Biochar-Induced Mitigation Potential of Greenhouse Gas Emissions Was Enhanced under High Soil Nitrogen Availability in Intensively-Irrigated Vegetable Cropping Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Biochar Processing
2.2. Field Experiment
2.3. CH4 and N2O Flux Measurements
2.4. Calculation of SGWP and GHGI
2.5. Other Data Measurements
2.6. Statistical Analyses
3. Results
3.1. Soil CH4 Fluxes
3.2. Soil N2O Fluxes
3.3. Vegetable Yield
3.4. Net SGWP and GHGI
4. Discussion
4.1. Roles of N Fertilizer and Biochar in Regulating Soil CH4 and N2O Emissions
4.2. Direct Emission Factor and Background Emission of N2O
4.3. Net SGWP and GHGI Response to Biochar and N Fertilizer
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neubauer, S.; Megonigal, J. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 2015, 18, 1000–1013. [Google Scholar] [CrossRef]
- Shcherbak, I.; Millar, N.; Robertson, G. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef] [PubMed]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lin, F.; Wu, S.; Ji, C.; Sun, Y.; Jin, Y.; Li, S.; Li, Z.; Zou, J. A meta-analysis of fertilizer-induced soil NO and combined NO+N2O emissions. Global Chang. Biol. 2017, 23, 2520–2532. [Google Scholar] [CrossRef]
- Aguilera, E.; Lassaletta, L.; Sanz-Cobena, A.; Garnier, J.; Vallejo, A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agric. Ecosyst. Environ. 2013, 164, 32–52. [Google Scholar] [CrossRef]
- Nayak, D.; Saetnan, E.; Cheng, K.; Wang, W.; Koslowski, F.; Cheng, Y.; Zhu, W.; Wang, J.; Liu, J.; Moran, D.; et al. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agric. Ecosyst. Environ. 2015, 209, 108–124. [Google Scholar] [CrossRef]
- Vetter, S.; Sapkota, T.; Hillier, J.; Stirling, C.; Macdiarmid, J.; Aleksandrowicz, L.; Green, R.; Joy, E.; Dangour, A.; Smith, P. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. Agric. Ecosyst. Environ. 2017, 237, 234–241. [Google Scholar] [CrossRef]
- He, F.; Jiang, R.; Chen, Q.; Zhang, F.; Su, F. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China. Environ. Pollut. 2009, 157, 1666–1672. [Google Scholar] [CrossRef]
- Mei, B.; Zheng, X.; Xie, B.; Dong, H.; Yao, Z.; Liu, C.; Zhou, Z.; Wang, R.; Deng, J.; Zhu, J. Characteristics of multiple-year nitrous oxide emissions from conventional vegetable fields in southeastern China. J. Geophys. Res. 2011, 116, D12113. [Google Scholar] [CrossRef]
- Li, B.; Fan, C.; Zhang, H.; Chen, Z.; Sun, L.; Xiong, Z. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmos. Environ. 2015, 100, 10–19. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Yan, X. Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China. Atmos. Environ. 2011, 45, 6923–6929. [Google Scholar] [CrossRef]
- Liang, H.; Hu, K.; Batchelor, W.; Qin, W.; Li, B. Developing a water and nitrogen management model for greenhouse vegetable production in China: Sensitivity analysis and evaluation. Ecol. Model. 2018, 367, 24–33. [Google Scholar] [CrossRef]
- Diao, T.; Xie, L.; Guo, L.; Yan, H.; Lin, M.; Zhang, H.; Lin, J.; Lin, E. Measurements of N2O emissions from different vegetable fields on the North China Plain. Atmos. Environ. 2013, 72, 70–76. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, C.; Li, Q.; Li, B.; Zhu, Y.; Xiong, Z. A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system. Agric. Ecosyst. Environ. 2015, 201, 43–50. [Google Scholar] [CrossRef]
- Jia, J.; Sun, L.; Kong, X.; Yan, X.; Xiong, Z. Annual N2O and CH4 emissions from intensively managed vegetable fields in Nanjing, China. Soil Sci. Plant Nutr. 2012, 58, 91–103. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, J.; Sun, Z.; Ji, C.; Huang, M.; Zhang, Y.; Xu, P.; Li, S.; Pawlett, M.; Zou, J. Soil N-oxide emissions decrease from intensive greenhouse vegetable fields by substituting synthetic N fertilizer with organic and bio-organic fertilizers. Geoderma 2021, 383, 114730. [Google Scholar] [CrossRef]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.; Street-Perrott, F.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed]
