The Quality and Productivity of Strawberry (Fragaria × ananassa Duch.) Improved by the Inoculation of PGPR Bacillus velezensis BS89 in Field Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain
2.2. Plants
2.3. Soils
2.4. Plot Experiments
- Control (background without fertilizers) (A0B0);
- Fertigation: ammonium nitrate (Naa) (A1B0);
- Fertigation: carbamide (Nm) (A2B0);
- Fertigation: ammonium sulfate (Na) (A3B0);
- Fertigation: ammonium nitrate (Naa) + Bacillus velezensis BS89 (A1B1);
- Fertigation: carbamide (Nm) + Bacillus velezensis BS89 (A2B1);
- Fertigation: ammonium sulfate (Na) + Bacillus velezensis BS89 (A3B1);
- Bacillus velezensis BS89 (fertigation) (A0B1) cell suspension 1.25 × 108 cfu/mL;
2.5. Analyses
2.5.1. Analysis of Bacterial Phytohormones
2.5.2. Method for Determining the Content of Chlorophyll
2.5.3. Methods for Determining Macro- and Meso-Elements
2.5.4. Estimation of the Root and Runner Weight of Strawberry Plants
2.5.5. Statistical Analysis
2.6. Climate Conditions in 2017–2020
3. Results
3.1. Bacterial Phytohormones Production
3.2. Yield of Berries of Strawberry Plants and Chlorophyll Content in the Plant Leaves
3.3. Root and Runner Weight of cv. Rusich Strawberry Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOStat. Available online: http://www.fao.org/faostat/en/#data/ (accessed on 25 December 2016).
- Martinsson, M.; Kwast, A.; Cieslinski, G.; Treder, W. Impact of production systems and fertilizer application on yield and quality of strawberries. Acta Hortic. 2006, 708, 59–64. [Google Scholar] [CrossRef]
- Ali, S.; Moon, Y.-S.; Hamayun, M.; Khan, M.A.; Bibi, K.; Lee, I.-J. Pragmatic role of microbial plant biostimulants in abiotic stress relief in crop plants. J. Plant Interact. 2022, 17, 705–718. [Google Scholar] [CrossRef]
- Kloepper, J.W.; Schroth, M.N. Plant growth promoting rhizobacteria on radishes. In Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, Angers, France, 27 August–2 September 1978; pp. 879–882. [Google Scholar]
- Ahmad, F.; Ahmad, I.; Khan, M. Screening of free living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 2008, 163, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Compant, S.; Clément, C.; Sessitsch, A. Plant growth-promoting bacteria in the rhizo and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 2010, 42, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Pishchik, V.; Mirskaya, G.; Chizhevskaya, E.; Chebotar, V.; Chakrabarty, D. Nickel stress-tolerance in plantbacterial associations. PeerJ 2021, 9, e12230. [Google Scholar] [CrossRef]
- Etesami, H.; Beattie, G.A. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front. Microbiol. 2018, 9, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harman, G.E.; Obregón, M.A.; Samuels, G.J.; Lorito, M. Changing models for commercialization and implementation of biocontrol in the developing and the developed world. Plant Dis. 2010, 94, 928–939. [Google Scholar] [CrossRef] [Green Version]
- Jiao, X.; Takishita, Y.; Zhou, G.; Smith, D.L. Plant associated rhizobacteria for biocontrol and plant growth enhancement. Front. Plant Sci. 2021, 12, 634796. [Google Scholar] [CrossRef]
- Barriuso, J.; Solano, B.R.; Fray, R.G.; Camara, M.; Hartmann, A.; Gutierrez Mahero, F.J. Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotech. J. 2008, 6, 442–452. [Google Scholar] [CrossRef]
- Santoyo, G.; Moreno-Hagelsiebb, G.; Orozco-Mosquedac, M.d.C.; Glick, B.R. Plant growth-promoting bacterial endophytes. Microb. R. 2016, 183, 92–99. [Google Scholar] [CrossRef]
- Moon, Y.-S.; Ali, S. Isolation and identification of multi-trait plant growth-promoting rhizobacteria from coastal sand dune plant species of Pohang beach. Folia Microbiol. 2022, 67, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Chebotar, V.K.; Malfanova, N.V.; Scherbakov, A.V.; Ahtemova, G.A.; Borisov, A.Y.; Lugtenberg, B.; Tikhonovich, I.A. Endophytic bacteria in microbial preparations thar improve plant development (Review). Appl. Biochem. Microbiol. 2015, 51, 283–289. [Google Scholar] [CrossRef]
- Clay, K.; Holah, J. Fungal endophyte symbiosis and plant diversity in successional fields. Science 1999, 285, 1742–1745. [Google Scholar] [CrossRef] [PubMed]
