-2-hepten-6-on | 938 | 0.59 ± 0.020 | - | MS, RI |
4 | β-Pinene | 943 | 0.27 ± 0.048 | - | MS, RI |
5 | α-Pinene | 948 | 1.99 ± 0.008 | - | MS, RI |
6 | Camphene | 952 | 7 ± 0.326 | 0.51 ± 0.008 | MS, RI |
7 | β-Myrcene | 958 | 2.91 ± 0.040 | - | MS, RI |
8 | 5-Hepten-2-one, 6-methyl- | 966 | - | 0.61 ± 0.016 | MS, RI |
9 | Octanal | 1005 | 0.37 ± 0.044 | - | MS, RI |
10 | o-Cymene | 1015 | - | 0.24 ± 0.040 | MS, RI |
11 | Eucalyptol | 1022 | - | 1 ± 0.408 | MS, RI |
12 | 4-Thujanol | 1041 | 9.94 ± 0.048 | - | MS, RI |
13 | Cryptone | 1069 | 0.87 ± 0.098 | - | MS, RI |
14 | Benzene, (2-methyl-1-propenyl)- | 1077 | - | 0.39 ± 0.008 | MS, RI |
15 | trans-Verbenol | 1082 | - | 0.17 ± 0.020 | MS, RI |
16 | Linalool | 1090 | - | 0.81 ± 0.016 | MS, RI |
17 | 2-Nonanol | 1092 | 0.18 ± 0.032 | 0.29 ± 0.032 | MS, RI |
18 | Citronellal | 1125 | 0.38 ± 0.073 | - | MS, RI |
19 | cis-Chrysanthenol | 1136 | 0.26 ± 0.032 | - | MS, RI |
20 | Borneol | 1150 | 2.54 ± 0.044 | 2.14 ± 0.032 | MS, RI |
21 | p-Menth-1-en-4-ol | 1163 | 1.51 ± 0.077 | 0.59 ± 0.036 | MS, RI |
22 | α-Terpineol | 1174 | - | 1.12 ± 0.032 | MS, RI |
23 | β-Citral | 1174 | 5.5 ± 0.081 | - | MS, RI |
24 | Estragole | 1178 | 0.68 ± 0.008 | 0.2 ± 0.032 | MS, RI |
25 | Neral | 1218 | 1.09 ± 0.118 | 0.55 ± 0.040 | MS, RI |
26 | Geraniol | 1228 | 0.59 ± 0.032 | - | MS, RI |
27 | α-Citral | 1247 | 1.18 ± 0.016 | 0.35 ± 0.040 | MS, RI |
28 | Anethole | 1263 | - | 0.24 ± 0.024 | MS, RI |
29 | Bornyl acetate | 1273 | - | 0.3 ± 0.040 | MS, RI |
30 | 2-Undecanone | 1280 | 0.53 ± 0.024 | 1.12 ± 0.097 | MS, RI |
31 | Citronellol acetate | 1302 | - | 0.68 ± 0.016 | MS, RI |
32 | Eugenol | 1331 | - | 0.5 ± 0.040 | MS, RI |
33 | Nerol acetate | 1352 | - | 0.4 ± 0.048 | MS, RI |
34 | Cyclosativene | 1367 | - | 0.57 ± 0.016 | MS, RI |
35 | α-Copaene | 1376 | 0.46 ± 0.032 | 0.85 ± 0.048 | MS, RI |
36 | Aromadendrene | 1386 | 1.63 ± 0.024 | - | MS, RI |
37 | β-elemene | 1388 | - | 0.51 ± 0.040 | MS, RI |
38 | 7-epi-Sesquithujene | 1404 | - | 0.34 ± 0.032 | MS, RI |
39 | β-Caryophyllene | 1416 | 0.29 ± 0.040 | 0.94 ± 0.040 | MS, RI |
40 | Sesquisabinene | 1446 | 0.67 ± 0.057 | - | MS, RI |
41 | Longifolene | 1447 | - | 0.5 ± 0.016 | MS, RI |
42 | α-Curcumene | 1475 | 14.23 ± 0.065 | 28.19 ± 0.028 | MS, RI |
43 | Eudesma-4(14),11-diene | 1481 | 1.37 ± 0.016 | 2 ± 0.089 | MS, RI |
44 | Zingiberene | 1491 | 7.9 ± 0.040 | 14.84 ± 0.048 | MS, RI |
45 | γ-Cadinene | 1494 | 1.92 ± 0.024 | 5.05 ± 0.040 | MS, RI |
46 | β-Bisabolene | 1505 | 8.03 ± 0.032 | 11.68 ± 0.097 | MS, RI |
47 | α-Selinene | 1513 | 0.38 ± 0.016 | 1.21 ± 0.008 | MS, RI |
48 | β-Sesquiphellandrene | 1519 | 7.87 ± 0.024 | 15.06 ± 0.297 | MS, RI |
49 | 7-epi-cis-sesquisabinene hydrate | 1523 | 1.35 ± 0.040 | - | MS, RI |
50 | α-trans-Bergamotene | 1526 | - | 0.57 ± 0.028 | MS, RI |
51 | Globulol | 1530 | 0.68 ± 0.008 | - | MS, RI |
52 | Selina-3,7(11)-diene | 1538 | - | 0.43 ± 0.016 | MS, RI |
53 | β-Oplopenone | 1540 | 0.4 ± 0.016 | - | MS, RI |
54 | trans-Nerolidol | 1550 | 1.95 ± 0.028 | 0.76 ± 0.032 | MS, RI |
55 | Zingiberenol | 1591 | 3.75 ± 0.040 | - | MS, RI |
56 | Agarospirol | 1598 | 0.56 ± 0.032 | - | MS, RI |
