Nitrogen Effects on the Essential Oil and Biomass Production of Field Grown Greek Oregano (Origanum vulgare subsp. hirtum) Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining Plant Material
2.2. Field Experiment
2.3. Statistical Analysis
3. Results and Discussion
3.1. Effect of Nitrogen Supply on Dry Biomass Production and Essential Oil
3.2. Effect of the Population on Dry Biomass Production and Essential Oil
3.3. Analysis of the Interaction between the Nitrogen Supply Level and Population (N × Pop)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Global Report on Traditional and Complementary Medicine 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Abbad, A.; Belaqziz, R.; Bekkouche, K.; Markouk, M. Influence of temperature and water potential on laboratory germination of two Moroccan endemic thymes: Thymus maroccanus Ball. and Thymus broussonetti Boiss. Afr. J. Agric. Res. 2011, 6, 4740–4745. [Google Scholar]
- Jamali, C.A.; Kastrati, A.; Bekkouche, K.; Hassani, L.; Wohlmuth, H.; Leach, D.; Abbad, A. Cultivation and the application of inorganic fertilizer modifies essential oil composition in two Moroccan species of Thymus. Ind. Crops Prod. 2014, 62, 113–118. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Xylia, P.; Botsaris, G.; Tzortzakis, N. Antioxidant and antibacterial activities, mineral and essential oil composition of spearmint (Mentha spicata L.) affected by the potassium levels. Ind. Crops Prod. 2017, 103, 202–212. [Google Scholar] [CrossRef]
- Vilanova, C.M.; Coelh, K.P.; Luz, T.R.S.A.; Silveira, D.P.B.; Coutinho, D.F.; de Moura, E.G. Effect of different water application rates and nitrogen fertilisation on growth and essential oil of clove basil (Ocimum gratissimum L.). Ind. Crops Prod. 2018, 125, 186–197. [Google Scholar] [CrossRef]
- De Mastro, G. Crop domestication and variability within accessions of Origanum genus. In Oregano, Proceedings of the IPGRI International Workshop, Rome, Italy, 8–12 May 1996; Padulosi, S., Ed.; CIHEAM: Bari, Italy, 1997; pp. 34–48. [Google Scholar]
- Stefanaki, A.; Cook, C.M.; Lanaras, T.; Kokkini, S. The Oregano plants of Chios Island (Greece): Essential oils of Origanum onites L. growing wild in different habitats. Ind. Crops Prod. 2016, 82, 107–113. [Google Scholar] [CrossRef]
- Vokou, D.; Vareltzidou, S.; Katinakis, P. Effects of aromatic plants on potato storage: Sprout suppression and antimicrobial activity. Agric. Ecosyst. Environ. 1993, 47, 223–235. [Google Scholar] [CrossRef]
- Kokkini, S.; Karousou, R.; Vokou, D. Pattern of geographic variation of Origanum vulgare trichomes and essential oil content in Greece. Bioch. Syst. Ecol. 1994, 22, 517–528. [Google Scholar] [CrossRef]
- Kokkini, S. Taxonomy, diversity and distribution of Origanum species. In Oregano, Proceedings of the IPGRI International Workshop, Rome, Italy, 8–12 May 1996; Padulosi, S., Ed.; CIHEAM: Bari, Italy, 1997; pp. 2–12. [Google Scholar]
- Gavalas, P.N.; Kalburtji, K.L.; Kokkini, S.; Mamolos, A.P.; Veresoglou, D. Ecotypic variation in plant characteristics for Origanum vulgare subsp. hirtum populations. Bioch. Syst. Ecol. 2011, 39, 562–569. [Google Scholar] [CrossRef]
- Ninou, E.G.; Paschalidis, K.A.; Mylonas, I.G.; Vasilikiotis, C.; Mavromatis, A.G. The effect of genetic variation and nitrogen fertilization on productive characters of Greek oregano. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2017, 67, 372–379. [Google Scholar] [CrossRef]
- Węglarz, Z.; Kosakowska, O.; Przybył, J.L.; Pióro-Jabrucka, E.; Bączek, K. The Quality of Greek Oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and Common Oregano (O. vulgare L. subsp. vulgare) Cultivated in the Temperate Climate of Central Europe. Foods 2020, 9, 1671. [Google Scholar] [CrossRef] [PubMed]
- Gavaric, N.; Mozina, S.S.; Kladar, N.V.; Bozin, B. Chemical profile, antioxidant and antibacterial activity of thyme and oregano essential oils, thymol and carvacrol and their possible synergism. J. Essent. Oil Bear. Plants 2015, 18, 1013–1021. [Google Scholar] [CrossRef]
