Powdery Mildew Resistance Genes in Barley Varieties Bred for Human Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Pathogen Isolates
2.3. Testing Procedure
2.4. Evaluation
3. Results
3.1. Homogeneous Strains
3.2. Heterogeneous Strains
4. Discussion
4.1. Check Varieties
4.2. Breeding Strains
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- von Bothmer, R.; Sato, K.; Knüpfffer, H.; van Hintum, T. Barley diversity—An introduction. In Diversity in Barley (Hordeum vulgare); von Bothmer, R., Van Hintum, T., Knüpffer, H., Sato, K., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2003; Chapter 1; pp. 3–8. [Google Scholar]
- von Bothmer, R.; Sato, K.; Komatsuda, T.; Yasuda, S.; Fischbeck, G. The domestication of cultivated barley. In Diversity in Barley (Hordeum vulgare); von Bothmer, R., Van Hintum, T., Knüpffer, H., Sato, K., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2003; Chapter 2; pp. 9–27. [Google Scholar]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data (accessed on 25 February 2022).
- Massoud, R.; Jafari-Dastjerdeh, R.; Naghavi, N.; Khosravi-Darani, K. All aspects of antioxidant properties of Kombucha drink. Biointerface Res. Appl. Chem. 2022, 12, 4018–4027. [Google Scholar] [CrossRef]
- Schoeneck, M.; Iggman, D. The effects of foods on LDL cholesterol levels: A systematic review of the accumulated evidence from systematic reviews and meta-analyses of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Belcredi, N.B.; Ehrenbergerová, J.; Beláková, S.; Vaculová, K. Barley grain as a source of health-beneficial substances. Czech J. Food Sci. 2009, 27, S242–S244. [Google Scholar] [CrossRef]
- Keogh, J.B.; Lau, C.W.H.; Noakes, M.; Bowen, J.; Clifton, P.M. Effects of meals with high soluble fibre, high amylose barley variant on glucose, insulin, satiety and thermic effect of food in healthy lean women. Eur. J. Clin. Nutr. 2007, 61, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Skouroliakou, M.; Ntountaniotis, D.; Kastanidou, O.; Massara, P. Evaluation of barley’s beta-glucan food fortification through investigation of intestinal permeability in healthy adults. J. Am. Coll. Nutr. 2016, 35, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Garalath, J.; Aldres, G.P.; Panozzo, J.F. Barley (1→3; 1→4)-β-glucan and arabinoxylan content are related to kernel hardness and water uptake. J. Cereal Sci. 2008, 47, 365–371. [Google Scholar] [CrossRef]
- Mrizova, K.; Holaskova, E.; Oez, M.T.; Jiskrova, E.; Frebort, I.; Galuszka, P. Transgenic barley: A prospective tool for biotechnology and agriculture. Biotechnol. Adv. 2014, 32, 137–157. [Google Scholar] [CrossRef] [PubMed]
- Dreiseitl, A. A novel resistance against powdery mildew found in winter barley cultivars. Plant Breed. 2019, 138, 840–845. [Google Scholar] [CrossRef]
- Kølster, P.; Munk, L.; Stølen, O.; Løhde, J. Near-isogenic barley lines with genes for resistance to powdery mildew. Crop Sci. 1986, 26, 903–907. [Google Scholar] [CrossRef]
- Torp, J.; Jensen, H.P.; Jørgensen, J.H. Powdery Mildew Resistance Genes in 106 Northwest European Spring Barley Cultivars. In Year-Book, 1978; Royal Veterinary and Agricultural University: Copenhagen, Denmark, 1978; pp. 75–102. [Google Scholar]
- Flor, H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [Google Scholar] [CrossRef]
- Kosman, E.; Chen, X.; Dreiseitl, A.; McCallum, B.; Lebeda, A.; Ben-Yehuda, P.; Gultyaeva, E.; Manisterski, J. Functional variation of plant-pathogen interactions: New concept and methods for virulence data analyses. Phytopathology 2019, 109, 1324–1330. [Google Scholar] [CrossRef]
