Screening of Soybean Genotypes Based on Root Morphology and Shoot Traits Using the Semi-Hydroponic Phenotyping Platform and Rhizobox Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment 1—Semi-Hydroponic System
2.1.1. Plant Materials and Growing Conditions
2.1.2. Trait Measurements
2.2. Experiment 2–Soil-Filled Rhizoboxes
2.2.1. Plant Materials and Growing Conditions
2.2.2. Shoot-Trait Measurements
2.2.3. Root Trait Measurements
2.3. Statistical Analyses
3. Results
3.1. Experiment 1—Semi-Hydroponic Platform (Seedling Stage)
3.2. Experiment 2—Soil-Filled Rhizoboxes (Flowering Stage)
3.2.1. Phenology and Shoot Traits
3.2.2. Root Traits
3.2.3. Relationship between Shoot and Root Traits at Rhizoboxes (Flowering Stage)
3.2.4. Yield and Yield-Contributing Traits of Two Soybean Genotypes at Maturity Stage
3.3. Trait Consistency between the Two Experiments
4. Discussion
4.1. Characterising Soybean Genotypes with Contrasting Root System Architecture
4.2. Relationship between Root-System Architecture and Shoot Traits
4.3. Data Validation between the Two Experiments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lynch, J. Root architecture and plant productivity. Plant Physiol. 1995, 109, 7–13. [Google Scholar] [CrossRef]
- Hodge, A.; Berta, G.; Doussan, C.; Merchan, F.; Crespi, M. Plant root growth, architecture and function. Plant Soil 2009, 321, 153–187. [Google Scholar] [CrossRef]
- Gasparikova, O.; Waisel, Y.; Eshel, A.; Kafkafi, U. (Eds.) Plant roots—The hidden half. Ann. Bot. 2002, 90, 775–776. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.D.; Beeson, R.C., Jr. A large-volume rhizotron for evaluating root growth under natural-like soil moisture conditions. HortScience 2011, 46, 1677–1682. [Google Scholar] [CrossRef] [Green Version]
- Reubens, B.; Poesen, J.; Danjon, F.; Geudens, G.; Muys, B. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: A review. Trees 2007, 21, 385–402. [Google Scholar] [CrossRef]
- Chen, Y.L.; Dunbabin, V.M.; Diggle, A.J.; Siddique, K.H.M.; Rengel, Z. Development of a novel semi-hydroponic phenotyping system for studying root architecture. Funct. Plant Biol. 2011, 38, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.L.; Dunbabin, V.M.; Diggle, A.J.; Siddique, K.H.M.; Rengel, Z. Assessing variability in root traits of wild Lupinus angustifolius germplasm: Basis for modelling root system structure. Plant Soil 2012, 354, 141–155. [Google Scholar] [CrossRef]
- Chen, Y.; Ghanem, M.E.; Siddique, K.H.M. Characterising root trait variability in chickpea (Cicer arietinum L.) germplasm. J. Exp. Bot. 2017, 68, 1987–1999. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Palta, J.; Prasad, P.V.V.; Siddique, K.H.M. Phenotypic variability in bread wheat root systems at the early vegetative stage. BMC Plant Biol. 2020, 20, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, Y.; Zhang, Y.; Zhang, Y.; Ai, Y.; Feng, Y.; Moody, D.; Diggle, A.; Damon, P.; Rengel, Z. Phenotyping and Validation of Root Morphological Traits in Barley (Hordeum vulgare L.). Agronomy 2021, 11, 1583. [Google Scholar] [CrossRef]
- Liu, S.; Begum, N.; An, T.; Zhao, T.; Xu, B.; Zhang, S.; Deng, X.; Lam, H.M.; Nguyen, H.T.; Siddique, K.H.M.; et al. Characterization of Root System Architecture Traits in Diverse Soybean Genotypes Using a Semi-Hydroponic System. Plants 2021, 10, 2781. [Google Scholar] [CrossRef]