- Cayuela, M.; van Zwieten, L.; Singh, B.; Jeffery, S.; Roig, A.; Sánchez-Monedero, M. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Ji, C.; Jin, Y.; Li, C.; Chen, J.; Kong, D.; Yu, K.; Liu, S. Variation in soil methane release or uptake response to biochar amendment: A separate meta-analysis. Ecosystems 2018, 21, 1692–1705. [Google Scholar] [CrossRef]
- Spokas, K.; Reicosky, D. Impacts of sixteen different biochars on soil greenhouse gas production. Annals Environ. Sci. 2009, 3, 179–193. [Google Scholar]
- Maucieri, C.; Zhang, Y.; McDniel, M.; Borin, M.; Admas, M. Short-term effects of biochar and salinity on soil greenhouse gas emissions from a semi-arid Australian soil after re-wetting. Geoderma 2017, 307, 267–276. [Google Scholar] [CrossRef]
- Kroon, P.S.; Hensen, A.; van den Bulk, W.C.M.; Jongejan, P.A.C.; Vermeulen, A.T. The importance of reducing the systematic error due to non-linearity in N2O flux measurements by static chambers. Nutr. Cycl. Agroecosys. 2008, 82, 175–186. [Google Scholar] [CrossRef]
- Yongkang, S.; Jingming, T.; Yi, W. Hydrological effects of litter and soil layers of Larix kaempferi plantation in subtropical regions. J. Beijing For. Univ. 2021, 43, 60–69. [Google Scholar]
- Conrad, R. Microbial ecology of methanogens and methanotrops. Adv. Agron. 2007, 96, 1–8. [Google Scholar]
- Wang, W.; Chen, C.; Wu, X.; Xie, K.; Yin, C.; Hou, H.; Xie, X. Effects of reduced chemical fertilizer combined with straw retention on greenhouse gas budget and crop production in double rice fields. Biol. Fert. Soils 2019, 55, 89–96. [Google Scholar] [CrossRef]
- Zhang, B.; Pang, C.; Qin, J.; Liu, K.; Xu, H.; Li, H. Rice straw incorporation in winter with fertilizer-N application improves soil fertility and reduces global warming potential from a double rice paddy field. Biol. Fertil. Soils 2013, 49, 1039–1052. [Google Scholar] [CrossRef]
- Pramono, A.; Adriany, T.A.; Yulianingsih, E.; Sopiawati, T.; Hervani, A. Combined compost with biochar application to mitigate greenhouse gas emission in paddy field. Earth Environ. Sci. 2021, 653, 012109. [Google Scholar] [CrossRef]
- Shakoor, A.; Arif, M.S.; Shahzad, S.M.; Farooq, T.H.; Ashraf, F.; Altaf, M.M.; Ahmed, W.; Tufail, M.A.; Ashraf, M. Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil?—A global meta-analysis. Environ. Res. 2021, 202, 111789. [Google Scholar] [CrossRef]
- Kalu, S.; Kulmala, L.; Zrim, J.; Peltokangas, K.; Tammeorg, P.; Rasa, K.; Kitzler, B.; Pihlatie, M.; Karhu, K. Potential of biochar to reduce greenhouse gas emissions and increase nitrogen use effificiency in boreal arable soils in the long-term. Front. Environ. Sci. 2022, 10, 914766. [Google Scholar] [CrossRef]
- Cai, Z.; Shan, Y.; Xu, H. Effects of nitrogen fertilization on CH4 emissions from rice fields. Soil Sci. Plant Nutr. 2007, 53, 353–361. [Google Scholar] [CrossRef]
- Xie, B.; Zheng, X.; Zhou, Z.; Gu, J.; Zhu, B.; Chen, X.; Shi, Y.; Wang, Y.; Zhao, Z.; Liu, C. Effects of nitrogen fertilizer on CH4 emission from rice fields: Multi-site field observations. Plant Soil 2010, 326, 393–401. [Google Scholar] [CrossRef]
- Dong, H.; Yao, Z.; Zheng, X.; Mei, B.; Xie, B.; Wang, R.; Deng, J.; Cui, F.; Zhu, J. Effect of ammonium-based, non-sulfate fertilizers on CH4 emissions from a paddy field with a typical Chinese water management regime. Atmos. Environ. 2011, 45, 1095–1101. [Google Scholar] [CrossRef]