- Omacini, M.; Chaneton, E.J.; Ghersa, C.M.; Müller, C.B. Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature 2001, 409, 78–81. [Google Scholar] [CrossRef]
- De la Fuente Cantó, C.; Simonin, M.; King, E.; Moulin, L.; Bennett, M.J.; Castrillo, G.; Laplaz, L. An extended root phenotype: The rhizosphere, its formation and impacts on plant fitness. Plant J. 2020, 103, 951–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; El Enshasy, H. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant growth promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar] [CrossRef] [Green Version]
- Parray, J.A.; Jan, S.; Kamil, A.N.; Qadri, R.A.; Egamberdieva, D.; Ahmad, P. Current perspectives on plant growth-promoting rhizobacteria. J. Plant Growth Regul. 2016, 35, 877–902. Available online: https://link.springer.com/article/10.1007/s00344-016-9583-4 (accessed on 1 March 2016). [CrossRef]
- Khan, M.A.; Asaf, S.; Khan, A.L.; Adhikari, A.; Jan, R.; Ali, S.; Imran, M.; Kim, K.-M.; Lee, I.-J. Halotolerant rhizobacterial strains mitigate the adverse effects of NaCl stress in soybean seedlings. BioMed Res. Int. 2019, 2019, 9530963. [Google Scholar] [CrossRef] [Green Version]
- Chebotar, V.K.; Makarova, N.M.; Shaposhnikov, A.I.; Kravchenko, L.V. Antifungal and phytostimulating characteristics of Bacillus subtilis Ch-13 rhizospheric strain, producer of bioprepations. Appl. Biochem. Microbiol. 2009, 45, 419–423. [Google Scholar] [CrossRef]
- Sagar, A.; Sayyed, R.Z.; Ramteke, P.W.; Sharm, S.; Marraiki, N.; Elgorba, A.M.; Syed, A. ACC deaminase and antioxidant enzymes producing halophilic Enterobacter sp. PR14 promotes the growth of rice and millets under salinity stress. Physiol. Mol. Biol. Plants 2020, 26, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Kalam, S.; Basu, A.; Ankati, S. Plant root-associated biofilms in bioremediation. In Biofilms in Plant and Soil Health; Ahmad, I., Husain, F.M., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 337–355. [Google Scholar]
- Etesami, H.; Maheshwari, D.K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol. Environ. Saf. 2018, 156, 225–246. [Google Scholar] [CrossRef]
- Anli, M.; Baslam, M.; Tahiri, A.; Raklami, A.; Symanczik, S.; Boutasknit, A.; Ait-El-Mokhtar, M.; Ben-Laouane, R.; Toubali, S.; Ait Rahou, Y.; et al. Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in the date palm. Front. Plant Sci. 2020, 11, 516818. [Google Scholar] [CrossRef]
- Dong, L.; Li, Y.; Xu, J.; Yang, J.; Wei, G.; Shen, L.; Ding, W.; Chen, S. Biofertilizers regulate the soil microbial community and enhance Panax ginseng yields. Chin. Med. 2019, 14, 20. [Google Scholar] [CrossRef] [Green Version]
- Atieno, M.; Herrmann, L.; Nguyen, H.T.; Phan, H.T.; Nguyen, N.K.; Srean, P.; Than, M.M.; Zhiyong, R.; Tittabutr, P.; Shutsrirung, A.; et al. Assessment of biofertilizer use for sustainable agriculture in the Great Mekong Region. J. Environ. Manag. 2020, 275, 111300. [Google Scholar] [CrossRef] [PubMed]
- De Andrade, F.M.; de Assis, T.P.; Souza, T.P.; Guimarães, P.H.S.; Martins, A.D.; Schwan, R.F.; Moacir, P.; Joyce, D. Beneficial effects of inoculation of growth-promoting bacteria in strawberry. Microbiol. Res. 2019, 223–225, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Bayramoğlu, Z.; Selvi, T.; Eşitgen, A.; Dönmez, M.F. The effect of bacterial applications on resource utilization ın strawberry (Fragaria × ananassa Duch.) production. J. Agric. Nat. 2020, 23, 1308–1313. [Google Scholar] [CrossRef]
- Anuradha; Goyal, R.K.; Sindhu, S.S. Response of strawberry (Fragaria × ananassa Duch.) to PGPR inoculation. Bangladesh J. Bot. 2020, 49, 1071–1076. [Google Scholar] [CrossRef]
- Anuradha; Goyal, R.K.; Sindhu, S.; Godara, A. Effect of PGPR on strawberry cultivation under greenhouse conditions. Indian J. Hort. 2019, 76, 400–404. [Google Scholar] [CrossRef]
- Chebotar, V.K.; Voshol, G.P.; Malfanova, N.V.; Chizhevskaya, E.P.; Zaplatkin, A.N.; Komarova, O.V.; Baganova, M.E.; Lazarev, A.M.; Balakina, S.V. Draft genome sequence of plant growthpromoting Bacillus velezensis BS89. Microbiol. Resour. Announc. 2021, 10, e01294-20. [Google Scholar] [CrossRef]
- ISO 10390:2005; Soil Quality—Determination of pH. 2nd ed. ISO: Geneva, Switzerland, 2005; p. 7.