- Figueroa-Bustos, V.; Palta, J.; Chen, Y.; Siddique, K.H.M. Characterization of root and shoot traits in wheat cultivars with putative differences in root system size. Agronomy 2018, 8, 109. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.; Fang, Y.; Liu, S.; Wang, H.; Xu, B.; Zhang, S.; Deng, X.; Palta, J.A.; Siddique, K.H.M.; Chen, Y. Root morphology and rhizosheath acid phosphatase activity in legume and graminoid species respond differently to low phosphorus supply. Rhizosphere 2021, 19, 100391. [Google Scholar] [CrossRef]
- Jovanovic, M.; Lefebvre, V.; Laporte, P.; Gonzalez-Rizzo, S.; Lelandais-Brière, C.; Frugier, F.; Hartmann, C.; Crespi, M. How the environment regulates root architecture in dicots. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2007; Volume 46, pp. 35–74. [Google Scholar]
- Serraj, R.; Krishnamurthy, L.; Kashiwagi, J.; Kumar, J.; Chandra, S.; Crouch, J.H. Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought. Field Crop. Res. 2004, 88, 115–127. [Google Scholar] [CrossRef] [Green Version]
- Carter, T.E. Breeding for drought tolerance in soybean-where do we stand. In Proceedings of the World Soybean Research Conference IV, Buenos Aires, Argentina, 5–9 March 1989. [Google Scholar]
- Prince, S.J.; Murphy, M.; Mutava, R.N.; Durnell, L.A.; Valliyodan, B.; Shannon, J.G.; Nguyen, H.T. Root xylem plasticity to improve water use and yield in water-stressed soybean. J. Exp. Bot. 2017, 68, 2027–2036. [Google Scholar] [CrossRef] [Green Version]
- Rincon, C.A.; Raper, J.C.D.; Patterson, R.P. Genotypic differences in root anatomy affecting water movement through roots of soybean. Int. J. Plant Sci. 2003, 164, 543–551. [Google Scholar] [CrossRef]
- Lynch, J.P.; Wojciechowski, T. Opportunities and challenges in the subsoil: Pathways to deeper rooted crops. J. Exp. Bot. 2015, 66, 2199–2210. [Google Scholar] [CrossRef] [Green Version]
- Siddique, K.; Brinsmead, R.; Knight, R.; Knights, E.; Paull, J.; Rose, I. Adaptation of chickpea (Cicer arietinum L.) and faba bean (Vicia faba L.) to Australia. In Linking Research and Marketing Opportunities for Pulses in the 21st Century, Proceedings of the Third International Food Legumes Research Conference, Adelaide, Australia, 22–26 September 1997; Springer: Berlin, Germany, 2000; pp. 289–303. [Google Scholar]
- Varshney, R.K.; Hiremath, P.J.; Lekha, P.; Kashiwagi, J.; Balaji, J.; Deokar, A.A.; Vadez, V.; Xiao, Y.; Srinivasan, R.; Gaur, P.M.; et al. A comprehensive resource of drought- and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genom. 2009, 10, 523. [Google Scholar] [CrossRef] [Green Version]
- Hudak, C.; Patterson, R. Vegetative growth analysis of a drought-resistant soybean plant introduction. Crop Sci. 1995, 35, 464–471. [Google Scholar] [CrossRef]
- Pantalone, V.; Rebetzke, G.; Burton, J.; Carter, T., Jr. Phenotypic evaluation of root traits in soybean and applicability to plant breeding. Crop Sci. 1996, 36, 456–459. [Google Scholar] [CrossRef]
- Sadok, W.; Sinclair, T.R. Crops yield increase under water-limited conditions: Review of recent physiological advances for soybean genetic improvement. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2011; Volume 113, pp. v–vii. [Google Scholar]
