Training Systems and Sustainable Orchard Management for European Pear (Pyrus communis L.) in the Mediterranean Area: A Review
Abstract
:1. Introduction
2. Rootstocks
3. Orchard Design and Planting Density
4. Productive, Economic, and Social Sustainability
5. Training System
5.1. Low-Density Training Systems (Open Center, Palmette, Candelabro)
5.1.1. Open Center
5.1.2. Palmette (Hedgerow) with Vigorous Rootstocks or Self-Rooted Cultivar
5.1.3. Candelabro, Multileader System (Planar Cordon)
5.2. Medium-Density Training Systems (Spindle, Bi-Axis)
5.2.1. Spindle
5.2.2. Bi-Axis
5.3. High-Density Training Systems (V-System and Vertical Axis)
5.3.1. V-System
5.3.2. Vertical Axis
5.3.3. Hedge for Industry or Processing
5.4. Small Guided Fruiting Wall Systems (Pantograph)
6. Pruning
6.1. Tree Architecture and Habit Models
6.2. The Case of Abbé Fétel
6.3. Green Pruning
6.4. Root Pruning
7. Orchard Management (Nutrition, Irrigation, Weed Control, Growth Regulators)
7.1. Nutrition
7.2. Irrigation
7.3. Weed Control
7.4. PGRs on Pear
8. Environmental Sustainability
8.1. Light, Humidity, Temperature, and Their Relations with Yield and Fruit Quality
8.2. Orchard Resilience to Climate Change
8.3. Environmental Protection and E.U. Green Deal
8.4. Netting
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Quince Rootstocks
Appendix A.1.1. BA29
Appendix A.1.2. MA
Appendix A.1.3. Sydo®
Appendix A.1.4. Adams
Appendix A.1.5. MH
Appendix A.1.6. MC
Appendix A.2. Pear Rootstocks
Appendix A.2.1. Seedlings
Appendix A.2.2. Clonal Pear Rootstocks
Appendix A.2.3. OHxF Series (Farold®)
- Farold® 40 Daygon and Farold® 69 Daynir are widespread in Italy, in marginal soils with high levels of lime where quinces present difficulties of adaptation and manifest iron chlorosis symptoms. Farold® 40 Daygon is mainly used in combination with Williams, where it induces good fruit size. Farold® 69 Daynir is more vigorous and has a reduced production yield efficiency compared to quinces [14,21,27].
- Farold® 87 and Farold® 97 are mainly used in the USA. Both are suitable for plants characterized by low or medium-low planting densities. Farold® 97 is 20–30% more vigorous than Farold® 87 and is mainly adopted for traditional orchards, although it is possible to envision a potential use for multi-axis training systems with these rootstocks [14,21]. Farold® 87 has been developed at a commercial scale in recent years in the South of France and Spain, mainly with William sand Guyot cultivars, with very interesting results.
Appendix A.2.4. Fox Series
Appendix A.3. New Rootstocks and Perspectives
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QI (accessed on 20 July 2021).
- World Apple and Pear Association (WAPA). Prognosfruit 2021 Releases Its Annual Apple and Pear Crop Forecast, Showing a 10% Increase in Apple Production and a 28% Decrease for Pears. Available online: http://www.wapa-association.org/asp/article_2.asp?doc_id=641 (accessed on 30 May 2021).
- Modesti, M.; Pallotti, G.; Nannini, R.; Bortolotti, P.P. Indagine sulla degenerazione degli impianti di pero. Inf. Agrar. 2020, 9, 51–54. [Google Scholar]
- Sansavini, S.; Ancarani, V. Miglioramento genetico e nuove varieta’ in Europa. Frutticoltura 2008, 10, 28–36. [Google Scholar]
- Brewer, L.R.; Palmer, J.W. Global pear breeding programmes: Goals, trends and progress for new cultivars and new rootstocks. Acta Hortic. 2011, 909, 105–119. [Google Scholar] [CrossRef]
- Collina, M. Maculatura bruan: Una nuova minaccia che impone risposte immediate. Frutticoltura 2019, 9, 18–20. [Google Scholar]
- Mazzotti, V.; Boncompagni, S. Annata negative, dall’Emilia-Romagna un sostegno alla produzione. Frutticoltura 2019, 9, 1216. [Google Scholar]
- Iglesias, I. Nuevas variedades de melocotón nectarina, pavía y melocotón plano: La mejora continua. Rev. Frutic. 2017, 58, 12–37. [Google Scholar]
- Iglesias, I.; Bonany, J.; Vilardell, P.; Ruíz, S. El cultivo del peral en España: Tecnología de producción, consumo e intercambios comerciales. Rev. Frutic. Espec. Peral 2015, 45, 6–33. [Google Scholar]
- Ancarani, V.; Spinelli, F.; Dondini, L.; Caracciolo, G.; Sirri, S.; Baruzzi, G. Le varieta’ di pero adatte ai nuovi impianti. Inf. Agrar. 2019, 47, 48–50. [Google Scholar]
- Sansavini, S.; Musacchi, S. European pear orchard design and HDP management: A review. Acta Hortic. 2002, 596, 589–601. [Google Scholar] [CrossRef]