- Khan, S.A.; Mulvaney, R.L.; Hoeft, R.G. A simple soil test for detecting sites that are nonresponsive to nitrogen fertilization. Soil Sci. Soc. Am. J. 2001, 65, 1751–1760. [Google Scholar] [CrossRef]
- ISO 14255:1998; Soil Quality—Determination of Nitrate Nitrogen, Ammonium Nitrogen and Total Soluble Nitrogen in Air-Dry Soils using Calcium Chloride Solution as Extractant. ISO: Geneva, Switzerland, 1998; p. 14.
- Motsara, T.N.; Roy, R.N. Guide to Laboratory Establishment for Plant Nutrient Analysis. In Fertilizer and Plant Nutrition Bulletin; No. 19; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008; p. 206. ISBN 978-92-5-105981-4. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 1945, 59, 30–45. [Google Scholar] [CrossRef]
- Ginzburg, E.K.; Shcheglova, E.K. Determination of nitrogen, phosphorus and potassium in plant material from a single sample. Soil Sci. 1960, 5, 100–105. [Google Scholar]
- Naeima, Y.M.H. Capability of plant growth-promoting rhizobacteria (PGPR) for producing indole acetic acid (IAA) under extreme conditions. Eur. J. Biol. Res. 2018, 8, 174–182. [Google Scholar] [CrossRef]
- Araújo, F.F.; Henning, A.A.; Hungria, M. Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J. Microbiol. Biotechnol. 2005, 21, 1639–1645. [Google Scholar] [CrossRef]
- Chagas, A.F.; de Oliveira, A.G.; de Oliveira, L.A.; dos Santos, G.R.; Chagas, L.F.B.; Lopes da Silva, A.L.; da Luz Costa, J. Production of indole-3-acetic acid by Bacillus isolated from different soils. Bulg. J. Agric. Sci. 2015, 21, 282–287. Available online: http://www.agrojournal.org/21/02-08.pdf (accessed on 1 April 2016).
