Ammonia Emissions, Exposed Surface Area, and Crop and Weed Responses Resulting from Three Post-Emergence Slurry Application Strategies in Cereals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crop and Weed Response (EXPCROP+WEED)
2.1.1. Experimental Design and Treatment Specifications
2.1.2. Data Collection
2.1.3. Data Analysis
2.2. Ammonia Emissions (EXPNH3)
2.2.1. Experimental Design, Treatment Specifications, and Data Collection
2.2.2. Data Analysis
2.3. Exposed Surface Area (EXPESA)
2.3.1. Experimental Design, Treatment Specifications, and Data Collection
2.3.2. Data Analysis
3. Results
3.1. Crop and Weed Responses
3.2. Ammonia Emissions
3.3. Exposed Surface Area
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Behera, S.N.; Sharma, M. Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Sci. Total Environ. 2010, 408, 3569–3575. [Google Scholar] [CrossRef]
- Burnett, R.T.; Pope, C.A., III; Ezzati, M.; Olives, C.; Lim, S.S.; Mehta, S.; Shin, H.H.; Singh, G.; Hubbell, B.; Brauer, M.; et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Persp. 2014, 122, 397–403. [Google Scholar]
- Behera, S.N.; Sharma, M.; Aneja, V.P.; Balasubramanian, R. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Policy 2013, 20, 8092–8131. [Google Scholar] [CrossRef]
- Grennfelt, P.; Hultberg, H. Effects of nitrogen deposition on the acidification of terrestrial and aquatic ecosystems. Water Air Soil Poll. 1986, 30, 945–963. [Google Scholar] [CrossRef]
- Eurostat. Archive: Agriculture—Ammonia Emission Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Agriculture_-_ammonia_emission_statistics#Further_Eurostat_information (accessed on 5 April 2021).
- Eurostat. Air Pollutants by Source Sector [Data File]. Available online: https://ec.europa.eu/eurostat/databrowser/view/ENV_AIR_EMIS__custom_773267/default/table?lang=en (accessed on 5 April 2021).
- European Environmental Bureau. Clearing the Air a Critical Guide to the New National Emission Ceilings Directive. Available online: https://euagenda.eu/publications/clearing-the-air-a-critical-guide-to-the-new-national-emission-ceilings-directive (accessed on 5 April 2021).
- Pedersen, B.N.; Christensen, B.T.; Bechini, L.; Cavalli, D.; Eriksen, J.; Sørensen, P. Nitrogen fertilizer value of animal slurries with different proportions of liquid and solid fractions: A 3-year study under field conditions. J. Agric. Sci. 2021, 158, 707–717. [Google Scholar]
- Sommer, S.G.; Hutchings, N. Ammonia emissions from field applied manure and its reduction—Invited paper. Eur. J. Agron. 2001, 15, 1–15. [Google Scholar] [CrossRef]
- Sørensen, P.; Bechini, L.; Jensen, L.S. Manure management in organic farming. In Improved Organic Crop Cultivation; Köpke, U., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019. [Google Scholar]
- Nyord, T.; Hansen, M.N.; Birkmose, T.S. Ammonia volatilization and crop yield following land application of solid-liquid separated, anaerobically digested, and soil injected animal slurry to winter wheat. Agric. Ecosyst. Environ. 2012, 160, 75–81. [Google Scholar] [CrossRef]
- Smith, K.A.; Jackson, D.R.; Misselbrook, T.H.; Pain, B.F.; Johnson, R.A. Reduction of ammonia emission by slurry application techniques. J. Agric. Eng. Res. 2000, 77, 277–287. [Google Scholar] [CrossRef]
- Petersen, J. Weed:spring barley competition for applied nitrogen in pig slurry. Weed Res. 2003, 43, 33–39. [Google Scholar] [CrossRef]
- Petersen, J. Competition between weeds and spring wheat for 15N-labeled nitrogen applied in pig slurry. Weed Res. 2005, 45, 103–113. [Google Scholar] [CrossRef]