- Yang, S.S.; Chang, E.H. Effect of fertilizer application on methane emission/production in the paddy soils of Taiwan. Biol. Fertil. Soils 1997, 25, 245–251. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, S.; Guo, Y.; Liu, Q.; Zou, J. Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biol. Fert. Soils 2010, 46, 825–834. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, Y.; Yu, Y.; Xie, Z.; Lin, X. Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol. Biochem. 2012, 46, 80–88. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.; Kammann, C.; Abalos, D. Biochar effects on methane emissions from soils: A meta-analysis. Soil Biol. Biochem. 2016, 101, 251–258. [Google Scholar] [CrossRef]
- Inubushi, K.; Cheng, W.; Aonuma, S.; Hoque, M.; Kobayashi, K.; Miura, L.; Kim, H.; Okada, M. Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Global Chang. Biol. 2003, 9, 1458–1464. [Google Scholar] [CrossRef]
- Davidson, E.; Keller, M.; Erickson, H.; Verchot, L.; Veldkamp, E. Testing a conceptual model of soil emissions of nitrous and nitric oxides: Using two functions based on soil nitrogen availability and soil water content, the hole-in-the-pipe model characterizes a large fraction of the observed variation of nitric oxide and nitrous oxide emissions from soils. BioScience 2000, 50, 667–680. [Google Scholar]
- Wrage, N.; Velthof, G.; Van Beusichem, M.; Oenema, O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 2001, 33, 1723–1732. [Google Scholar] [CrossRef]
- Pfab, H.; Palmer, I.; Buegger, F.; Fiedler, S.; Müller, T.; Ruser, R. Influence of a nitrification inhibitor and of placed N-fertilization on N2O fluxes from a vegetable cropped loamy soil. Agric. Ecosyst. Environ. 2012, 150, 91–101. [Google Scholar] [CrossRef]
- Ni, B.; Xu, X.; Zhang, W.; Yang, X.; Liu, R.; Wang, L.; Wu, W.; Meng, F. Reduced fertilization mitigates N2O emission and drip irrigation has no impact on N2O and NO emissions in plastic-shed vegetable production in northern China. Sci. Total Environ. 2022, 824, 153976. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zou, C.; Gao, X.; Guan, X.; Zhang, W.; Zhang, Y.; Shi, X.; Chen, X. Nitrous oxide emissions in Chinese vegetable systems: A meta-analysis. Environ. Pollut. 2018, 239, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yao, Z.; Zheng, X.; Subramaniam, L.; Butterbach-Bahl, K. A synthesis of nitric oxide emissions across global fertilized croplands from crop-specific emission factors. Global Chang. Biol. 2022, 28, 4395–4408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lin, F.; Jin, Y.; Wang, X.; Liu, S.; Zou, J. Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China. Sci. Rep. 2016, 6, 20700. [Google Scholar] [CrossRef]
- Edwards, J.; Pittelkow, C.; Kent, A.; Yang, W. Dynamic biochar effects on soil nitrous oxide emissions and underlying microbial processes during the maize growing season. Soil Biol. Biochem. 2018, 122, 81–90. [Google Scholar] [CrossRef]
- Chávez, A.; Rojas, M.; Aquino, M.; Dendooven, L.; Guido, M. Greenhouse gas emissions from a wastewater sludge-amended soil cultivated with wheat (Triticum spp. L.) as affected by different application rates of charcoal. Soil Biol. Biochem. 2012, 52, 90–95. [Google Scholar] [CrossRef]
- Li, B.; Bi, Z.; Xiong, Z. Dynamic responses of nitrous oxide emission and nitrogen use efficiency to nitrogen and biochar amendment in an intensified vegetable field in southeastern China. GCB Bioenergy 2017, 9, 400–413. [Google Scholar] [CrossRef]
- Yao, Z.; Liu, C.; Dong, H.; Wang, R.; Zheng, X. Annual nitric and nitrous oxide fluxes from Chinese subtropical plastic greenhouse and conventional vegetable cultivations. Environ. Pollut. 2015, 196, 89–97. [Google Scholar] [CrossRef]
- Deng, J.; Zhou, Z.; Zheng, X.; Liu, C.; Yao, Z.; Xie, B.; Cui, F.; Han, S.; Zhu, J. Annual emissions of nitrous oxide and nitric oxide from rice-wheat rotation and vegetable fields: A case study in the Tai-Lake region, China. Plant Soil 2012, 360, 37–53. [Google Scholar] [CrossRef]