- Kumari, S.; Prabha, C.; Singh, A.; Kumari, S.; Kiran, S. Optimization of indole-3-acetic acid production by diazotrophic B. subtilis DR2 (KP455653), isolated from rhizosphere of Eragrostis Cynosuroides. Int. J. Pharma Med. Biol. Sci. 2018, 7, 20–27. [Google Scholar] [CrossRef]
- Khan, A.L.; Haloa, B.A.; Elyassi, A.; Ali, S.; Al-Hosni, K.; Hussain, J.; Al-Harrasi, A.; Lee, I.-J. Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron. J. Biotechnol. 2016, 21, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Spaepen, S.; Bossuyt, S.; Engelen, K.; Marchal, K.; Vanderleyden, J. Phenotypical and molecular responses of A. thaliana roots as a result of inoculation with the auxin producing bacterium Azospirillum brasilense. New Phytol. 2014, 201, 850–861. [Google Scholar] [CrossRef]
- Tsukanova, K.A.; Chebotar, V.K.; Meyer, J.J.M.; Bibikova, T.N. Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis. S. Afr. J. Bot. 2017, 113, 91–102. [Google Scholar] [CrossRef]
- Singh, R.K.; Malik, N.; Singh, S. Improved nutrient use efficiency increases plant growth of rice with the use of IAA-overproducing strains of endophytic Burkholderia cepacia strain RRE25. Microbial. Ecol. 2013, 66, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Radhakrishnan, R.; Kang, S.M.; Lee, I.J. IAA producing Enterobacter sp. I-3 as a potent bio-herbicide candidate for weed control: A special reference with lettuce growth inhibition. Indian J. Microbiol. 2015, 55, 207–212. [Google Scholar] [CrossRef]
- Bashan, Y.; de-Bashan, L.E. Chapter two—How the plant growth-promoting bacterium Azospirillum promotes plant growth—A critical assessment. Adv. Agron. 2010, 108, 77–136. [Google Scholar] [CrossRef]
- Péret, B.; Li, G.; Zhao, J.; Band, L.R.; Voß, U.; Postaire, O.; Luu, D.-T.; Da Ines, O.; Casimiro, I.; Lucas, M.; et al. Auxin regulates aquaporin function to facilitate lateral root emergence. Nat. Cell Biol. 2012, 14, 991–998. [Google Scholar] [CrossRef]
- De Smet, I. Lateral root initiation: One step at a time. New Phytol. 2012, 193, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Malamy, J.E. Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ. 2005, 28, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Raheem, A.; Shaposhnikov, A.; Belimov, A.A.; Dodd, I.C.; Ali, B. Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Arch. Agron. Soil Sci. 2017, 64, 574–587. [Google Scholar] [CrossRef]
- Mirskaya, G.V.; Khomyakov, Y.V.; Rushina, N.A.; Vertebny, V.E.; Chizhevskaya, E.P.; Chebotar, V.K.; Chesnokov, Y.V.; Pishchik, V.N. Plant development of early-maturing spring wheat (Triticum aestivum L.) under inoculation with Bacillus sp. V2026. Plants 2022, 11, 1817. [Google Scholar] [CrossRef]
- Ambreetha, S.; Chinnadurai, C.; Marimuthu, P.; Balachandar, D. Plant-associated Bacillus modulates the expression of auxin-responsive genes of rice and modifies the root architecture. Rhizosphere 2018, 5, 57–66. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Mommer, L.; De Vries, F.T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 2014, 29, 692–699. [Google Scholar] [CrossRef]
- Grover, M.; Bodhankar, S.; Sharma, A.; Sharma, P.; Singh, J.; Nain, L. PGPR mediated alterations in root traits: Way toward sustainable crop production. Front. Sustain. Food Syst. 2021, 4, 618230. [Google Scholar] [CrossRef]
NPK and PGPR | 2017 | 2018 | 2019 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
kg/ha | Under One Plant, g | kg/ha | Under One Plant, g | kg/ha | Under One Plant, g | kg/ha | Under One Plant, g | |
N | 70 | 1.27 | 40 | 0.73 | 80 | 1.45 | 50 | 0.91 |
P2O5 | 30 | 0.55 | 30 | 0.55 | 50 | 0.91 | 30 | 0.55 |
K2O | 50 | 0.91 | 30 | 0.55 | 70 | 1.27 | 50 | 0.91 |
