Dynamics of the Ocimum basilicum L. Germination under Seed Priming Assessed by an Updated BBCH Scale
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Germination Stage Description and Completion According to the BBCH Scale for Basil
3.2. Dynamic of Seed Germination Development Due to Specific Priming Treatments
3.2.1. Seed Development in the Control Treatment
3.2.2. Electric Field Effect as Priming Method upon Seed Germination Secondary Stages
3.2.3. Hydropriming Effect upon Germination Secondary Stages
3.2.4. Magnetic Field Effect as Priming Seed Method upon Germination Secondary Stages
3.3. Changes in Seed Germination Pattern Due to Priming Treatments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calderón Bravo, H.; Vera Céspedes, N.; Zura-Bravo, L.; Muñoz, L.A. Basil Seeds as a Novel Food, Source of Nutrients and Functional Ingredients with Beneficial Properties: A Review. Foods 2021, 10, 1467. [Google Scholar] [CrossRef]
- Filip, S. Basil (Ocimum basilicum L.) a Source of Valuable Phytonutrients. Int. J. Clin. Nutr. Diet. 2017, 3, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onofrei, V.; Teliban, G.-C.; Clinciu Radu, R.-A.; Teliban, I.-V.; Galea Deleanu, F.-M.; Robu, T. Ocimum basilicum L.: Presence, Influence and Evolution in Human Concerns Ever. Agron. Ser. Sci. Res. Lucr. 2015, 58, 161–166. [Google Scholar]
- Shakeri, F.; Hosseini, M.; Ghorbani, A. Neuropharmacological Effects of Ocimum basilicum and Its Constituents. Physiol. Pharmacol. 2019, 23, 70–81. [Google Scholar]
- Sipos, L.; Balázs, L.; Székely, G.; Jung, A.; Sárosi, S.; Radácsi, P.; Csambalik, L. Optimization of Basil (Ocimum basilicum L.) Production in LED Light Environments—A Review. Sci. Hortic. 2021, 289, 110486. [Google Scholar] [CrossRef]
- Makri, O.; Kintzios, S. Ocimum Sp.(Basil): Botany, Cultivation, Pharmaceutical Properties, and Biotechnology. J. Herbs Spices Med. Plants 2008, 13, 123–150. [Google Scholar] [CrossRef]
- Chenni, M.; El Abed, D.; Neggaz, S.; Rakotomanomana, N.; Fernandez, X.; Chemat, F. Solvent Free Microwave Extraction Followed by Encapsulation of O. basilicum L. Essential Oil for Insecticide Purpose. J. Stored Prod. Res. 2020, 86, 101575. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Adetunji, C.O.; Olaniyan, O.T.; Ojo, S.K.; Samuel, M.O.; Temitayo, B.T.; Roli, O.I.; Nimota, O.O.; Oluwabunmi, B.T.; Adetunji, J.B. Antimicrobial, Antioxidant and Other Pharmacological Activities of Ocimum Species: Potential to Be Used as Food Preservatives and Functional Ingredients. Food Rev. Int. 2021, 37, 1–31. [Google Scholar] [CrossRef]
- Elhaj, H.K.D. Effects of Temperature and Light on Seed Germination of Basil (Ocimum basilicum L.). Ph.D. Thesis, University of Gezira, Wad Madani, Sudan, 2015. [Google Scholar]
- Kumar, B. Prediction of Germination Potential in Seeds of Indian Basil (Ocimum basilicum L.). J. Crop Improv. 2012, 26, 532–539. [Google Scholar] [CrossRef]
- Bayat, H.; Aminifard, M.H. Seed Priming with Selenium Improves Growth, Water Relation and Antioxidant Activity of Pot Marigold (Calendula officinalis L.) under Drought Conditions. Acta Sci. Polonorum. Hortorum Cultus 2021, 20, 27–36. [Google Scholar] [CrossRef]
- Moori, S.; Ahmadi-Lahijani, M.J. Hormopriming Instigates Defense Mechanisms in Thyme (Thymus vulgaris L.) Seeds under Cadmium Stress. J. Appl. Res. Med. Aromat. Plants 2020, 19, 100268. [Google Scholar] [CrossRef]
- Migahid, M.M.; Elghobashy, R.M.; Bidak, L.M.; Amin, A.W. Priming of Silybum marianum (L.) Gaertn Seeds with H2O2 and Magnetic Field Ameliorates Seawater Stress. Heliyon 2019, 5, e01886. [Google Scholar] [CrossRef] [PubMed]
- Kahveci, H.; Bilginer, N.; Diraz-Yildirim, E.; Kulak, M.; Yazar, E.; Kocacinar, F.; Karaman, S. Priming with Salicylic Acid, β-Carotene and Tryptophan Modulates Growth, Phenolics and Essential Oil Components of Ocimum basilicum L. Grown under Salinity. Sci. Hortic. 2021, 281, 109964. [Google Scholar] [CrossRef]