- Hoogenboom, G.; Peterson, C.M.; Huck, M.G. Shoot growth rate of soybean as affected by drought stress 1. J. Agron. 1987, 79, 598–607. [Google Scholar] [CrossRef]
- Schachtman, D.P.; Reid, R.J.; Ayling, S.M. Phosphorus Uptake by Plants: From Soil to Cell. Plant Physiol. 1998, 116, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.P.; Brown, K.M. Root strategies for phosphorus acquisition. In The Ecophysiology of Plant-Phosphorus Interactions; Springer: Berlin, Germany, 2008; pp. 83–116. [Google Scholar]
- Chen, Y.L.; Dunbabin, V.M.; Diggle, A.J.; Siddique, K.H.M.; Rengel, Z. Phosphorus starvation boosts carboxylate secretion in P-deficient genotypes of Lupinus angustifolius with contrasting root structure. Crop Pasture Sci. 2013, 64, 588–599. [Google Scholar] [CrossRef]
- He, J.; Jin, Y.; Turner, N.C.; Chen, Z.; Liu, H.Y.; Wang, X.L.; Siddique, K.H.M.; Li, F.M. Phosphorus application increases root growth, improves daily water use during the reproductive stage, and increases grain yield in soybean subjected to water shortage. Environ. Exp. Bot. 2019, 166, 103816. [Google Scholar] [CrossRef]
- Ticconi, C.A.; Delatorre, C.A.; Lahner, B.; Salt, D.E.; Abel, S. Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. Plant J. 2004, 37, 801–814. [Google Scholar] [CrossRef]
- Palta, J.A.; Fillery, I.R.P.; Rebetzke, G.J. Restricted-tillering wheat does not lead to greater investment in roots and early nitrogen uptake. Field Crop. Res. 2007, 104, 52–59. [Google Scholar] [CrossRef]
- Aziz, M.M.; Palta, J.A.; Siddique, K.H.M.; Sadras, V.O. Five decades of selection for yield reduced root length density and increased nitrogen uptake per unit root length in Australian wheat varieties. Plant Soil 2016, 413, 181–192. [Google Scholar] [CrossRef]
- Gao, X.-B.; Guo, C.; Li, F.-M.; Li, M.; He, J. High Soybean Yield and Drought Adaptation Being Associated with Canopy Architecture, Water Uptake, and Root Traits. Agronomy 2020, 10, 608. [Google Scholar] [CrossRef]
- Kotula, L.; Khan, H.A.; Quealy, J.; Turner, N.C.; Vadez, V.; Siddique, K.H.M.; Clode, P.L.; Colmer, T.D. Salt sensitivity in chickpea (Cicer arietinum L.): Ions in reproductive tissues and yield components in contrasting genotypes. Plant Cell Environ. 2015, 38, 1565–1577. [Google Scholar] [CrossRef]
- Sharma, M. Effects of Terminal Drought on Phosphorus Use Efficiency in Four Chickpea Genotypes. This paper is submitted in partial fulfilment of the requirements for a Master of Agriculture Science (Soil Science and Plant Nutrition), AGRI5551-4 Agricultural Sciences Masters Research Dissertation. Master’s Thesis, UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, Australia, 2019. [Google Scholar]
- Fehr, W.R.; Caviness, C.E.; Burmood, D.T.; Pennington, J.S. Stage of development descriptions for soybeans, Glycine max (L.) Merrill 1. Crop Sci. 1971, 11, 929–931. [Google Scholar] [CrossRef]
- Metho, L.A.; Hammes, P.S. The harvest index of individual ears of four South African wheat (Triticum aestivum L.) cultivars. S. Afr. J. Plant Soil 2000, 17, 144–146. [Google Scholar] [CrossRef]