57 | Eudesm-4(14)-en-11-ol | 1631 | 0.36 ± 0.016 | 0.3 ± 0.024 | MS, RI |
58 | Viridiflorol | 1637 | - | 0.38 ± 0.048 | MS, RI |
59 | Ishwarol B | 1674 | 1 ± 0.163 | 0.95 ± 0.040 | MS, RI |
60 | Nerolidyl acetate | 1754 | - | 0.98 ± 0.016 | MS, RI |
61 | Humulenol | 1762 | 0.58 ± 0.024 | - | MS, RI |
62 | Corymbolone | 1785 | 0.78 ± 0.016 | - | MS, RI |
63 | Geranyl-p-cymene | 1937 | 0.37 ± 0.028 | 0.22 ± 0.016 | MS, RI |
64 | geranyl-α-terpinene | 1962 | 0.33 ± 0.028 | - | MS, RI |
65 | 1-Heptatriacotanol | 3942 | 0.98 ± 0.024 | - | MS, RI |
No. of identified compounds | 45 | 43 | |||
Monoterpene hydrocarbons % | 11.17 | 1.14 | |||
Oxygenated monoterpenes % | 25.26 | 9.8 | |||
Sesquiterpene hydrocarbons % | 44.75 | 82.87 | |||
Oxygenated sesquiterpenes % | 11.41 | 2.96 | |||
Miscellaneous % | 5.03 | 3.72 | |||
Total percentage identified | 97.62 | 99.82 |
Fresh Ginger | Dry Ginger | |
---|---|---|
Total phenolic content (µg of GAE/mg) | 39.33 ± 2.5 | 20.96 ± 1.2 |
Total flavonoid content (µg rutin eq/mg) | 11.56 ± 1.2 | 1.34 ± 0.9 |
Antiviral activity (IC50) | 28.5 ± 0.8 | 20.56 ± 0.4 |
Compound | M.Wt | LogP * | LogD # | a HBA | HBD | RBs | Ro5 (Y/N) |
---|---|---|---|---|---|---|---|
4-Thujanol (1N1) | 154.14 | 1.69 | 1.89 | 1 | 1 | 1 | Y |
Neral (1N2) | 152.12 | 2.16 | 2.66 | 1 | 0 | 4 | Y |
Geranial (1N3) | 152.12 | 2.16 | 2.66 | 1 | 0 | 4 | Y |
Camphene (1N4) | 136.13 | 2.84 | 2.86 | 0 | 0 | 0 | Y |
α-Curcumene (1N5) | 202.34 | 5.19 | 5.39 | 0 | 0 | 4 | Y |
Zingiberene (1N6) | 204.19 | 4.55 | 4.87 | 0 | 0 | 4 | Y |
γ-Cadinene (1N7) | 204.19 | 4.22 | 4.51 | 0 | 0 | 1 | Y |
β-Bisabolene (1N8) | 204.19 | 4.41 | 4.88 | 0 | 0 | 4 | Y |
β-sesquiphellandrene (1N9) | 204.19 | 4.59 | 4.92 | 0 | 0 | 4 | Y |
† Chloroquine | 320.89 | 3.39 | 0.40 | 1 | 2 | 8 | Y |
† Favipiravir | 157.10 | −1.19 | 0.25 | 3 | 2 | 1 | Y |
Antiviral Activity | Data Type | PLS-R | |||
Slope | Offset | RMSE | R2 | ||
Cal. | 0.9923 | 0.1876 | 0.3489 | 0.9923 | |
Val. | 0.9884 | 0.2818 | 0.5232 | 0.9880 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkhawas, Y.A.; Gad, H.A.; Lashkar, M.O.; Khinkar, R.M.; Wani, M.Y.; Khalil, N. Effect of Sun Drying on Phytoconstituents and Antiviral Activity of Ginger against Low-Pathogenic Human Coronavirus. Agronomy 2022, 12, 2763. https://doi.org/10.3390/agronomy12112763
Elkhawas YA, Gad HA, Lashkar MO, Khinkar RM, Wani MY, Khalil N. Effect of Sun Drying on Phytoconstituents and Antiviral Activity of Ginger against Low-Pathogenic Human Coronavirus. Agronomy. 2022; 12(11):2763. https://doi.org/10.3390/agronomy12112763
Chicago/Turabian StyleElkhawas, Yasmin A., Haidy A. Gad, Manar O. Lashkar, Roaa M. Khinkar, Mohmmad Y. Wani, and Noha Khalil. 2022. "Effect of Sun Drying on Phytoconstituents and Antiviral Activity of Ginger against Low-Pathogenic Human Coronavirus" Agronomy 12, no. 11: 2763. https://doi.org/10.3390/agronomy12112763
APA StyleElkhawas, Y. A., Gad, H. A., Lashkar, M. O., Khinkar, R. M., Wani, M. Y., & Khalil, N. (2022). Effect of Sun Drying on Phytoconstituents and Antiviral Activity of Ginger against Low-Pathogenic Human Coronavirus. Agronomy, 12(11), 2763. https://doi.org/10.3390/agronomy12112763