- Rasmussen, K. Influence of liquid manure application methods on weed control in spring cereals. Weed Res. 2002, 42, 287–298. [Google Scholar] [CrossRef]
- Melander, B.; Cirujeda, A.; Jørgensen, M.H. Effects of inter-row hoeing and fertilizer placement on weed growth and yield of winter wheat. Weed Res. 2003, 43, 428–438. [Google Scholar] [CrossRef]
- Long, F.N.J.; Gracey, H.I. Herbage production and nitrogen recovery from slurry injection and fertilizer nitrogen application. Grass Forage Sci. 1990, 45, 77–82. [Google Scholar] [CrossRef]
- Nyord, T.; Kirstensen, E.K.; Munkholm, E.F.; Jørgensen, M.H. Design of a slurry injector for use in a growing cereal crop. Soil Till. Res. 2010, 107, 26–35. [Google Scholar] [CrossRef]
- Emmerling, C.; Krein, A.; Junk, J. Meta-analysis of strategies to reduce NH3 emissions from slurries in European agriculture and consequences for greenhouse gas emissions. Agronomy 2020, 10, 1633. [Google Scholar] [CrossRef]
- Huijsmans, J.M.F.; Hol, J.M.G.; Hendriks, M.M.W.B. Effect of application technique, manure characteristics, weather and field conditions of ammonia volatilization from manure applied to grassland. Neth. J. Agric. Sci. 2001, 49, 323–342. [Google Scholar] [CrossRef] [Green Version]
- Sommer, S.G.; Friis, E.; Bach, A.; Schjørring, J.K. Volatilization from pig slurry applied with trail hoses or broadspread to winter wheat: Effects of crop developmental stage, microclimate, and leaf ammonia absorption. J. Environ. Qual. 1997, 26, 1153–1160. [Google Scholar] [CrossRef]
- Sommer, S.G.; Olesen, J.E. Modelling ammonia volatilization from animal slurry applied with trail hoses to cereals. Atmos. Environ. 2000, 34, 2361–2372. [Google Scholar] [CrossRef]
- Pedersen, J.; Feilberg, A.; Kamp, J.N.; Hafner, S.; Nyord, T. Ammonia emission measurement with an online wind tunnel system for evaluation of manure application techniques. Atmos. Environ. 2000, 230, 117562. [Google Scholar] [CrossRef]
- Sommer, S.G.; Ersbøll, A.K. Effects on ammonia volatilization from surface-applied or injected animal slurry. J. Environ. Qual. 1994, 23, 493–498. [Google Scholar] [CrossRef]
- Hafner, S.D.; Pacholski, A.; Bittman, S.; Burchill, W.; Bussink, W.; Chatigny, M.; Carozzi, M.; Genermont, S.; Hani, C.; Hansen, M.N.; et al. The ALFAM2 database on ammonia emission from field-applied manure: Description and illustrative analysis. Agric. Forest Meteorol. 2018, 258, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Webb, J.; Pain, B.; Bittman, S.; Morgan, J. The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response—A review. Agric. Ecosyst. Environ. 2010, 137, 39–46. [Google Scholar] [CrossRef]
- Kolb, L.N.; Gallandt, E.R.; Mallory, E.B. Impact of spring wheat planting density, row spacing, and mechanical weed control on yield, grain protein, and economic return in Maine. Weed Sci. 2012, 60, 244–253. [Google Scholar] [CrossRef]
- Melander, B.; Jabran, K.; Notaris, C.D.; Znova, L.; Green, O.; Olesen, J.E. Inter-row hoeing for weed control in organic spring cereals–influence of inter-row spacing and nitrogen rate. Eur. J. Agron. 2018, 101, 49–56. [Google Scholar] [CrossRef]
- Melander, B.; McCollough, M.R. Influence of intra-row cruciferous surrogate weed growth on crop yield in organic spring cereals. Weed Res. 2020, 60, 464–474. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater; APHA: Washington, DC, USA, 1999. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Rockville, MD, USA, 1999. [Google Scholar]
- ISO 7150-1:1984; Water Quality—Determination of Ammonium—Part 1: Manual Spectrometric Method. 1st ed. International Organization for Standardization: Geneva, Switzerland, 1984.