Bacillus velezensis BS89 | 0 | 0 | 22 | 40.0 | 16.2 | 30.0 | 19.25 | 35.0 |
Sample | IAA, µg/mL | GA, µg/mL | tZ, µg/mL |
---|---|---|---|
Bacillus velezensis BS89 | 494.1 ± 17.3 | 0 | 0 |
Experimental Variant | Cv. Rusich | Cv. Troitskaya |
---|---|---|
Without fertilizers | 14.6 a | 14.8 a |
Fertigation Naa | 14.6 a | 15.0 a |
Fertigation Nm | 14.7 a | 15.6 a |
Fertigation Na | 15.4 b | 16.3 b |
Without fertilizers + BS89 | 15.6 b | 15.2 a |
Fertigation Naa + BS89 | 15.8 b | 15.5 a |
Fertigation Nm + BS89 | 15.5 b | 16.4 b |
Fertigation Na + BS89 | 15.3 ab | 16.6 b |
Standard error (SE) | ±0.6 | ±0.6 |
F1.Fertigation | p < 0.87 * | p < 0.026 |
F2.BS89 | p < 0.009 | p < 0.035 |
F1.Fertigation ∗ F2.BS89 | p < 0.29 * | p < 0.016 |
Experimental Variant | Yield, 2018, g/plant | Yield, 2019, g/plant | Yield, 2020, g/plant |
---|---|---|---|
Without fertilizers | 37.1 a | 110 a | 150 a |
Fertigation Naa | 39.0 a | 108 a | 155 a |
Fertigation Nm | 40.0 a | 121 a | 180 ab |
Fertigation Na | 53.8 b | 140 b | 195 b |
Without fertilizers + BS89 | 47.0 b | 150 b | 160 a |
Fertigation Naa + BS89 | 59.9 c | 170 c | 220 bc |
Fertigation Nm + BS89 | 48.5 b | 149 b | 200 b |
Fertigation Na + BS89 | 50.7 b | 153 b | 175 a |
Standard error (SE) | ±6.0 | ±15 | ±20 |
F1.Fertigation | p < 0.035 | p < 0.31 * | p < 0.026 |
F2.BS89 | p < 0.002 | p < 0.00003 | p < 0.035 |
F1.Fertigation ∗ F2.BS89 | p < 0.026 | p < 0.07 | p < 0.016 |
Experimental Variant | Yield, 2018, g/plant | Yield, 2019, g/plant | Yield, 2020, g/plant |
---|---|---|---|
Without fertilizers | 41.5 a | 146.6 a | 160.0 a |
Fertigation Naa | 49.5 ab | 165.0 b | 180.9 a |
Fertigation Nm | 43.3 a | 163.3 b | 192.4 b |
Fertigation Na | 54.9 b | 180.0 c | 195.4 b |
Without fertilizers + BS89 | 49.5 ab | 165.0 b | 172.0 a |
Fertigation Naa + BS89 | 52.5 b | 175.0 bc | 190.0 ab |
Fertigation Nm + BS89 | 60.1 bc | 196.2 d | 208.0 c |
Fertigation Na + BS89 | 66.0 c | 199.4 d | 210.0 c |
Standard error (SE) | ±7.0 | ±15 | ±12 |
F1.Fertigation | p < 0.015 | p < 0.008 | p < 0.0002 |
F2.BS89 | p < 0.036 | p < 0.001 | p < 0.018 |
F1.Fertigation ∗ F2.BS89 | p < 0.41 * | p < 0.27 * | p < 0.97 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chebotar, V.K.; Chizhevskaya, E.P.; Vorobyov, N.I.; Bobkova, V.V.; Pomyaksheva, L.V.; Khomyakov, Y.V.; Konovalov, S.N. The Quality and Productivity of Strawberry (Fragaria × ananassa Duch.) Improved by the Inoculation of PGPR Bacillus velezensis BS89 in Field Experiments. Agronomy 2022, 12, 2600. https://doi.org/10.3390/agronomy12112600
Chebotar VK, Chizhevskaya EP, Vorobyov NI, Bobkova VV, Pomyaksheva LV, Khomyakov YV, Konovalov SN. The Quality and Productivity of Strawberry (Fragaria × ananassa Duch.) Improved by the Inoculation of PGPR Bacillus velezensis BS89 in Field Experiments. Agronomy. 2022; 12(11):2600. https://doi.org/10.3390/agronomy12112600
Chicago/Turabian StyleChebotar, Vladimir K., Elena P. Chizhevskaya, Nikolai I. Vorobyov, Veronika V. Bobkova, Lyubov V. Pomyaksheva, Yuriy V. Khomyakov, and Sergey N. Konovalov. 2022. "The Quality and Productivity of Strawberry (Fragaria × ananassa Duch.) Improved by the Inoculation of PGPR Bacillus velezensis BS89 in Field Experiments" Agronomy 12, no. 11: 2600. https://doi.org/10.3390/agronomy12112600
APA StyleChebotar, V. K., Chizhevskaya, E. P., Vorobyov, N. I., Bobkova, V. V., Pomyaksheva, L. V., Khomyakov, Y. V., & Konovalov, S. N. (2022). The Quality and Productivity of Strawberry (Fragaria × ananassa Duch.) Improved by the Inoculation of PGPR Bacillus velezensis BS89 in Field Experiments. Agronomy, 12(11), 2600. https://doi.org/10.3390/agronomy12112600