- Zheng, X.; Han, S.; Huang, Y.; Wang, Y.; Wang, M. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochem. Cy. 2004, 18, GB2018. [Google Scholar] [CrossRef]
- Yan, X.; Akimoto, H.; Ohara, T. Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia. Global Chang. Biol. 2003, 9, 1080–1096. [Google Scholar] [CrossRef]
- Woolf, D.; Lehmann, J.; Ogle, S.; Kishimoto-Mo, A.W.; McConkey, B.; Baldock, J. Greenhouse gas inventory model for biochar additions to soil. Environ. Sci. Technol. 2021, 55, 14795–14805. [Google Scholar] [CrossRef] [PubMed]
Cropping System | N Fertilizer Application | ||||
---|---|---|---|---|---|
Crop Phase | Sowing/Transplanting | Harvest | Date | Event | Rate (kg N ha−1) |
Capsicum a | 1 Sept. 2019 | 2 Dec. 2019 | 27 Aug. 2019 | Basal | 150 |
28 Sep. 2019 | Top dressing | 75 | |||
1 Nov. 2019 | Top dressing | 75 | |||
Tomato a | 4 Feb. 2020 | 18 May 2020 | 1 Feb. 2020 | Basal | 120 |
9 Apr. 2020 | Top dressing | 90 | |||
Chinese cabbage b | 15 Jun. 2020 | 10 Aug. 2020 | 10 Jun. 2020 | Basal | 150 |
Cropping Phase | CH4 Emissions (kg CH4 ha−1) | N2O Emissions (kg N2O-N ha−1) | Emission Factor of N2O (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | Biochar (B) | N Fertilizer (N) | B+N | Control | Biochar (B) | N Fertilizer (N) | B+N | N Fertilizer (N) | B+N | |
Capsicum | 0.04 ± 1.96 c | 0.86 ± 0.53 b | 4.17 ± 2.86 a | 5.93 ± 1.73 a | 1.96 ± 0.13 a | 1.82 ± 0.18 a | 6.58 ± 0.35 b | 5.63 ± 0.41 a | 1.54 b | 1.22 b |
Tomato | 0.49 ± 0.44 b | 1.45 ± 0.41 a | 1.72 ± 0.26 c | 2.08 ± 0.25 b | 1.92 ± 0.26 a | 1.52 ± 0.28 b | 8.19 ± 0.50 a | 6.00 ± 0.60 a | 2.98 a | 1.94 a |
Chinese cabbage | 1.44 ± 0.18 a | 1.34 ± 0.16 a | 2.12 ± 0.57 b | 2.68 ± 0.24 b | 0.73 ± 0.13 b c | 0.71 ± 0.09 c | 2.64 ± 0.18 c | 1.88 ± 0.14 c | 1.27 b | 0.76 c |
Annual | 1.97 ± 2.58 | 3.65 ± 1.10 | 8.01 ± 3.71 | 10.69 ± 2.22 | 4.62 ± 0.52 | 4.05 ± 0.54 | 17.41 ± 1.03 | 13.50 ± 1.15 | 1.94 | 1.35 |
Treatments | CH4 | N2O | Yield | SGWP | GHGI |
---|---|---|---|---|---|
kg CH4 ha−1 | kg N2O-N ha−1 | t ha−1 | kg CO2-eq ha−1 yr−1 | kg CO2-eq per yield yr−1 | |
Control | 1.97 ± 2.58 | 4.62 ± 0.52 | 181.14 ± 4.13 | 2146 ± 335 | 11.84 ± 3.21 |
Biochar (B) | 3.65 ± 1.10 | 4.05 ± 0.54 | 185.47 ± 4.12 | 1881 ± 276 | 10.14 ± 2.69 |
N fertilizer (N) | 8.01 ± 3.71 | 17.41 ± 1.03 | 200.16 ± 3.46 | 7745 ± 601 | 38.69 ± 7.36 |
B+N | 10.69 ± 2.22 | 13.50 ± 1.15 | 201.88 ± 2.47 | 6208 ± 588 | 30.75 ± 2.28 |
Biochar (B) | * | ** | NS | ** | * |
N fertilizer (N) | ** | *** | ** | *** | *** |
Interaction (B × N) | NS | ** | NS | * | NS |
Model | * | *** | *** | *** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Hwarari, D.; Yang, Y.; Huo, A.; Wang, J.; Yang, L. Biochar-Induced Mitigation Potential of Greenhouse Gas Emissions Was Enhanced under High Soil Nitrogen Availability in Intensively-Irrigated Vegetable Cropping Systems. Agronomy 2022, 12, 2249. https://doi.org/10.3390/agronomy12102249
Zhang Y, Hwarari D, Yang Y, Huo A, Wang J, Yang L. Biochar-Induced Mitigation Potential of Greenhouse Gas Emissions Was Enhanced under High Soil Nitrogen Availability in Intensively-Irrigated Vegetable Cropping Systems. Agronomy. 2022; 12(10):2249. https://doi.org/10.3390/agronomy12102249
Chicago/Turabian StyleZhang, Yunfeng, Delight Hwarari, Yuwen Yang, Ailing Huo, Jinyan Wang, and Liming Yang. 2022. "Biochar-Induced Mitigation Potential of Greenhouse Gas Emissions Was Enhanced under High Soil Nitrogen Availability in Intensively-Irrigated Vegetable Cropping Systems" Agronomy 12, no. 10: 2249. https://doi.org/10.3390/agronomy12102249
APA StyleZhang, Y., Hwarari, D., Yang, Y., Huo, A., Wang, J., & Yang, L. (2022). Biochar-Induced Mitigation Potential of Greenhouse Gas Emissions Was Enhanced under High Soil Nitrogen Availability in Intensively-Irrigated Vegetable Cropping Systems. Agronomy, 12(10), 2249. https://doi.org/10.3390/agronomy12102249