- Bukhari, S.A.; Farah, N.; Mustafa, G.; Mahmood, S.; Naqvi, S.A.R. Magneto-priming improved nutraceutical potential and antimicrobial activity of Momordica charantia L. without affecting nutritive value. Appl. Biochem. Biotechnol. 2019, 188, 878–892. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, R.; Roshandel, P. Ameliorative Effects of a Static Magnetic Field on Hyssop (Hyssopus officinalis L.) Growth and Phytochemical Traits under Water Stress. Bioelectromagnetics 2020, 41, 403–412. [Google Scholar] [CrossRef]
- Rasoolzadeh, L.; Salehi Shanjani, P.; Jafari, A.A. Effects of Seed Priming on Germination Characteristics of Achillea Millefolium Seeds under Different Ageing Treatment. J. Med. Plants By-Prod. 2020, 9, 79–89. [Google Scholar]
- Fallah, S.; Malekzadeh, S.; Pessarakli, M. Seed Priming Improves Seedling Emergence and Reduces Oxidative Stress in Nigella Sativa under Soil Moisture Stress. J. Plant Nutr. 2018, 41, 29–40. [Google Scholar] [CrossRef]
- Rhaman, M.S.; Rauf, F.; Tania, S.S.; Khatun, M. Seed priming methods: Application in field crops and future perspectives. Asian J. Res. Crop Sci. 2020, 5, 8–19. [Google Scholar] [CrossRef]
- Bilińska, E.; Adamczak, A.; Buchwald, W. Effects of Osmopriming and Storage Temperature on the Seed Quality of Salvia Przewalskii Maxim. Acta Sci. Pol.-Hortorum Cultus 2022, 21, 3–10. [Google Scholar] [CrossRef]
- de Souza, M.O.; de Souza, C.L.M.; Pelacani, C.R.; Soares, M.; Mazzei, J.L.; Ribeiro, I.M.; Rodrigues, C.P.; Tomassini, T.C.B. Osmotic Priming Effects on Emergence of Physalis Angulata and the Influence of Abiotic Stresses on Physalin Content. South Afr. J. Bot. 2013, 88, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Kazem, G.-G.; Afsaneh, C.-J.; Parisa, Z.-M. Influence of Salt-Priming on Mucilage Yield of Isabgol (Plantago ovata Forsk) under Salinity Stress. J. Med. Plants Res. 2011, 5, 3236–3241. [Google Scholar]
- Hemal Fonseka, H.; Fonseka, R.M. Studies on Deterioration and Germination of Bitter Gourd Seed (Momordica charantia L.) during Storage. In Proceedings of the V International Symposium on Seed, Transplant and Stand Establishment of Horticultural Crops 898, Murcia, Spain, 30 June 2011; pp. 31–38. [Google Scholar]
- Manoharlal, R.; Saiprasad, G.V.S. Soybean Seed Hormo-Priming Response to Gibberellin and Ethephon in Combination with the Antioxidant N-Acetyl-l-Cysteine. Seed Technol. 2018, 39, 35–52. [Google Scholar]
- Abdani Nasiri, A.; Mortazaeinezhad, F.; Taheri, R. Seed Germination of Medicinal Sage Is Affected by Gibberellic Acid, Magnetic Field and Laser Irradiation. Electromagn. Biol. Med. 2018, 37, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Tahaei, A.; Soleymani, A.; Shams, M. Seed Germination of Medicinal Plant, Fennel (Foeniculum vulgare Mill), as Affected by Different Priming Techniques. Appl. Biochem. Biotechnol. 2016, 180, 26–40. [Google Scholar] [CrossRef]
- Dastborhan, S.; Ghassemi-Golezani, K. Influence of Seed Priming and Water Stress on Selected Physiological Traits of Borage. Folia Hortic. 2015, 27, 151–159. [Google Scholar] [CrossRef]
- Bidabadi, S.S.; Mehralian, M. Seed Bio-Priming to Improve Germination, Seedling Growth and Essential Oil Yield of Dracocephalum Kotschyi Boiss, an Endangered Medicinal Plant in Iran. Gesunde Pflanz. 2020, 72, 17–27. [Google Scholar] [CrossRef]
- Ghasemi, N.; Omidi, H.; Bostani, A. Morphological Properties of Catharanthus Roseus L. Seedlings Affected by Priming Techniques under Natural Salinity Stress. J. Plant Growth Regul. 2021, 40, 550–557. [Google Scholar] [CrossRef]
- Falahhosseini, L.; Alizadeh, M.A.; Vazan, S. Priming Effect of on the Enhancement of Germination Traits in Aged Seeds of Chamomile (Matricaria chamomilla L.) Seeds Preserved in Medium and Long-Term Storage. J. Med. Plants By-Prod. 2017, 6, 1–9. [Google Scholar]
- Meier, U. Growth Stages of Mono-and Dicotyledoneous Plants. BBCH Monograph. Julius-Kühn-Institut (JKI), Quedlinburg, Germany 2018. Available online: https://www.julius-kuehn.de/media/Veroeffentlichungen/bbch%20epaper%20en/page.pdf (accessed on 2 October 2022).