- Dreiseitl, A. Postulation of specific powdery mildew resistance genes in cereals: A widely used method and its detailed description. Pathogens 2022, 11, 284. [Google Scholar] [CrossRef] [PubMed]
- Dreiseitl, A. Postulation of genes for resistance to powdery mildew in spring barley cultivars registered in the Czech Republic from 1996 to 2010. Euphytica 2013, 191, 183–189. [Google Scholar] [CrossRef]
- Dreiseitl, A. Specific resistance of barley to powdery mildew, its use and beyond. A concise critical review. Genes 2020, 11, 971. [Google Scholar] [CrossRef]
- Wolfe, M.S.; Brändle, U.; Koller, B.; Limpert, E.; McDermott, J.M.; Müller, K.; Schaffner, D. Barley mildew in Europe: Population biology and host resistance. Euphytica 1992, 63, 125–139. [Google Scholar] [CrossRef]
- Dreiseitl, A. Genes for resistance to powdery mildew in European barley cultivars registered in the Czech Republic from 2011 to 2015. Plant Breed. 2017, 136, 351–356. [Google Scholar] [CrossRef]
- Hoffmann, W.; Nover, I. Ausgangsmaterial für die Züchtung mehltauresistenter Gersten. Z. Pfl. Zeitschrift für Pflanzenzüchtung. 1959, 42, 68–78. [Google Scholar]
- Jørgensen, J.H. Discovery, characterisation and exploitation of Mlo powdery mildew resistance in barley. Euphytica 1992, 63, 141–152. [Google Scholar] [CrossRef]
- Dreiseitl, A. Dissimilarity of barley powdery mildew resistances Heils Hanna and Lomerit. Czech J. Genet. Plant Breed. 2011, 47, 95–100. [Google Scholar] [CrossRef]
- Dreiseitl, A. The development of a novel way to identify specific powdery mildew resistance genes in hybrid barley cultivars. Sci. Rep. 2020, 10, 18930. [Google Scholar] [CrossRef]
- Dreiseitl, A.; Nesvadba, Z. Powdery mildew resistance genes in single-plant progenies derived from accessions of a winter barley core collection. Plants 2021, 10, 1988. [Google Scholar] [CrossRef]
- Dreiseitl, A.; Zavřelová, M. Identification of barley powdery mildew resistances in gene bank accessions and the use of gene diversity for verifying seed purity and authenticity. PLoS ONE 2018, 13, e0208719. [Google Scholar] [CrossRef] [PubMed]
- Dreiseitl, A. Heterogeneity of powdery mildew resistance revealed in accessions of the ICARDA wild barley collection. Front. Plant. Sci. 2017, 8, 202. [Google Scholar] [CrossRef]
- Dreiseitl, A. Genotype heterogeneity in accessions of a winter barley core collection assessed on postulated specific powdery mildew resistance genes. Agronomy 2021, 11, 513. [Google Scholar] [CrossRef]
- McDonald, B.A.; Linde, C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 2002, 40, 349−379. [Google Scholar] [CrossRef] [PubMed]
- Dreiseitl, A. Great pathotype diversity and reduced virulence complexity in a Central European population of Blumeria graminis f. sp. hordei in 2015–2017. Eur. J. Plant Pathol. 2019, 53, 801–811. [Google Scholar] [CrossRef]
- Dreiseitl, A. Powdery mildew resistance phenotypes of wheat gene bank accessions. Biology 2021, 10, 846. [Google Scholar] [CrossRef]
- Murray, G.M.; Brennan, J.P. Estimating disease losses to the Australian barley industry. Australas. Plant Pathol. 2010, 39, 85–96. [Google Scholar] [CrossRef]
- Pickering, R.A.; Malyshev, S.; Kunzel, G.; Johnston, P.A.; Korzun, V.; Menke, M.; Schubert, I. Locating introgressions of Hordeum bulbosum chromatin within the H-vulgare genome. Theor. Appl. Genet. 2000, 100, 27–31. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.H.; Li, Y.W.; Fahima, T.; Shen, Q.H.; Xie, C.J. Introgression of the powdery mildew resistance genes Pm60 and Pm60b from Triticum urartu to common wheat using durum as a ‘bridge’. Pathogens 2022, 11, 25. [Google Scholar] [CrossRef]