- Musacchi, S. Training systems and soil management for Southern European pear orchards. Acta Hortic. 2008, 772, 447–457. [Google Scholar] [CrossRef]
- Musacchi, S. Bibaum®: A new training system for pear orchard. Acta Hortic. 2008, 800, 763–768. [Google Scholar] [CrossRef]
- Wertheim, S.J. Rootstock Guide. In Apple, Pear, Cherry, European Plum; CABI: Wallingford, UK, 1998; pp. 1–144. [Google Scholar]
- Wertheim, S.J. Rootstocks for European pear: A review. Acta Hortic. 2002, 596, 299–309. [Google Scholar] [CrossRef]
- Lauri, P.E.; Costes, E.; Belouin, A. European pear architecture and fruiting branch management: Overview of INRA research program. Acta Hortic. 2002, 596, 621–626. [Google Scholar] [CrossRef]
- Musacchi, S.; Ancarani, V.; Gamberini, A.; Gaddoni, M.; Grandi, M.; Sansavini, S. Response of training system planting density and cultivar in pear. Acta Hortic. 2005, 671, 463–469. [Google Scholar] [CrossRef]
- Zhang, J.; Serra, S.; Leisso, R.S.; Musacchi, S. Effect of light microclimate on the quality of ‘d’Anjou’pears in mature open-centre tree architecture. Biol. Eng. 2016, 141, 1–11. [Google Scholar]
- Sansavini, S. Pear fruiting-branch models related to yield control and pruning. Acta Hortic. 2002, 596, 627–633. [Google Scholar] [CrossRef]
- Lombard, P.B.; Westwood, M.N. Pear rootstocks. In Rootstocks for Fruit Trees; Rom, R.C., Carlson, R.F., Eds.; Wiley: New York, NY, USA, 1987; pp. 145–183. [Google Scholar]
- Sansavini, S. Portinnesti. In C. Fideghelli e I. Ponti (a cura di), Il pero; Coltura & Cultura, Bayer CropScience: Milano, Italy, 2007; pp. 270–281. [Google Scholar]
- Campbell, J. Pear rootstocks. In AGFACTS H.4.1.15; NSW Agriculture: Orange, NSW, Australia, 2003; pp. 1–12. [Google Scholar]
- Sansavini, S.; Ancarani, V.; Neri, D. Overview of Intensive Pear Culture: Planting Density, Rootstocks, Orchard Management, Soil-Water Relations and Fruit Quality. Acta Hortic. 2008, 800, 35–49. [Google Scholar] [CrossRef]
- Sansavini, S.; Neri, D.; Ancarani, V. Innovazioni tecniche per migliorare l’efficienza produttiva e la qualita’ dei frutti nelle coltivazioni intensive. Frutticoltura 2008, 10, 10–26. [Google Scholar]
- SFR Emilia-Romagna. Available online: https://agricoltura.regione.emilia-romagna.it/produzioni-agroalimentari/temi/produzioni-vegetali (accessed on 20 July 2021).
- Lockard, R.G.; Schneider, G.W. Phenols and the dwarfing mechanism in apple rootstocks. In Symposium on Growth Regulators in Fruit Production. Acta Hortic. 1981, 120, 107–112. [Google Scholar] [CrossRef]
- Iglesias, I.; Asin, L. Performance of Conference pear on self-rooted trees and several Old Home× Farmingdale, seedling and quince rootstocks in Spain. Acta Hortic. 2005, 671, 485–491. [Google Scholar] [CrossRef]
- Tagliavini, M.; Rombolà, A.D. Iron deficiency and chlorosis in orchard and vineyard ecosystems. Euro. J. Agron. 2001, 15, 71–92. [Google Scholar] [CrossRef]
- Musacchi, S.; Neri, D. Optimizing production of quality nursery plants for fruit tree cultivation. In Achieving Sustainable Cultivation of Temperate Zone Tree Fruits and Berries; Greg, L., Ed.; Burleigh Dodds Science Publishing: London, UK, 2019; pp. 183–242. [Google Scholar]
- Dolcet-Sanjuan, R.; Claveria, E.; Bonany, J.; Iglesias, I.; Asín, L.; Simard, M.H. Selection for New Pear Rootstocks: In Vitro Screening and Field Evaluation for Tolerance to Iron Chlorosis. Acta Hortic. 2004, 678, 463–468. [Google Scholar] [CrossRef]
- Claveria, E.; Asín, L.; Iglesias, I.; Vilardell, P.; Bonany, J.; Simard, M.H.; Dolcet-Sanjuan, R. In Vitro Screening for Tolerance to Iron Chlorosis as a Reliable Selection Tool in a Pear Rootstock Breeding Program. Acta Hortic. 2012, 935, 199–205. [Google Scholar] [CrossRef]
- Musacchi, S.; Ancarani, V.; Colombo, R. Indagine sui pregi e sulle limitazioni dei sistemi d’impianto per la cv Abate Fétel. Italus Hortus 2008, 15, 36–47. [Google Scholar]
- Musacchi, S.; Ancarani, V.; Serra, S.; Colombo, R. Indagine sui differenti sistemi di impianto per Abate Fetel. Not. Tec. CRPV 2010, 82, 29–42. [Google Scholar]
- Camposeo, S. Altissima Densità o Altissima Sostenibilità? Available online: https://www.agromillora.com/olint/it/altissima-densita-o-altissima-sostenibilita/ (accessed on 30 May 2021).