- Dumas, J.B.A. Procedes de l’analyse organic. Ann. Chim. Phys. 1831, 247, 198–213. [Google Scholar]
- Munoz-Huerta, R.F.; Guevara-Gonzalez, R.G.; Contreras-Medina, L.M.; Torrese-Pacheco, I.; Prado-Olivarez, J.; Ocampo-Velazquez, R.V. A review of methods for sensing the nitrogen status in plants: Advantages, disadvantages and recent advances. Sensors 2013, 13, 10823–10843. [Google Scholar] [CrossRef] [PubMed]
- Burden, R.L.; Faires, D.J.; Burden, A.M. Interpolation and polynomial approximation. In Numerical Analysis, 10th ed.; Burden, R.L., Faires, D.J., Burden, A.M., Eds.; Cengage Learning: Boston, MA, USA, 2016; pp. 103–168. [Google Scholar]
- Pedersen, J.; Andersson, K.; Feilberg, A.; Delin, S.; Hafner, S.; Nyord, T. The effect of manure exposed surface area on ammonia emission from untreated, separated, and digested cattle manure. Biosyst. Eng. 2020, 202, 66–78. [Google Scholar] [CrossRef]
- Statistics Denmark. HST77: Harvest by Region, Crop and Unit [Data File]. Available online: www.statbank.dk/HST77 (accessed on 23 March 2022).
- Petersen, J.; Knudsen, L. Changers in fertilization practice and impact on yield of winter wheat. In Causes of Yield Stagnation in Winter Wheat in Denmark; Petersen, J., Haastrup, M., Knudsen, L., Olesen, J.E., Eds.; Faculty of Agricultural Sciences, Aarhus University: Aarhus, Denmark, 2010; pp. 61–78. [Google Scholar]
- Olesen, J.E.; Jørgensen, L.N.; Petersen, J.; Mortensen, J.V. Effects of rate and timing of nitrogen fertilizer on disease control by ungicides in winter wheat. 1. Grain yield and foliar disease control. J. Agric. Sci. 2003, 140, 1–13. [Google Scholar] [CrossRef]
- Efretuei, A.; Gooding, M.; White, E.; Spink, J.; Hackett, R. Effect of nitrogen fertilizer application timing on nitrogen use efficiency and grain yield of winter wheat in Ireland. Irish J. Agric. Food Res. 2016, 55, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, P.; Amato, M. Remineralisation and residual effects of N after application of pig slurry to soil. Eur. J. Agron. 2002, 16, 81–95. [Google Scholar] [CrossRef]
- Huijsmans, J.M.F.; Vermeulen, G.D.; Hol, J.M.G.; Geodhard, P.W. A model for estimating seasonal trends of ammonia emissions from cattle manure applied to grassland in the Netherlands. Atmos. Environ. 2018, 173, 231–238. [Google Scholar] [CrossRef]
- Bless, H.G.; Beinhauer, R.; Sattelmacher, B. Ammonia emissions from slurry applied to wheat stubble and rape in North Germany. J. Agric. Sci. 1991, 117, 225–231. [Google Scholar] [CrossRef]
- Snyder, V.A.; Vazquez, M.A. Structure. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: New York, NY, USA, 2005; pp. 54–68. [Google Scholar]
- Blackshaw, R.E.; Brandt, R.N. Nitrogen fertilizer rate effects on weed competitiveness is species dependent. Weed Sci. 2008, 56, 743–747. [Google Scholar] [CrossRef]