- Lindsey III, B.E.; Rivero, L.; Calhoun, C.S.; Grotewold, E.; Brkljacic, J. Standardized Method for High-Throughput Sterilization of Arabidopsis Seeds. JoVE 2017, 128, e56587. [Google Scholar] [CrossRef] [Green Version]
- International Seed Testing Association. International Rules for Seed Testing, 2002–2018th ed.; ISTA Basserdorf: Wallisellen, Switzerland; Available online: https://www.seedtest.org/en/publications/international-rules-seed-testing-1168.html (accessed on 2 October 2022).
- Radu, A.; Criveanu, H.R.; Inoan, S.L.; Pop, F.M. The Influence of the Electric Field on the Seed Germination Process for Paulownia tomentosa (Thunb.) Stend. Bull. UASVM Hortic. 2015, 72, 1. [Google Scholar]
- Farooq, M.; Basra, S.M.A.; Afzal, I.; Khaliq, A. Optimization of Hydropriming Techniques for Rice Seed Invigoration. Seed Sci. Technol. 2006, 34, 507–512. [Google Scholar] [CrossRef]
- Pop, M.F.; Inoan, S.L.; Dinu, A.I.; Criveanu, H.R. The Influence of Magnetic Field on Silybum marianum Seed Germination. Agric.-Rev. Știință Pract. Agric. 2015, 1/2, 60–63. [Google Scholar]
- Advanced Seed Germination Measurements Excel Tool. Available online: http://agronexcel.blogspot.com/2018/06/this-tutorial-is-about-advanced-seed.html (accessed on 2 October 2022).
- Revelle, W. Psych: Procedures for Personality and Psychological Research, Northwestern University, Evanston, Illinois, USA. 2021. Available online: https://cran.r-project.org/web/packages/psych/index.html (accessed on 2 October 2022).
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-5. 2021. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 2 October 2022).
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. Available online: https://www.R-project.org/ (accessed on 2 October 2022).
- Zhou, D. Seed Germination Performance and Seed Coat Mucilage Production of Sweet Basil (Ocimum basilicum L.). Ph.D. Thesis, Virginia Tech University, Blacksburg, Virginia, 2012. [Google Scholar]
- Elias, S.G.; Copeland, L.O.; McDonald, M.B.; Baalbaki, R.Z. Seed Testing: Principles and Practices; Michigan State University Press: East Lansing, MI, USA, 2012. [Google Scholar]
- Nonogaki, H.; Bassel, G.W.; Bewley, J.D. Germination—Still a Mystery. Plant Sci. 2010, 179, 574–581. [Google Scholar] [CrossRef]
- Ramin, A.A. Effects of Salinity and Temperature on Germination and Seedling Establishment of Sweet Basil (Ocimum basilicum L.). J. Herbs Spices Med. Plants 2006, 11, 81–90. [Google Scholar] [CrossRef]
- Putievsky, E. Temperature and Daylength Influences on the Growth and Germination of Sweet Basil and Oregano. J. Hortic. Sci. 1983, 58, 583–587. [Google Scholar] [CrossRef]
- Azuma, J.; Sakamoto, M. Cellulosic Hydrocolloid System Present in Seed of Plants. Trends Glycosci. Glycotechnol. 2003, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Western, T.L. The Sticky Tale of Seed Coat Mucilages: Production, Genetics, and Role in Seed Germination and Dispersal. Seed Sci. Res. 2012, 22, 1–25. [Google Scholar] [CrossRef]
- Dutta, P. Seed Priming: New Vistas and Contemporary Perspectives. In Advances in Seed Priming; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–22. [Google Scholar]