- Iglesias, I. La intensificación sostenible como respuesta al Pacto Verde de la Unión Europea: Retos y ejemplos en la producción frutícola y en el consumo alimentario. Rev. Frutic. 2021, 79, 45–57. [Google Scholar]
- Sansavini, S.; Musacchi, S. Canopy architecture, training and pruning in the modern European pear orchards: An overview. Acta Hortic. 1994, 367, 152–172. [Google Scholar] [CrossRef]
- Neri, D.; Savini, G.; Massetani, F.; Giorgi, V.; Sabbatini, P. Pear Pruning and Training for Sustainable production. Acta Hortic. 2008, 800, 747–754. [Google Scholar] [CrossRef]
- Musacchi, S.; Costa, G. Controllo della morfogenesi dei rami anticipati del melo in vivaio. Riv. Fruttic. Ortofloric. 1992, 3, 103–106. [Google Scholar]
- Musacchi, S. Training system and management for a high density orchard of Abbé Fétel. Acta Hortic. 2011, 909, 225–240. [Google Scholar] [CrossRef]
- Musacchi, S.; Serra, S.; Ancarani, V. Comparison among pear training systems and rootstocks for high density planting (HDP) of the cultivar Abbé Fétel. Acta Hortic. 2011, 909, 251–258. [Google Scholar] [CrossRef]
- Palmieri, A.; Pirazzoli, C. Cause strutturali nella crisi 2019: Carente l’organizzazione dell’offerta. Frutticoltura 2019, 9, 8–11. [Google Scholar]
- Iglesias, I.; Echeverría, G. Overview of peach industry in the European Union with special reference to Spain. Acta Hortic. 2021, 1304, 163–176. [Google Scholar] [CrossRef]
- Iglesias, I.; Foles, P.; Oliveira, C. El cultivo del almendro en España y Portugal: Situación, innovación tecnológica, costes, rentabilidad y perspectivas. Rev. Frutic. 2021, 81, 6–49. Available online: https://www.agromillora.com/olint/nuevos-modelos-agronomicos-para-una-produccion-eficiente-y-sostenible-de-ciruelo-europeo-y-japones/ (accessed on 30 May 2021).
- Iglesias, I.; Torrents, T.; Zuñiga, M.; Marzo, C.; Giori, M. Nuevos modelos agronómicos para una producción eficiente y sostenible de ciruelo europeo y japonés. Rev. Frutic. Espec. Ciruelo 2021, 70–99. [Google Scholar]
- Neri, D.; Silvestroni, S.; Baldoni, N.; Belletti, M.; Bellucci, E.; Bitocchi, E.; Capocasa, F.; D’Ottavio, P.; Francioni, M.; Danilo, G.; et al. Sustainable crop production. In The First Outstanding 50 Years of “Università Politecnica delle Marche” Research Achievements in Life Sciences; Longhi, S., Monteriù, A., Freddi, A., Aquilanti, L., Ceravolo, M.G., Carnevali, O., Giordano, M., Moroncini, G., Eds.; Springer Nature: London, UK, 2020; pp. 583–600. [Google Scholar] [CrossRef]
- Du Plooy, P.; Van Huyssteen, P. Effect of BPI, BP3 and Quince A rootstocks, at three planting densities on production arid fruit quality of Fore lie’ pear (Pyrus communis L.). S. Afr. J Plant Soil 2000, 17, 57–59. [Google Scholar] [CrossRef] [Green Version]
- Einhorn, T.C.; Turner, J.; Laraway, D. Effect of reflective fabric on yield of mature d’Anjou pear trees. HortScience 2012, 47, 1580–1585. [Google Scholar] [CrossRef]
- Elfving, D.C.; Lombardini, L.; McFerson, J.R.; Drake, S.R.; Faubion, D.F.; Auvil, T.D. Effects of directed applications of Prohexadione-Calcium to tops of mature pear trees on shoot growth, light penetration pruning and fruit quality. J. Am. Pomol. Soc. 2003, 57, 45–57. [Google Scholar]
- Goke, A.; Serra, S.; Musacchi, S. Manipulation of Fruit Dry Matter via Seasonal Pruning and Its Relationship to d’Anjou Pear Yield and Fruit Quality. Agronomy 2020, 10, 897. [Google Scholar] [CrossRef]
- Khemira, H.; Lombard, P.B.; Sugar, D.; Azarenko, A.N. Hedgerow orientation affects canopy exposure, flowering and fruiting of Anjou pear trees. HortScience 1993, 28, 984–987. [Google Scholar] [CrossRef]
- Sansavini, S.; Neri, D.; Grandi, M.; Lane, D. Confronto fra portinnesti nanizzanti e alberi micropropagati di pero. Frutticoltura 1986, 1, 23–30. [Google Scholar]