- Kim, D.S.; Marshall, E.J.P.; Caseley, J.C.; Brain, P. Modelling interactions between herbicide and nitrogen fertilizer in terms of weed response. Weed Res. 2006, 46, 480–491. [Google Scholar] [CrossRef]
- Nam-Il, P.; Ogasawara, M.; Yoneyama, K.; Takeuchi, Y. Response of annual bluegrass (Poa annua L.) and creeping bentgrass (Agrostis palustris Huds.) seedlings to nitrogen, phosphorus and potassium. Weed Biol. Manag. 2001, 1, 222–225. [Google Scholar] [CrossRef]
- Warwick, S.I. The biology of Canadian weeds. 37. Poa annua L. Can. J. Plant Sci. 1979, 59, 1053–1066. [Google Scholar] [CrossRef] [Green Version]
- Gehards, R.; Kollenda, B.; Macheb, J.; Moller, K.; Butz, A.; Reiser, D.; Greigentrog, H.W. Camera-guided weed hoeing in winter cereals with narrow row distance. Gesunde Pflanz. 2020, 72, 403–411. [Google Scholar] [CrossRef]
Year | Site | Soil Type | Soil Texture | Test Crop | Experiments Performed | |||
---|---|---|---|---|---|---|---|---|
Sand (%) | Silt (%) | Clay (%) | Humus (%) | |||||
2019 | Tjele, DK (SITEA) | Loamy sand | 89 | 5 | 4 | 2 | Spring barley | Crop and weed response (EXPCROP+WEED.A) |
Ammonia emissions (EXPNH3.A) | ||||||||
2019−2020 | Flakkebjerg, DK (SITEB) | Sandy loam | 61 | 18 | 19 | 2 | Winter wheat | Crop and weed response (EXPCROP+WEED.B) |
Ammonia emissions (EXPNH3.B1 and EXPNH3.B2) | ||||||||
Exposed Surface Area (EXPESA.B) | ||||||||
Flakkebjerg, DK (SITEC) | Sandy loam | 73 | 11 | 14 | 2 | Winter wheat | Crop and weed response (EXPCROP+WEED.C) |
Experiment | N Rate Treatment | Application Rate | Application Rate | Dry Matter | Total N | Ammoniacal N | Viscosity | pH |
---|---|---|---|---|---|---|---|---|
kg m−2 | g NH4-N m−2 | % | g L−1 | g L−1 | cP | |||
EXPNH3.A | N100 | 2.3 | 3.54 (±0.11) | 4.93 (±0.26) | 2.50 (±0.08) | 1.55 (±0.05) | − | 7.77 (±0.03) |
EXPNH3.B1 | N100 | 3.0 | 10.57 (±0.54) | 3.27 (±<0.01) | 4.16 (±0.05) | 3.52 (±0.18) | 106 (±8) | 7.82 (±0.04) |
EXPNH3.B2 and EXPESA.B | N100 | 3.0 | 11.28 (±0.32) | 6.46 (±0.03) | 4.85 (±0.04) | 3.76 (±0.11) | 1004 (±45) | 7.51 (±0.02) |
Crop Yield | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | SITEA | SITEB | SITEC | ||||||||
kg ha−1 | |||||||||||
WMTweedy | N50 | SAhose | 5171 | (±96) | a | 4272 | (±385) | d | 4255 | (±308) | d |
WMTweedy | N50 | SAshoes | 5389 | (±304) | a | 4090 | (±510) | d | 4484 | (±230) | d |
WMTweedy | N50 | SAtines+shoes | 4799 | (±265) | a | 4505 | (±176) | d | 3812 | (±296) | d |
WMTweedy | N100 | SAhose | 5661 | (±152) | a | 6107 | (±413) | abc | 6913 | (±432) | ab |
WMTweedy | N100 | SAshoes | 5248 | (±492) | a | 6425 | (±462) | ab | 6542 | (±503) | ab |
WMTweedy | N100 | SAtines+shoes | 5584 | (±174) | a | 5971 | (±426) | bc | 5945 | (±347) | bc |
WMTweed-free | N50 | SAhose | 5439 | (±333) | a | 4962 | (±188) | cd | 4532 | (±621) | d |
WMTweed-free | N50 | SAshoes | 5448 | (±305) | a | 5183 | (±335) | bcd | 4322 | (±565) | d |
WMTweed-free | N50 | SAtines+shoes | 5307 | (±226) | a | 5166 | (±210) | bcd | 4606 | (±610) | cd |