- Galappaththi, M.O.; Jayasuriya, K.; Gama-Arachchige, N.S. Effect of Priming with Neem Seed Extract on Seeds of Four Traditional Rice Varieties of Sri Lanka; Kaluheenati, Kurulurthuda, Madathawalu and Maa-Wee. J. Natn. Sci. Found. Sri Lanka 2021, 49, 525–538. [Google Scholar] [CrossRef]
- Acharya, P.; Jayaprakasha, G.K.; Crosby, K.M.; Jifon, J.L.; Patil, B.S. Nanoparticle-Mediated Seed Priming Improves Germination, Growth, Yield, and Quality of Watermelons (Citrullus lanatus) at Multi-Locations in Texas. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.K.; Singh, R.; Tripathi, S.; Devi, R.S.; Srivastava, P.; Singh, P.; Kumar, A.; Bhadouria, R. Seed Priming: State of the Art and New Perspectives in the Era of Climate Change. Clim. Change Soil Interact. 2020, 10, 143–170. [Google Scholar]
- Lutts, S.; Benincasa, P.; Wojtyla, L.; Kubala, S.; Pace, R.; Lechowska, K.; Quinet, M.; Garnczarska, M. Seed Priming: New Comprehensive Approaches for an Old Empirical Technique. In New Challenges in Seed Biology: Basic and Translational Research Driving; Araújo, S., Balestrazzi, A., Eds.; 2016; pp. 1–46. Available online: https://www.intechopen.com/chapters/51934 (accessed on 2 October 2022).
- Noorhosseini, S.A.; Jokar, N.K.; Damalas, C.A. Improving Seed Germination and Early Growth of Garden Cress (Lepidium sativum) and Basil (Ocimum basilicum) with Hydro-Priming. J. Plant Growth Regul. 2018, 37, 323–334. [Google Scholar] [CrossRef]
- Adinde, J.; Omeje, T.E.; Uche, O.J.; Agu, C.J. Impact of Hydropriming Duration on Seed Germination and Emergence Indices of Sweet Basil. J. Agric. Sci. Prac. 2020, 5, 1–7. [Google Scholar]
- Jisha, K.C.; Vijayakumari, K.; Puthur, J.T. Seed Priming for Abiotic Stress Tolerance: An Overview. Acta Physiol. Plant. 2013, 35, 1381–1396. [Google Scholar] [CrossRef]
- Finch-Savage, W.E. The Use of Population-Based Threshold Models to Describe and Predict the Effects of Seedbed Environment on Germination and Seedling Emergence of Crops. In Handbook of Seed Physiology: Applications to Agriculture; Haworth Press: New York, NY, USA, 2004; pp. 51–96. [Google Scholar]
- Marthandan, V.; Geetha, R.; Kumutha, K.; Renganathan, V.G.; Karthikeyan, A.; Ramalingam, J. Seed Priming: A Feasible Strategy to Enhance Drought Tolerance in Crop Plants. Int. J. Mol. Sci. 2020, 21, 8258. [Google Scholar] [CrossRef] [PubMed]
- Rifna, E.J.; Ramanan, K.R.; Mahendran, R. Emerging Technology Applications for Improving Seed Germination. Trends Food Sci. Technol. 2019, 86, 95–108. [Google Scholar] [CrossRef]
- Dymek, K.; Dejmek, P.; Panarese, V.; Vicente, A.A.; Wadsö, L.; Finnie, C.; Galindo, F.G. Effect of Pulsed Electric Field on the Germination of Barley Seeds. Lwt-Food Sci. Technol. 2012, 47, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, T.S.; Pandey, O.P. Effect of Electric Field (at Different Temperatures) on Germination of Chickpea Seed. Afr. J. Biotechnol. 2014, 13, 61–67. [Google Scholar]
- Unsugmi, H.; Sahai, P.; Sinha, V.B.; Dutta, R. Electrical Augmentation of Seed Germination in Chick Pea. Plant Arch. 2017, 17, 1661–1664. [Google Scholar]
- Gowrishankar, S.; Sree, V.G. A Study on the Influence of High Electric Field Intensity Treatment on Crop Life. In Proceedings of the 2013 IEEE 1st International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), West Bengal, India, 6–8 December 2013; pp. 77–81. [Google Scholar]