- Sansavini, S. Orientamenti per l’impianto e per l’allevamento del pero. Frutticoltura 1986, 5, 21–30. [Google Scholar]
- Sansavini, S. Ricerche sulla potatura di fruttificazione del pero ‘Abate Fétel’. Riv. Ortoflorofruttic. Ital. 1966, 50, 545–554. [Google Scholar]
- Tustin, D.S.; van Hooijdonk, B.M.; Breen, K.C. The Planar Cordon—New planting systems concepts to improve light utilization and physiological function to increase apple orchard yield potential. Acta Hortic. 2018, 1228, 1–12. [Google Scholar] [CrossRef]
- Whiting, M. The Intersection of Biology & Technology: Orchard Systems of the Future. In Proceedings of the IV Jornadas Técnicas de Fruticultura AEAMDE, Zaragoza, Spain, 1–3 March 2018. [Google Scholar]
- Dorigoni, A.; Micheli, F. Guyot training: A new system for producing apples and pears. Eur. Fruit Mag. 2018, 2, 18–23. [Google Scholar]
- Anthony, B.; Serra, S.; Musacchi, S. Optimization of Light Interception, Leaf Area and Yield in “WA38”: Comparisons among Training Systems, Rootstocks and Pruning Techniques. Agronomy 2020, 10, 689. [Google Scholar] [CrossRef]
- Musacchi, S.; Lanzoni, A.; Ancarani, V.; Serra, S. Primi risultati del confronto fra fusetto e sistema a doppio asse (Bibaum®) nel pero. Riv. Fruttic. Ortofloric. 2009, 9, 28–35. [Google Scholar]
- Benito, A.; Díaz, E.; Torrents, J. Mecanización de la recolección. Clave para mejorar la competitividad en la fruta con destino industrial. Rev. Frutic. 2018, 69, 50–59. [Google Scholar]
- Neri, D.; Zucconi, F.; Colombo, R. Confronto fra moderne forme di allevamento del pero. Inf. Agrar. 1997, 45, 69. [Google Scholar]
- Giulivo, C. Principi fisiologici della potatura. In Proceedings of the La Potatura degli Alberi da Frutto Negli Anni ’90, Verona, Italy, 27 April 1990; pp. 9–38. [Google Scholar]
- Giulivo, C. Basic considerations about pruning deciduous fruit trees. Adv. Hortic. Sci. 2011, 25, 29–142. [Google Scholar]
- Ferree, D.C.; Schupp, J.R. Pruning and training physiology. In Apples: Botany, Production and Uses; Ferree, D.C., Warrington, I.J., Eds.; CABI Publishing: Cambridge, MA, USA, 2003; pp. 319–344. [Google Scholar]
- Cook, N.C.; du Plooy, P. An architectural analysis of pear cultivars grown under South African conditions and the relevance to local maintenance pruning strategies. Acta Hortic. 2005, 671, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Du Plooy, P.; Sadie, A.; Jacobs, G.; Cook, N. Branching habit of 2-year-old pear branches classified on the basis of length and position of 1-year-old laterals. Sci. Hortic. 2002, 95, 193–201. [Google Scholar] [CrossRef]
- Vercammen, J.; van Daele, G.; Gomand, A. Root pruning: A valuable alternative to reduce the growth of Conference. Acta Hortic. 2005, 671, 533–538. [Google Scholar] [CrossRef]
- Musacchi, S. Tecnica colturale. In C. Fideghelli e I. Ponti (a cura di), Il pero; Coltura & Cultura, Bayer CropScience: Milano, Italy, 2007; pp. 92–137. [Google Scholar]
- Scudellari, D.; Marangoni, B.; Cobianchi, D.; Faedi, W.; Mattoni, M.L. Effect of fertilization on apple tree development, yield and fruit quality. In Optimization of Plant Nutrition; Fragoso, M.A.C., Beuisichem, V., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993; Volume 53, pp. 357–362. [Google Scholar]
- Tagliavini, M.; Scudellazi, D.; Marangoni, B.; Toselli, M. Nitrogen fertilization management in orchards to reconcile productivity and environmental aspects. In Fertilizers and Environment, Developments in Plant and Soil Sciences; Rodriguez-Barrueco, C., Ed.; Springer: Dordrecht, The Netherlands, 1996; Volume 66. [Google Scholar] [CrossRef]
- Tagliavini, M.; Scudellari, D.; Marangoni, B.; Toselli, M. Nuovi aspetti della fertilizzazione azotata nel frutteto. Frutticoltura 1995, 3, 37–44. [Google Scholar]
- Sánchez, E.E. Nitrogen nutrition in pear orchards. Acta Hortic. 2002, 596, 653–657. [Google Scholar] [CrossRef]