- Assainar, S.K.; Abbott, L.K.; Mickan, B.S.; Whiteley, A.S.; Siddique, K.H.M.; Solaiman, Z.M. Response of Wheat to a Multiple Species Microbial Inoculant Compared to Fertilizer Application. Front. Plant Sci. 2018, 9, 1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Bai, C.; Chen, Y.; Palta, J.A.; Delhaize, E.; Siddique, K.H.M. Durum wheat with the introgressed TaMATE1B gene shows resistance to terminal drought by ensuring deep root growth in acidic and Al3+-toxic subsoils. Plant Soil 2021, 1–14. [Google Scholar] [CrossRef]
- Palta, J.A.; Chen, X.; Milroy, S.P.; Rebetzke, G.J.; Dreccer, M.F.; Watt, M. Large root systems: Are they useful in adapting wheat to dry environments? Funct. Plant Biol. 2011, 38, 347–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591. [Google Scholar] [CrossRef]
- Dayoub, E.; Lamichhane, J.R.; Schoving, C.; Debaeke, P.; Maury, P. Early-Stage Phenotyping of Root Traits Provides Insights into the Drought Tolerance Level of Soybean Cultivars. Agronomy 2021, 11, 188. [Google Scholar] [CrossRef]
- Ao, J.H.; Fu, J.B.; Tian, J.; Yan, X.L.; Liao, H. Genetic variability for root morph-architecture traits and root growth dynamics as related to phosphorus efficiency in soybean. Funct. Plant Biol. 2010, 37, 304–312. [Google Scholar] [CrossRef]
- He, J.; Jin, Y.; Du, Y.-L.; Wang, T.; Turner, N.C.; Yang, R.-P.; Siddique, K.H.M.; Li, F.-M. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply. Front. Plant Sci. 2017, 8, 1499. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.L.; Dunbabin, V.M.; Postma, J.A.; Diggle, A.J.; Siddique, K.H.M.; Rengel, Z. Modelling root plasticity and response of narrow-leafed lupin to heterogeneous phosphorus supply. Plant Soil 2013, 372, 319–337. [Google Scholar] [CrossRef]
- Chen, Y.L.; Dunbabin, V.M.; Postma, J.A.; Diggle, A.J.; Palta, J.A.; Lynch, J.P.; Siddique, K.H.M.; Rengel, Z. Phenotypic variability and modelling of root structure of wild Lupinus angustifolius genotypes. Plant Soil 2011, 348, 345–364. [Google Scholar] [CrossRef]
- Lynch, J.P. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New Phytol. 2019, 223, 548–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Genotype | Days to First Flowering | Plant Height | Trifoliate Leaf Number | Primary Branch Number | Main Stem Node Number | Leaf Area | Stem Dry Weight | Leaf Dry Weight | Shoot Dry Weight |
---|---|---|---|---|---|---|---|---|---|
(days) | (cm) | (leaf plant−1) | (plant−1) | (plant−1) | (cm2 plant−1) | (g plant−1) | (g plant−1) | (g plant−1) | |
PI 561271 | 69.7 b | 38 de | 34 a | 8.5 a | 13.5 a | 1989 a | 4.35 ab | 7.26 a | 11.61 a |
PI 398595 | 75.0 a | 45 bc | 28 ab | 7.0 a | 13.1 a | 1985 a | 3.89 bc | 6.84 a | 10.74 ab |
PI 654356 | 70.7 b | 39 cd | 34 a | 8.2 a | 13.5 a | 1219 c | 4.62 a | 5.06 b | 9.68 b |
PI 408105A | 73.0 ab | 48 ab | 22 b | 3.8 c | 9.3 bc | 1523 b | 3.66 c | 4.73 b | 8.39 c |
PI 647960 | 70.0 b | 51 a | 23 b | 6.7 ab | 11.5 ab | 704 e | 3.69 c | 4.77 b | 8.47 c |
PI 438500 | 59.7 c | 31 ef | 28 ab | 9.0 a | 11.7 ab | 853 d | 2.35 d | 4.39 b | 6.74 d |
PI 595362 | 56.0 cd | 33 def | 11 c | 4.2 bc | 8.5 c | 766 de | 1.60 e | 2.84 c | 4.44 e |
PI 597387 | 54.7 d | 31 f | 11 c | 4.3 bc | 12.7 a | 719 e | 1.12 e | 2.24 c | 3.36 e |
p < 0.05 | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Genotype | Root Length | Root Dry Weight | Specific Root Length | Root Length Density | Root Diameter | Shoot Dry Weight | Root: Shoot Ratio | Nodule Number | Rooting Depth |