- Huang, R.; Sukprakarn, S.; Phavaphutanon, L.; Juntakool, S.; Chaikul, C. Changes in Antioxidant Enzyme Activity, Lipid Peroxidation and Seedling Growth of Cucumber Seed Induced by Hydropriming and Electric Field Treatments. Agric. Nat. Resour. 2006, 40, 825–834. [Google Scholar]
- Lim, K.-T.; Kim, J.-H.; SeonWoo, H.; Hong, J.-H.; Chung, J.-H. Effects of Electric Current Stimuli and High-Voltage Electric Field Treatments on Brown Rice Germination. J. Biosyst. Eng. 2010, 35, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Patwardhan, M.S.; Gandhare, W.Z. High Voltage Electric Field Effects on the Germination Rate of Tomato Seeds. Acta Agroph. 2013, 20, 403–413. [Google Scholar]
- Kataria, S. Role of Reactive Oxygen Species in Magnetoprimed Induced Acceleration of Germination and Early Growth Characteristics of Seeds. In Reactive Oxygen Species in Plants; John Wiley & Sons, Ltd.: New York, NY, USA, 2017; pp. 75–88. ISBN 978-1-119-32492-8. [Google Scholar]
- Aladjadjiyan, A. The Use of Physical Methods for Plant Growing Stimulation in Bulgaria. J. Cent. Eur. Agric. 2007, 8, 369–380. [Google Scholar]
- Galland, P.; Pazur, A. Magnetoreception in Plants. J. Plant Res. 2005, 118, 371–389. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Mazhar, K.; Ijaz, M.; Ali, Q.; Ahmad, S. Seedling Pretreatment: Methods and Protocols. In Priming and Pretreatment of Seeds and Seedlings: Implication in Plant Stress Tolerance and Enhancing Productivity in Crop Plants; Hasanuzzaman, M., Fotopoulos, V., Eds.; Springer: Singapore, 2019; pp. 117–134. ISBN 9789811386251. [Google Scholar]
Treatment | Specification | Procedure |
---|---|---|
C | Control | Dry seeds directly placed on germinator |
E | Electric field | The homogenous electric field 158 V/m was created between the plates (d = 15.8 cm) of a capacitor with 25 V with an exposure time of 20 min [34] |
H | Hydropriming | Batches of 100 seeds were soaked in 5 mL distilled water at 20 ± 2 °C for 48 h, then dried for 20 min with forced air (electric fan) [35] |
M | Magnetic field | Exposed 20 min in a pair of Helmholtz coils with a uniform magnetic field intensity of 0.22 × 10−3 T [36] |
BBCH Code—Two Digit | Description According to BBCH General Extended Scale [35] | Additional Phases and Description for Basil | Period (Day’s Range) | |
---|---|---|---|---|
Principal growth stage 0: germination | ||||
00 | Dry seed | Inactive seed/Seminal dormancy | 1–13 | |
01 | Beginning of seed imbibition | Beginning of seed imbibition + 30–80% of the seed is covered with gelatinous mucilage | 2–4 | |
03 | Seed imbibition complete | Seed imbibition complete + the seed is completely covered with gelatinous mucilage | 4–7 | |
05 | Radicle emerged from seed | Radicle emerged from seed + a clear crack is visible on seed | 4–6 | |
06 | Elongation of radicle, formation of root hair and/or lateral roots | 06a | Elongation of the radicle | 3–8 |
06b | Root hair zone formation | 3–7 | ||
06c | Radicle continues its straight growth from root hair zone | 2–4 | ||
07 | Hypocotyl with cotyledons or shoot breaking through seed coat | Hypocotyl with cotyledons breaking through seed coat + the hypocotyl arc appearance | 3–5 | |