- Tagliavini, M.; Quartieri, M.; Millard, P. Remobilised nitrogen and root uptake for spring leaf growth, flowers and developing fruits of pears (Pyrus communis L.) trees. Plant Soil 1997, 195, 137–142. [Google Scholar] [CrossRef]
- Quartieri, M.; Millard, P.; Tagliavini, M. Storage and remobilisation of nitrogen by pear (Pyrus communis L.) trees affected by timing of N supply. Eur. J. Agron. 2002, 17, 105–110. [Google Scholar] [CrossRef]
- Neri, D.; Lodolini, E.M.; Savini, G.; Sabbatini, P.; Bonanomi, G.; Zucconi, F. Foliar application of humic acids on strawberry (cv Onda). Acta Hortic. 2002, 594, 297–302. [Google Scholar] [CrossRef]
- Richardson, D.G.; Al-Ani, A.M. Cork spot of D’Anjou pear fruit relative to critical calcium concentration and other minerals. Acta Hortic. 1982, 124, 113–118. [Google Scholar] [CrossRef]
- Richardson, D.G.; Lombard, P.B. Cork spot of Anjou pear: Control by calcium sprays. Comm. Soil Sci. Plant Anal. 1979, 10, 283–389. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1995; p. 897. [Google Scholar]
- Kienholz, J.R. Boron deficiency in pear trees. Phytopathology 1942, 32, 1082–1086. [Google Scholar]
- Raese, J.T. Physiological disorders and maladies of pear fruit. Hortic. Rev. 1989, 11, 357–411. [Google Scholar]
- Satoh, K.; Fujiwara, Y. Boron deficiency and its counter measures of Kikusui pear. Agric. Hortic. 1962, 37, 1343–1344. [Google Scholar]
- Wojcik, P.; Wojcik, M. Effects of boron fertilization on Conference pear tree vigor, nutrition, and fruit yield and storability. Plant Soil 2003, 253, 413–421. [Google Scholar] [CrossRef]
- Mannini, P.; Anconelli, S.; Guidoboni, G. Moderne forme di gestione idrica del pero. Italus Hortus 2006, 13, 36–42. [Google Scholar]
- Anconelli, S.; Mannini, P. Effects of regulated deficit irrigation on pear in an Italian sub-humid area [Pyrus communis L.-Emilia-Romagna]. Riv. Fruttic. 2002, 64, 71–74. [Google Scholar]
- Lee, S.H.; Choi, J.H.; Kim, W.S.; Han, T.H.; Park, Y.S.; Gemma, H. Effect of soil water on the development of stone cells in pear (Pyrus pyrifolia cv. ‘Niitaka’) flesh. Sci. Hortic. 2006, 110, 247–253. [Google Scholar] [CrossRef]
- Pitman, M.G.; Lauchli, A. Global impact of salinity and agricultural ecosystems. In Salinity: Environmental Plants-Molecules; Lauchli, A., Luttge, U., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 3–20. [Google Scholar]
- Musacchi, S.; Quartieri, M.; Tagliavini, M. Pear (Pyrus communis) and quince (Cydonia oblonga) roots exhibit different ability to prevent sodium and chloride uptake when irrigated with saline water. Eur. J. Agron. 2006, 24, 268–275. [Google Scholar] [CrossRef]
- Mia, M.J.; Massetani, F.; Murri, G.; Neri, D. Sustainable alternatives to chemicals for weed control in the orchard. Hortic. Sci. 2020, 47, 1. [Google Scholar] [CrossRef] [Green Version]
- Mia, M.J.; Massetani, F.; Murri, G.; Facchi, J.; Monaci, E.; Amadio, L.; Neri, D. Integrated weed management in high density fruit orchards. Agronomy 2020, 10, 1492. [Google Scholar] [CrossRef]
- Mia, M.J.; Monaci, E.; Murri, G.; Massetani, F.; Facchi, J.; Neri, D. Soil nitrogen and weed biodiversity: An assessment under two orchard floor management practices in NVZ (Italy). Horticulturae 2020, 6, 96. [Google Scholar] [CrossRef]
- Mia, M.J.; Furmanczyk, E.M.; Golian, J.; Kwiatkowska, J.; Malusà, E.; Neri, D. Living mulch with selected herbs for soil management in organic apple orchard. Horticulturae 2021, 7, 59. [Google Scholar] [CrossRef]
- Deckers, T.; Schoofs, H.; Smolders, E. Natural or chemical growth regulation in pear. Acta Hortic. 2005, 671, 503–516. [Google Scholar] [CrossRef]