- Adame-Gallegos, J.R.; Andrade-Ochoa, S.; Nevarez-Moorillon, G.V. Potential use of Mexican oregano essential oil against parasite, fungal and bacterial pathogens. J. Essent. Oil Bear. Plants 2016, 19, 553–567. [Google Scholar] [CrossRef]
- Kadoglidou, K.; Chatzopoulou, P.; Maloupa, E.; Kalaitzidis, A.; Ghoghoberidze, S.; Katsantonis, D. Mentha and Oregano Soil Amendment Induces Enhancement of Tomato Tolerance against Soilborne Diseases, Yield and Quality. Agronomy 2020, 10, 406. [Google Scholar] [CrossRef] [Green Version]
- Bonfanti, C.; Ianni, R.; Mazzaglia, A.; Lanza, C.M.; Napoli, E.M.; Ruberto, G. Emerging cultivation of oregano in Sicily: Sensory evaluation of plants and chemical composition of essential oils. Ind. Crops Prod. 2012, 35, 160–165. [Google Scholar] [CrossRef]
- Giannoulis, K.D.; Kamvoukou, C.-A.; Gougoulias, N.; Eleni Wogiatzi, E. Irrigation and nitrogen application affect Greek oregano (Origanum vulgare ssp. hirtum) dry biomass, essential oil yield and composition. Ind. Crops Prod. 2020, 150, 112392. [Google Scholar] [CrossRef]
- Król, B.; Sęczyk, L.; Kołodziej, B.; Paszko, T. Biomass production, active substance content, and bioaccessibility of Greek oregano (Origanum vulgare ssp. hirtum (Link) Ietswaart) following the application of nitrogen. nd. Crops Prod. 2020, 148, 112271. [Google Scholar] [CrossRef]
- Sotiropoulou, D.E.; Karamanos, A. Field studies of nitrogen application on growth and yield of Greek oregano (Origanum vulgare ssp. hirtum (Link) Ietswaart). Ind. Crops Prod. 2010, 32, 450–457. [Google Scholar] [CrossRef]
- Dordas, C. Chlorophyll meter readings, N leaf concentration and their relationship with N use efficiency in oregano. J. Plant Nutr. 2017, 40, 391–403. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Król, B.; Kołodziej, B. In vitro bioaccessibility and activity of Greek oregano (Origanum vulgare L. ssp. hirtum (link) Ietswaart) compounds as affected by nitrogen fertilization. J. Sci. Food Agric. 2020, 100, 2410–2417. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.; Grausgruber, H.; Pank, F.; Langbehn, J.; Blόthner, W.D.; Vender, C.; Niekerk, L.V.; Junghanns, W.; Franzl, C. Stability of hybrid combinations of Marjoram (Origanum majorana L.). Flavour Fragr. J. 2003, 18, 401–406. [Google Scholar] [CrossRef]
- Dordas, C. Foliar application of calcium and magnesium improves growth, yield, and essential oil yield of oregano (Origanum vulgare ssp. hirtum). Ind. Crops Prod. 2009, 29, 599–608. [Google Scholar] [CrossRef]
- Karamanos, A.J.; Sotiropoulou, D.E. Field studies of nitrogen application on Greek oregano (Origanum vulgare ssp. hirtum (Link) Ietswaart) essential oil during two cultivation seasons. Ind. Crops Prod. 2013, 46, 246–252. [Google Scholar] [CrossRef]
- Ozgüven, M.; Ayanoglu, F.; Ozel, A. Effects of nitrogen rates and cutting times on the essential oil yield and components of Origanum syriacum L. var. bevanii. J. Agron. 2006, 5, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Ninou, E.; Paschalidis, K.; Mylonas, I. Essential oil responses to water stress in Greek oregano populations. J. Essent. Oil Bear. Plants 2017, 20, 12–23. [Google Scholar] [CrossRef]
- Omer, A.E. Response of wild Egyptian oregano to nitrogen fertilization in a sandy soil. J. Plant Nutr. 1999, 19, 955–967. [Google Scholar] [CrossRef]
- Azizi, A.; Yan, F.; Honermeier, B. Herbage yield, essential oil content and composition of three oregano (Origanum vulgare L.) populations as affected by soil moisture regimes and nitrogen supply. Ind. Crops Prod. 2009, 29, 554–561. [Google Scholar] [CrossRef]
- Strid, A.; Tan, K. Flora Hellenica; A.R.G Gantner Verlag K.G., Koeltz Scientific Books: Koenigstein, Germany, 2002; Volume 2. [Google Scholar]
- Google (n.d.). Royal Roads University. Available online: https://www.google.gr/maps/@38.0804111,25.4721762,746580m/data=!3m1!1e3?hl=el (accessed on 2 July 2021).