08 | Hypocotyl with cotyledons growing towards soil surface | Hypocotyl with cotyledons growing towards soil surface + 30–80% cotyledons surface visible still kept under seed coat | 5–8 | |
09 | Emergence: cotyledons break through soil surface | 09a | Emergence: cotyledons break through soil surface + folded cotyledons | 8–9 |
09b | +completely unfolded cotyledons | 5–13 |
Secondary Stages | Days | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
E–C | |||||||||||||
00 | 2.25 | −1.75 | −2 | −2.25 | −2.5 | −3 | −3 | −3 | −3 | −3 | |||
01 | −22 | 11.75 | 5 | 2.75 | |||||||||
03 | 19.75 | 12.25 | 1.5 | 1 | 3.5 | 1.25 | 1 | ||||||
05 | −7.5 | 2.5 | 1.25 | 1 | |||||||||
06a | −5.75 | −4.5 | 3.25 | ||||||||||
06b | −10 | 1.75 | 4 | −1 | −1 | −1 | |||||||
06c | 14.75 | 3 | 1.5 | ||||||||||
07 | −10.25 | 17.25 | 4.75 | 1.25 | 1.25 | ||||||||
08 | −11.75 | −28.25 | 6.5 | −1 | −2.5 | −2.25 | |||||||
09a | 1.25 | −2.5 | −20.5 | −4.25 | 7.75 | 8.75 | 8 | 2.5 | −2.25 | −1.25 | |||
09b | 5.5 | 1 | −6.5 | −4.5 | −4.5 | 5.25 | 4.25 | 3 | |||||
H–C | |||||||||||||
00 | −1.5 | −1.5 | −1.5 | −1.5 | −2.25 | −2.25 | |||||||
01 | −28 | 2.75 | 2.25 | ||||||||||
03 | 14.5 | −1.5 | 3.75 | ||||||||||
05 | 9 | −9 | 2.75 | 1.75 | |||||||||
06a | 4 | 1 | −1.25 | 3 | 1.5 | 1 | 1.5 | ||||||
06b | 1.25 | −2 | 3 | 2 | |||||||||
06c | 8.25 | −5.5 | 1.25 | 1 | |||||||||
07 | 1 | −19.25 | 13.75 | −1.25 | |||||||||
08 | 10.75 | −39 | −6.75 | −1 | |||||||||
09a | 3.75 | 18.25 | 9.75 | 6 | 2.5 | 3.75 | 2.5 | −2.5 | −1.5 | ||||
09b | 5.5 | −11 | −7.75 | −3.25 | −3.25 | −1.75 | 4 | 3 | 1.5 | ||||
M–C | |||||||||||||
00 | 2 | −1 | −1 | −1 | −2.25 | −1.5 | −1.5 | −1.5 | −2.5 | −1.75 | −1.75 | −1.75 | |
01 | −6.5 | 11.5 | |||||||||||
03 | 8.5 | 3.25 | |||||||||||
05 | −4 | −9 | 1.5 | −1 | 1 | 1 | |||||||
06a | −2.25 | −6 | 1.25 | ||||||||||
06b | 2.5 | 1.25 | −1 | −1 | |||||||||
06c | 9.75 | 11.25 | 1 | ||||||||||
07 | −6.5 | 9.5 | |||||||||||
08 | −5 | −25.75 | 10.75 | 3.25 | −2.25 | −2.5 | −2 | 1 | |||||
09a | 4 | −16 | −9.5 | 1 | −1.75 | −1.25 | −1.25 | ||||||
09b | 7 | 7.5 | 2 | 3.25 | 2.75 | 2.75 | 1.75 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoian, V.A.; Gâdea, Ș.; Vidican, R.; Vârban, D.; Balint, C.; Vâtcă, A.; Rotaru, A.; Stoian, V.; Vâtcă, S. Dynamics of the Ocimum basilicum L. Germination under Seed Priming Assessed by an Updated BBCH Scale. Agronomy 2022, 12, 2694. https://doi.org/10.3390/agronomy12112694
Stoian VA, Gâdea Ș, Vidican R, Vârban D, Balint C, Vâtcă A, Rotaru A, Stoian V, Vâtcă S. Dynamics of the Ocimum basilicum L. Germination under Seed Priming Assessed by an Updated BBCH Scale. Agronomy. 2022; 12(11):2694. https://doi.org/10.3390/agronomy12112694
Chicago/Turabian StyleStoian, Valentina Ancuța, Ștefania Gâdea, Roxana Vidican, Dan Vârban, Claudia Balint, Anamaria Vâtcă, Ancuța Rotaru, Vlad Stoian, and Sorin Vâtcă. 2022. "Dynamics of the Ocimum basilicum L. Germination under Seed Priming Assessed by an Updated BBCH Scale" Agronomy 12, no. 11: 2694. https://doi.org/10.3390/agronomy12112694
APA StyleStoian, V. A., Gâdea, Ș., Vidican, R., Vârban, D., Balint, C., Vâtcă, A., Rotaru, A., Stoian, V., & Vâtcă, S. (2022). Dynamics of the Ocimum basilicum L. Germination under Seed Priming Assessed by an Updated BBCH Scale. Agronomy, 12(11), 2694. https://doi.org/10.3390/agronomy12112694