- Römmelt, S.; Peterek, S.; Treutter, D.; Rademacher, W.; Speakman, J.B.; Andreotti, C.; Costa, G.; Sponza, G.; Tortoreto, L.; Bazzi, C.; et al. Alteration of phenylpropanoid biosynthesis of fruit trees as a tool for enhancement of fire blight resistance. Acta Hortic. 2002, 590, 477–484. [Google Scholar] [CrossRef]
- Rademacher, W. Prohexadione-Ca induces resistance to fireblight and other diseases 1. Eppo Bull. 2004, 34, 383–388. [Google Scholar] [CrossRef]
- Smit, M.; Meintjes, J.J.; Jacobs, G.; Stassen, P.J.C.; Theron, K.I. Shoot Growth control of pear trees (Pyrus communis L.) with prohexadione-calcium. Sci. Hortic. 2005, 106, 515–529. [Google Scholar] [CrossRef]
- Sansavini, S.; Corelli, L.; Ragazzini, D. Influenza di gibberelline A3 e A4+7 e di altri alleganti sulla partenocarpia e sulla ritenzione dei frutti del pero “Conference” con impollinazione controllata. Frutticoltura 1986, 6, 65–81. [Google Scholar]
- Marcucci, M.C.; Ragazzini, D.; Sansavini, S. Partenocarpia e ritenzione dei frutti indotte da fitoregolatori nei peri “William”, “Abate Fétel” e “Passa Crassana”. Riv. Ortoflorofruttic. Ital. 1980, 64, 579–590. [Google Scholar]
- Wertheim, S.J.; Wagenmakers, P.S.; Bootsma, J.H.; Groot, M.J. Orchard systems for apple and pear: Conditions for success. Acta Hortic. 2001, 557, 209–227. [Google Scholar] [CrossRef]
- Wagenmakers, P.S.; Callesen, O. Light distribution in apple orchard systems in relation to production and fruit quality. J. Hortic. Sci. 1995, 70, 935–948. [Google Scholar] [CrossRef]
- Lakso, A.N. Environmental physiology of the apple. In Environmental Physiology of Fruit Crops; Schaffer, B., Andersen, P.C., Eds.; CRC Press: Boca Raton, FL, USA, 1994; pp. 3–42. [Google Scholar]
- Wunsche, J.; Lakso, A.N. Apple Tree Physiology—Implications for Orchard and Tree Management. Compact Fruit Tree 2000, 33, 82–88. [Google Scholar]
- Wagenmakers, P.S.; Tazelaar, M. Planting systems and light utilization. Annu. Rep. Res. Stn. Fruit Grow. 1997, 17, 17–18. [Google Scholar]
- Kappel, F.; Neilsen, G.H. Relationship between light microclimate, fruit growth, fruit quality, specific leaf weight and N and P content of spur leaves of ‘Bartlett’ and ‘Anjou’ pear. Sci. Hortic. 1994, 59, 187–196. [Google Scholar] [CrossRef]
- Ziosi, V.; Noferini, M.; Fiori, G.; Tadiello, A.; Trainotti, L.; Casadoro, G.; Costa, G. A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit. Postharvest Biol. Tech. 2008, 49, 319–329. [Google Scholar] [CrossRef]
- Sakai, A.; Larcher, W. Frost Survival of Plants: Responses and Adaptation to Freezing Stress; Springer Science & Business Media: Berlin, Germany, 2012; Volume 62, 321p. [Google Scholar]
- Zhu, L.H.; Borsboom, O.; Tromp, J. Effect of temperature on flower bud formation in apple including some morphological aspects. Sci. Hortic. 1997, 70, 1–8. [Google Scholar] [CrossRef]
- Corelli Grappadelli, L.; Musacchi, S.; Magnanini, E. Single leaf and whole canopy gas exchange of pear as affected by graft incompatibility. Acta Hortic. 2002, 557, 377–383. [Google Scholar] [CrossRef]
- Roversi, A. Pero. In Frutticoltura Speciale; Stampato Nello Stabil: Roma, Italy, 1991; 783p. [Google Scholar]
- Racsko, J.; Schrader, L.E. Sunburn of Apple Fruit: Historical Background, Recent Advances and Future Perspectives. Crit. Rev. Plant Sci. 2012, 31, 455–504. [Google Scholar] [CrossRef]
- Serra, S.; Borghi, S.; Mupambi, G.; Camargo-Alvarez, H.; Layne, D.; Schmidt, T.; Kalcsits, L.; Musacchi, S. Photoselective Protective Netting Improves “Honeycrisp” Fruit Quality. Plants 2020, 9, 1708. [Google Scholar] [CrossRef]
- Willet, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet Comm. 2019, 393, 447–492. [Google Scholar] [CrossRef]
- European Commision (EC). Farm to Fork Strategy. For a Fair Healthy and Environmentally-Friendly Food System. 2020. Available online: https://ec.europa.eu/food/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 30 May 2021).