WMTweed-free | N100 | SAhose | 5520 | (±115) | a | 7351 | (±109) | a | 7466 | (±489) | a |
WMTweed-free | N100 | SAshoes | 4608 | (±500) | a | 6117 | (±311) | abc | 6703 | (±240) | ab |
WMTweed-free | N100 | SAtines+shoes | 5593 | (±620) | a | 6102 | (±367) | abc | 6560 | (±445) | ab |
ANOVA | p | ||||||||||
WMT | 0.9444 | 0.0005 | 0.0289 | ||||||||
N | 0.4692 | <0.0001 | <0.0001 | ||||||||
SA | 0.3426 | 0.3807 | 0.0229 | ||||||||
WMT * N | 0.0851 | 0.142 | 0.6252 | ||||||||
WMT * SA | 0.3335 | 0.2243 | 0.232 | ||||||||
N * SA | 0.0239 | 0.0653 | 0.1603 | ||||||||
WMT * N * SA | 0.9225 | 0.0444 | 0.8225 |
Sinapis alba | Matricaria | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | SITEA a | SITEB a | SITEC a | ||||||||
Trans. | Back-Trans. | Trans. | Back-Trans. | Trans. | |||||||
g m−2 | |||||||||||
N50 | SAhose | 1.429 | (±0.049) | 1.048 | a | 10.6 | (±3.3) | 144 | a | 4.16 | (±0.25) |
N50 | SAshoes | 1.313 | (±0.184) | 0.825 | a | 5.6 | (±4.0) | 79 | a | 2.63 | (±0.53) |
N50 | SAtines+shoes | 1.811 | (±0.120) | 2.325 | a | 4.4 | (±1.9) | 29 | a | 6.77 | (±0.67) |
N100 | SAhose | 2.311 | (±0.072) | 4.358 | a | 5.3 | (±3.2) | 58 | a | 5.76 | (±0.53) |
N100 | SAshoes | 2.171 | (±0.138) | 3.769 | a | 7.6 | (±2.3) | 72 | a | 6.47 | (±0.81) |
N100 | SAtines+shoes | 1 | (±0.145) | 0.063 | a | 9 | (±1.7) | 89 | a | 5.61 | (±0.19) |
ANCOVA | p | ||||||||||
N | 0.9665 | 0.2499 | 0.4086 | ||||||||
SA | 0.7098 | 0.9347 | 0.8002 | ||||||||
N * SA | 0.5513 | 0.1062 | 0.1736 | ||||||||
Weed density (no. m−2) b | 0.3356 | <0.0001 | 0.0461 |
Lolium multiflorum | Poa annua | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | SITEA a | SITEB | SITEC | ||||||||
Trans. | Back-Trans. | ||||||||||
g m−2 | |||||||||||
N50 | SAhose | 7.68 | (±0.369) | 58 | a | 41.9 | (±11.2) | b | 3.6 | (±2.2) | a |
N50 | SAshoes | 7.316 | (±0.170) | 53 | a | 41.2 | (±7.2) | b | 6.4 | (±3.6) | a |
N50 | SAtines+shoes | 8.305 | (±0.113) | 68 | a | 43.2 | (±12.0) | b | 1.5 | (±1.0) | a |
N100 | SAhose | 8.825 | (±0.200) | 77 | a | 54.7 | (±17.0) | ab | 5.2 | (±4.7) | a |
N100 | SAshoes | 5.567 | (±0.320) | 30 | a | 51.4 | (±9.0) | ab | 3.8 | (±2.6) | a |
N100 | SAtines+shoes | 11.535 | (±0.058) | 132 | a | 103 | (±15.7) | a | 4.3 | (±3.3) | a |
ANCOVA | p | ||||||||||
N | 0.4783 | 0.0003 | 0.2946 | ||||||||
SA | 0.2622 | 0.2172 | 0.1661 | ||||||||
N * SA | 0.4053 | 0.0741 | 0.3421 | ||||||||
Weed density (no. m−2) b | 0.5357 | 0.0009 | <0.0001 |
Ambient Weed Biomass | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | SITEA | SITEB | SITEC | |||||||
g m−2 | ||||||||||
N50 | SAhose | 55.6 | (±12.6) | a | 5.6 | (±3.3) | a | 23.7 | (±14.7) | a |
N50 | SAshoes | 19.6 | (±4.5) | a | 12.8 | (±6.9) | a | 9.4 | (±5.0) | a |
N50 | SAtines+shoes | 55.6 | (±19.9) | a | 5.2 | (±5.1) | a | 32.4 | (±18.8) | a |