---|---|---|---|---|---|---|---|---|---|
(m plant−1) | (g plant−1) | (m g−1) | (cm cm−3) | (mm) | (g plant−1) | (plant−1) | (cm) | ||
PI 561271 | 266 a | 3.43 a | 77 abc | 1.41 a | 0.44 a | 11.61 a | 0.29 a | 115 b | 106 b |
PI 398595 | 224 ab | 2.90 ab | 77 abc | 1.19 ab | 0.40 a | 10.74 ab | 0.27 a | 152 ab | 137 a |
PI 654356 | 98 cd | 2.23 bc | 45 c | 0.52 cd | 0.47 a | 9.68 b | 0.23 a | 200 ab | 84 cd |
PI 408105A | 183 b | 1.92 cd | 100 ab | 0.97 b | 0.42 a | 8.39 c | 0.22 a | 171 ab | 86 c |
PI 647960 | 134 c | 1.75 cd | 76 bc | 0.71 c | 0.49 a | 8.47 c | 0.20 a | 272 a | 80 cde |
PI 438500 | 138 c | 1.45 cde | 96 ab | 0.73 c | 0.44 a | 6.74 d | 0.21 a | 142 b | 55 f |
PI 595362 | 116 cd | 1.16 de | 101 ab | 0.62 cd | 0.48 a | 4.44 e | 0.26 a | 209 ab | 68 def |
PI 597387 | 87 d | 0.75 e | 119 a | 0.46 d | 0.44 a | 3.36 e | 0.22 a | 163 ab | 65 ef |
p < 0.05 | *** | *** | *** | *** | ns | *** | ns | ** | *** |
Genotype | Shoot Dry Weight | Root Dry Weight | Total Dry Weight | Root: Shoot Ratio | Pod Number | Seed Numbers | 100-Seed Weight | Seed Yield | Rooting Depth | Harvest Index |
---|---|---|---|---|---|---|---|---|---|---|
(g plant−1) | (g plant−1) | (g plant−1) | (plant−1) | (pod−1) | (g) | (g plant−1) | (cm) | (%) | ||
PI 561271 | 13.3 ± 0.1 a | 4.8 ± 0.1 a | 18.1 ± 0.7 a | 0.35 ± 0.05 a | 27.7 ± 1.6 a | 3.3 ± 0.2 a | 9.26 ± 0.12 b | 8.47 ± 0.05 a | 146.7 ± 2.0 a | 38.9 ± 0.5 a |
PI 438500 | 11.3 ± 03 b | 2.8 ± 0.1 b | 14.0 ± 0.3 b | 0.24 ± 0.02 a | 4.0 ± 0.3 b | 1.9 ± 0.2 b | 17.10 ± 0.14 a | 1.3 ± 0.09 b | 69.7 ± 3.0 b | 10.3 ± 0.4 b |
p value | 0.03 * | 0.035 * | 0.01 ** | ns | 0.001 *** | 0.007 ** | 0.004 ** | 0.001 *** | 0.001 *** | 0.01 ** |
Parameters | r | p |
---|---|---|
Taproot depth | −0.06 ns | 0.89 |
Shoot dry weight | −0.68 * | 0.05 |
Root dry weight | −0.53 ns | 0.17 |
Root shoot ratio | 0.71 * | 0.04 |
Total root length | 0.67 * | 0.05 |
Average root diameter | 0.38 ns | 0.35 |
Specific root length | −0.55 ns | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salim, M.; Chen, Y.; Ye, H.; Nguyen, H.T.; Solaiman, Z.M.; Siddique, K.H.M. Screening of Soybean Genotypes Based on Root Morphology and Shoot Traits Using the Semi-Hydroponic Phenotyping Platform and Rhizobox Technique. Agronomy 2022, 12, 56. https://doi.org/10.3390/agronomy12010056
Salim M, Chen Y, Ye H, Nguyen HT, Solaiman ZM, Siddique KHM. Screening of Soybean Genotypes Based on Root Morphology and Shoot Traits Using the Semi-Hydroponic Phenotyping Platform and Rhizobox Technique. Agronomy. 2022; 12(1):56. https://doi.org/10.3390/agronomy12010056
Chicago/Turabian StyleSalim, Mohammad, Yinglong Chen, Heng Ye, Henry T. Nguyen, Zakaria M. Solaiman, and Kadambot H. M. Siddique. 2022. "Screening of Soybean Genotypes Based on Root Morphology and Shoot Traits Using the Semi-Hydroponic Phenotyping Platform and Rhizobox Technique" Agronomy 12, no. 1: 56. https://doi.org/10.3390/agronomy12010056
APA StyleSalim, M., Chen, Y., Ye, H., Nguyen, H. T., Solaiman, Z. M., & Siddique, K. H. M. (2022). Screening of Soybean Genotypes Based on Root Morphology and Shoot Traits Using the Semi-Hydroponic Phenotyping Platform and Rhizobox Technique. Agronomy, 12(1), 56. https://doi.org/10.3390/agronomy12010056