- Evans, R.G.; Kroeger, M.W.; Mahan, M.O. Evaporative Cooling of Apples by Overtree Sprinkling. Appl. Eng. Agric. 1995, 11, 93–99. [Google Scholar] [CrossRef]
- Kim, Y.K.; Xiao, C.L. Distribution and Incidence of Sphaeropsis Rot in Apple in Washington State. Plant Dis. 2008, 92, 940–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neri, D.; Bravetti, M.; Murri, G.; Nardini, G.; Paroncini, M. Light spectrum modifications under photo-selective hail-nets. Acta Hortic. 2021, 1304, 191–200. [Google Scholar] [CrossRef]
- Mupambi, G.; Anthony, B.; Layne, D.; Musacchi, S.; Serra, S.; Kalcsits, L. The influence of protective netting on tree physiology and fruit quality of apple: A review. Sci. Hortic. 2018, 236, 60–72. [Google Scholar] [CrossRef]
- Mupambi, G.; Musacchi, S.; Serra, S.; Kalcsits, L.; Schmidt, T.; Layne, D. Protective Netting Improves Leaf-level Photosynthetic Light Use Efficiency in ‘Honeycrisp’Apple under Heat Stress HortScience. HortScience 2018, 53, 1416–1422. [Google Scholar] [CrossRef] [Green Version]
- Manja, K.; Aoun, M. The Use of Nets for Tree Fruit Crops and Their Impact on the Production: A Review. Sci. Hortic. 2019, 246, 110–122. [Google Scholar] [CrossRef]
- Romet, L.; Severac, G. Alt’ Carpo, Une Alternative Efficace (Suite et Pas Fin!). Alt’ Carpo, an Effective Alternative. Phytoma 2008, 612, 16–20. [Google Scholar]
- Kelderer, M.; Casera, C.; Lardschneider, E.; Telfser, J. Field trials in apple orchards with different covering methods to reduce plant protection and yield losses due to pests and diseases. In Proceedings of the 18th International Conference on Organic Fruit-Growing, Stuttgart, Germany, 19–21 February 2018; pp. 64–70. [Google Scholar]
- Westwood, M.N.; Lombard, P.B.; Bjorstand, H.O. Performance of ‘Bartlett’ pear on standard and Old Home X Farmingdale clonal rootstocks [Breeding for resistance to bacterial fire blight (Erwinia amylovora) and mycoplasma related decline]. J. Amer. Soc. Hortic. Sci. 1976, 101, 161–164. [Google Scholar]
- Bassi, D.; Tagliavini, M.; Marangoni, B. Selection of clonal rootstocks of Pyrus communis (L.). Acta Hortic. 1993, 367, 364–371. [Google Scholar] [CrossRef]
- Bassi, D.; Marangoni, B.; Tagliavini, M. “FOX”, nuova serie di portinnesti clonali per il pero. Frutticoltura 1996, 3, 55–59. [Google Scholar]
- Quartieri, M.; Tagliavini, M.; Marangoni, B.; Bassi, D.; Schiavon, L.; Giannini, M.; Previati, A. Fox 9, nuovo portinnesto per il pero europeo. Frutticoltura 2008, 10, 52–54. [Google Scholar]
Density | Trees/ha | Rootstock | Training System |
---|---|---|---|
1930s–1940s | |||
Low | 300–500 | Seedling | Open Vase and Pyramid |
Medium | 500–1500 | Seedling | Pyramid |
High | 1000–3000 | Local quince | Spindles and horizontal Palmette |
Very High | 3000–6000 | Local quince | Vertical axis |
1960s–1970s | |||
Low | 1000–1500 | Local quince | Palmette oblique |
Medium | 1500–3000 | Angers and Provence quinces | Irregular Palmette and spindle bush |
High | 3000–4000 | Angers and Provence quinces | Spindle |
Very High | >4000 | Provence quinces | Spindle |
2000s–2020s | |||
Low | 1000–1500 | Seedlings, BA29 | Free Palmette |
Medium | 1500–3000 | BA29, Sydo, MH | Free Palmette and spindle |
High | 3000–4000 | MH, Adams MC | Spindle, V system |
Very High | >4000 | MC, Adams | V-system, Vertical axis |
Ultra High | >8000 | MC | Vertical axis |
System | Density | Spacing (m) | Trees/ha | Rootstocks |
---|---|---|---|---|
| ||||
Spindle bush/pyramid | LDP | 4.5 × 2.5 | 890 | Seedlings |
LDP | 5.0 × 3.5 | 570 | ||
Free Palmette | LDP | 3.6 × 1.5 | 1850 | Seedlings, OHF 40, BA29 |
LDP | 4.0 × 2.0 | 1250 | ||
LDP | 4.0 × 1.5 | 1660 | BA29 | |
Slender Spindle | MDP | 3.5 × 1.0 | 2850 | BA29, Sydo, MH |
HDP | 3.5 × 0.7 | 4080 | MH, Adams, MC | |
LDP | 4.5 × 1.2 | 1850 | BA29 | |
Y systems | MDP | 4.0 × 0.8 | 3125 | Sydo, MH, Adams, MC |