- Czembor, J.H.; Czembor, E.; Suchecki, R.; Watson-Haigh, N.S. Genome-wide association study for powdery mildew and rusts adult plant resistance in European spring barley from Polish gene bank. Agronomy 2022, 12, 7. [Google Scholar] [CrossRef]
Ml Gene(s) | Blumeria graminis f. sp. hordei Isolates, Their Country of Origin, and Year of Collection | |||||||
---|---|---|---|---|---|---|---|---|
Race I | J-462 | EA30 | PF512 | I-20 | M-3 | GH | X-30 | |
JAP | ISR | SWE | CZE | CZE | CZE | AUS | CZE | |
1953 | 1979 | 1976 | 2001 | 2011 | 2014 | 2005 | 2012 | |
none | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
a3 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4 |
a8 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
a8, k1 | 0 | 4 | 2 | 4 | 4 | 2 | 4 | 2 |
a12 | 1 | 4 | 4 | 4 | 4 | 4 | 1 | 4 |
a12, g | 0 | 4 | 0 | 4 | 0 | 4 | 1 | 4 |
a12, La | 0 | 4 | 2–3 | 4 | 4 | 4 | 0 | 2–3 |
a12, VIR | 0 | 4 | 4 | 1 | 4 | 4 | 0 | 4 |
a13 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 4 |
a13, g | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 |
a13, La | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 2–3 |
Ab | 2 | 4 | 2 | 4 | 4 | 4 | 4 | 4 |
aLo | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 4 |
aLo, g | 0 | 0 | 0 | 4 | 0 | 4 | 4 | 4 |
Ch | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
g | 0 | 4 | 0 | 4 | 0 | 4 | 4 | 4 |
g, Dr2 | 0 | 4 | 0 | 4 | 0 | 4 | 2 | 4 |
IM9 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 |
IM9, g | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
mlo | 0(3) 1 | 0(3) | 0(3) | 0(3) | 0(3) | 0(3) | 0(3) | 0(3) |
Ve | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 |
Check Variety | Ml Resistance | Designation of Cross | Ml Resistance |
---|---|---|---|
or Designation of Cross | Gene(s) | Gene(s) | |
AF Cesar | mlo | KM2986 | Dr2, g |
AF Lucius | a13 | KM2986 | g |
CDC Fibar | a8 | KM2986 | mlo |
CDC Rattan | a8, k1 | KM3083 | mlo |
Clearwater | none | KM3189 | mlo |
Harriman | a3 | KM3191 | mlo |
Jersey | mlo | KM3222 | mlo |
LP3 | aLo, g + g | KM3227 | mlo |
Nudimelanocrithon | mlo | KM3238 | a13, g, u |
Tadmor | aLo | KM3255 | mlo |
KM1057 | a13, La | KM3313 | mlo |
KM2161 | g, IM9 | KM3322 | mlo |
KM2283 | a13, g, u | KM3339 | mlo |
KM2454 | a8 + Ch | KM3340 | mlo |
KM2454 | Ch | KM3341 | mlo |
KM2460 | mlo | KM3342 | mlo |
KM2551 | mlo | KM3372 | a12 |
KM2624 | Ab | KM3372 | a12, g |
KM2693 | a13, g | KM3372 | a12, VIR |
KM2693 | a13, g + mlo | KM3372 | mlo |
KM2696 | a12, g, u | KM3375 | a12 |
KM2881 | a8 + a8, u | KM3375 | a12, La |
KM2881 | a8, u | KM3375 | Ve |
KM2881 | a12, g, u | KM3387 | a12 |
KM2910 | a8 | KM3387 | a12, g |
KM2910 | Dr2, g | KM3488 | mlo |
KM2910 | g, IM9 | KM3488 | Ve |
KM2942 | a13 | Je_x_Ta | mlo |
KM2975 | mlo | Ta_x_Je | mlo |
KM2986 | a13, g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dreiseitl, A. Powdery Mildew Resistance Genes in Barley Varieties Bred for Human Consumption. Agronomy 2022, 12, 2245. https://doi.org/10.3390/agronomy12102245
Dreiseitl A. Powdery Mildew Resistance Genes in Barley Varieties Bred for Human Consumption. Agronomy. 2022; 12(10):2245. https://doi.org/10.3390/agronomy12102245
Chicago/Turabian StyleDreiseitl, Antonín. 2022. "Powdery Mildew Resistance Genes in Barley Varieties Bred for Human Consumption" Agronomy 12, no. 10: 2245. https://doi.org/10.3390/agronomy12102245
APA StyleDreiseitl, A. (2022). Powdery Mildew Resistance Genes in Barley Varieties Bred for Human Consumption. Agronomy, 12(10), 2245. https://doi.org/10.3390/agronomy12102245