N100 | SAhose | 39.8 | (±6.3) | a | 45.6 | (±19.5) | a | 30.1 | (±19.1) | a |
N100 | SAshoes | 75.8 | (±23.0) | a | 28 | (±11.9) | a | 38.6 | (±18.4) | a |
N100 | SAtines+shoes | 47.1 | (±25.8) | a | 18.3 | (±8.5) | a | 28.4 | (±11.1) | a |
ANCOVA | p | |||||||||
N | 0.422 | 0.1378 | 0.8259 | |||||||
SA | 0.9613 | 0.6026 | 0.9894 | |||||||
N * SA | 0.1178 | 0.9928 | 0.6211 | |||||||
Weed density (no. m−2) a | 0.6991 | 0.0334 | 0.0059 |
Site | Experiment | Treatment | TAN | g N m−2 | |||
---|---|---|---|---|---|---|---|
% | |||||||
SITEA | EXPNH3.A | SAhose | 16.60 | (±0.74) | 0.59 | (±0.02) | a |
SAshoes | 9.14 | (±0.54) | 0.32 | (±0.02) | b | ||
SAtines+shoes | 11.81 | (±0.89) | 0.42 | (±0.03) | b | ||
SITEB | EXPNH3.B1 | SAhose | 31.25 | (±2.67) | 3.30 | (±0.25) | a |
SAshoes | 24.93 | (±1.08) | 2.64 | (±0.03) | a | ||
SAtine+shoes | 29.42 | (±2.50) | 3.11 | (±0.23) | a | ||
EXPNH3.B2 | SAhose | 42.42 | (±1.69) | 4.79 | (±0.15) | a | |
SAshoes | 41.97 | (±1.05) | 4.62 | (±0.05) | a | ||
SAtines+shoes | 39.39 | (±3.90) | 4.44 | (±0.43) | a |
Treatment | α | β | γ | ESA (t = 0 h) | ESA (t = 2.66 h) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m2 m−2 | m2 m−2 | ||||||||||||||
SAhose | −0.659 | (−0.670, −0.648) | a | −0.010 | (−0.016, −0.004) | a | 0.001 | (−0.007, 0.010) | b | 0.552 | (0.536, 0.568) | a | 0.512 | (0.504, 0.520) | a |
SAshoes | −0.895 | (−0.905, −0.886) | b | −0.013 | (−0.020, −0.006) | a | 0.019 | (0.005, 0.033) | a | 0.430 | (0.422, 0.439) | b | 0.430 | (0.398, 0.408) | b |
SAtines+shoes | −1.907 | (−1.965, −1.850) | c | −0.028 | (−0.086, −0.031) | b | 0.013 | (−0.083, 0.109) | a | 0.167 | (0.132, 0.203) | c | 0.145 | (0.131, 0.158) | c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCollough, M.R.; Pedersen, J.; Nyord, T.; Sørensen, P.; Melander, B. Ammonia Emissions, Exposed Surface Area, and Crop and Weed Responses Resulting from Three Post-Emergence Slurry Application Strategies in Cereals. Agronomy 2022, 12, 2441. https://doi.org/10.3390/agronomy12102441
McCollough MR, Pedersen J, Nyord T, Sørensen P, Melander B. Ammonia Emissions, Exposed Surface Area, and Crop and Weed Responses Resulting from Three Post-Emergence Slurry Application Strategies in Cereals. Agronomy. 2022; 12(10):2441. https://doi.org/10.3390/agronomy12102441
Chicago/Turabian StyleMcCollough, Margaret R., Johanna Pedersen, Tavs Nyord, Peter Sørensen, and Bo Melander. 2022. "Ammonia Emissions, Exposed Surface Area, and Crop and Weed Responses Resulting from Three Post-Emergence Slurry Application Strategies in Cereals" Agronomy 12, no. 10: 2441. https://doi.org/10.3390/agronomy12102441
APA StyleMcCollough, M. R., Pedersen, J., Nyord, T., Sørensen, P., & Melander, B. (2022). Ammonia Emissions, Exposed Surface Area, and Crop and Weed Responses Resulting from Three Post-Emergence Slurry Application Strategies in Cereals. Agronomy, 12(10), 2441. https://doi.org/10.3390/agronomy12102441