V shape, cordons, vertical and oblique axis | HDP | 3.5 × 0.7 | 4081 | Adams, MC |
| ||||
Super spindle and V shape | VHDP | 3.5 × 0.7 | 6000 | Adams. MC |
Vertical axis, cordon | VHDP | 3.0 × 0.4 | 8000 | MC |
Cordon and super spindle (testing) | UHDP | 3.0 × 0.3 | 11,000 | MC |
UHDP | 2.5 × 0.3 | 13,000 | MC |
System | Density | Spacing (m) | Trees/ha | Rootstocks |
---|---|---|---|---|
| ||||
Free Palmette/Pal-Spindle | LDP | 4.0 × 2.5 | 1000 | KIRSCHENSALLERBA29 |
LDP | 4.0 × 2.0 | 1250 | ||
LDP | 4.0 × 1.5 | 1667 | MA | |
Slender Spindle or central axis | MDP | 4.0 × 1.2 | 2083 | BA29, MA |
HDP | 3.5 × 1.0 | 2857 | BA29, MA | |
LDP | 3.0 × 0.8 | 4166 | MAMH | |
Y systems | MDP | 4.0 × 1.2 | 2083 | MA, Sydo, MH |
MDP | 3.5 × 1.0 | 2857 | ||
MDP | 3.0 × 0.8 | 4166 | ||
| ||||
Vertical axis | VHDP | 3.0 × 0.4 | 8333 | BA29, MA, MH |
Y system | VHDP | 2.8 × 0.6 | 5952 | BA29, MA, MH |
Group | Characteristics | Similar Cultivar |
---|---|---|
Group I—Williams (Bartlett) | Fruiting in this group occurs mainly on one-year-old branches (brindles). With the tree’s progressive aging, it is possible to observe fruiting even on spur carried on wood for 2 or 3 years. | Coscia, Santa Maria and Butirra Precoce Morettini. |
Group II—(a) Doyenné du Comice and (b) Abbé Fétel | Both these cultivars produce fruit on 2–3-year-old wood-borne spurs. They require a three-year pruning cycle, which allows one-year branches to be covered with spurs the following year. These will be shortened to 3–4 buds to promote fruit set. | |
Group III—Conference | A very fertile cultivar that produces spurs, inserted on 3–4-year-old branches bearing a complex of spurs. Therefore, it requires constant pruning as to remove at least 1/3 of the spurs to allow its renewal. An excess of mixed buds can lead to the formation of small-sized fruit. | Beurré Hardy and Beurré Anjou |
Group IV—Beurré Bosc | This cultivar tends to crop on spurs born on old wood, or on branches of 2 or 3 years. The branches can be kept for a few years, although the formation of blind wood and the extinction of vegetative points must be avoided. | Clapp’s Favourite and Packham’s Triumph |
Group V—Passe Crassane | This cultivar has branches that, in the juvenile stage, produce various spur and short lateral brindles. With the aging of the branches, short “rooster legs” formations are formed on which almost all of the production takes place. |
Group | Characteristics |
---|---|
Group I—Flamingo | Spurred habit with no lateral branches and strong apical control. |
Group II—Forelle | Intermediate apical control with short shoot formation. |
Group III—Rosemarie, Abbé Fétel and Beurré Anjou | Low apical control with several shoots. |
Group IV—Packham’s Triumph and Golden Russet Bosc | Very weak apical control. Many lateral buds develop into long shoots. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musacchi, S.; Iglesias, I.; Neri, D. Training Systems and Sustainable Orchard Management for European Pear (Pyrus communis L.) in the Mediterranean Area: A Review. Agronomy 2021, 11, 1765. https://doi.org/10.3390/agronomy11091765
Musacchi S, Iglesias I, Neri D. Training Systems and Sustainable Orchard Management for European Pear (Pyrus communis L.) in the Mediterranean Area: A Review. Agronomy. 2021; 11(9):1765. https://doi.org/10.3390/agronomy11091765
Chicago/Turabian StyleMusacchi, Stefano, Ignasi Iglesias, and Davide Neri. 2021. "Training Systems and Sustainable Orchard Management for European Pear (Pyrus communis L.) in the Mediterranean Area: A Review" Agronomy 11, no. 9: 1765. https://doi.org/10.3390/agronomy11091765
APA StyleMusacchi, S., Iglesias, I., & Neri, D. (2021). Training Systems and Sustainable Orchard Management for European Pear (Pyrus communis L.) in the Mediterranean Area: A Review. Agronomy, 11(9), 1765. https://doi.org/10.3390/agronomy11091765