- European Pharmacopoeia (2008). Determination of Essential Oils in Herbal Drugs, 6th ed.; Council of Europe (COE), European Directorate for the Quality of Medicines: Strasbourg, France, 2008; pp. 251–252. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, Version 23.0; IBM Corp.: Armonk, NY, USA, 2015. [Google Scholar]
- Goliaris, A. Research and production of medicinal and aromatic plants in Greece. Med. Plant Rep. 1997, 4, 1–11. [Google Scholar]
- Kokkini, S.; Vokou, D. Carvacrol-rich plants in Greece. Flavour Fragr. J. 1989, 4, 1–7. [Google Scholar] [CrossRef]
- Fehr, W.R. Principles of Cultivar Development; Theory and Technique, Ed.; Macmillan Publishing Company, A Division of Macmillan, Inc.: New York, NY, USA, 1987; Volume 1, p. 10022. [Google Scholar]
- Simmonds, N.W. Genotype (G), environment (E) and GE components of crop yields. Exp. Agric. 1981, 17, 355–362. [Google Scholar] [CrossRef]
- Kang, M.S. (Ed.) Genotype-Environment Interaction: Progress and Prospects. In Quantitative Genetics, Genomics and Plant Breeding; CABI: Wallingford, UK, 2002; pp. 221–243. [Google Scholar]
Mean Squares | Year (Y) | Nitrogen (N) | Population (Pop) | Y × N | Y × Pop | N × Pop | Y × N × Pop |
---|---|---|---|---|---|---|---|
Dry biomass | *** | *** | *** | NS | ** | *** | NS |
EO content | *** | ** | ** | NS | ** | ** | NS |
EO yield | *** | ** | ** | ** | *** | *** | NS |
Treatment (Nitrogen Level) | Dry Biomass (Mg ha−1) | Essential Oil Content (mL 100 g−1 DW) | Essential Oil Yield (L ha−1) |
---|---|---|---|
2010 | |||
Control | 1.18c † ± 0.08 | 2.23a ± 0.11 | 25.45b ± 1.26 |
N1 | 1.83b ± 0.10 | 1.80b ± 0.05 | 32.41a ± 1.38 |
N2 | 2.22a ± 0.13 | 1.63b ± 0.07 | 35.24a ± 1.66 |
N3 | 2.17a ± 0.14 | 1.65b ± 0.06 | 35.18a ± 1.94 |
2011 | |||
Control | 1.92c † ± 0.12 | 3.13a ± 0.13 | 58.24c ± 2.04 |
N1 | 2.51b ± 0.16 | 2.99ab ± 0.08 | 73.61b ± 3.62 |
N2 | 3.02a ± 0.23 | 2.85b ± 0.09 | 83.58a ± 4.52 |
N3 | 2.89a ± 0.26 | 2.86b ± 0.11 | 79.87ab ± 5.41 |
2012 | |||
Control | 2.05c † ± 0.14 | 3.23a ± 0.12 | 64.03c ± 2.47 |
N1 | 2.66b ± 0.16 | 3.01b ± 0.07 | 78.84b ± 3.32 |
N2 | 3.16a ± 0.22 | 2.85b ± 0.07 | 88.33a ± 5.03 |
N3 | 3.15a ± 0.28 | 2.87b ± 0.07 | 87.99a ± 6.24 |
Three-year mean | |||
Control | 1.72c † ± 0.09 | 2.87a ± 0.10 | 49.24c ± 2.80 |
N1 | 2.33b ± 0.10 | 2.60b ± 0.09 | 61.62b ± 3.55 |
N2 | 2.80a ± 0.13 | 2.44c ± 0.10 | 69.05a ± 4.27 |
N3 | 2.74a ± 0.15 | 2.46c ± 0.10 | 67.68a ± 4.46 |
Year | Dry Biomass (Mg ha−1) | Essential Oil Content (mL 100 g−1 DW) | Essential Oil Yield (L ha−1) |
---|---|---|---|
2010 | 1.85b † ± 0.08 | 1.83b ± 0.05 | 32.07b ± 0.93 |
2011 | 2.59a ± 0.11 | 2.96a ± 0.05 | 73.83a ± 2.36 |
2012 | 2.75a ± 0.12 | 2.99a ± 0.05 | 79.79a ± 2.55 |
Three-year mean | 2.40 ± 0.07 | 2.59 ± 0.05 | 61.90 ± 1.98 |
Population | Dry Biomass (Mg ha−1) | Essential Oil Content (mL 100 g−1 DW) | Essential Oil Yield (L ha−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 2011 | 2012 | Three–Year Mean | 2010 | 2011 | 2012 | Three–Year Mean | 2010 | 2011 | 2012 | Three–Year Mean | |
1 Panagia | 1.67b † ± 0.12 | 2.09c ± 0.10 | 2.26c ± 0.09 | 2.01c ± 0.07 | 1.77bc ± 0.09 | 3.11ab ± 0.05 | 3.12a ± 0.05 | 2.67b ± 0.11 | 28.54b ± 1.26 | 64.63b ± 2.38 | 70.23c ± 2.54 | 54.46c ± 3.34 |
2 Litochoro | 1.98ab ± 0.13 | 2.77b ± 0.14 | 3.09b ± 0.17 | 2.61b ± 0.11 | 1.94ab ± 0.08 | 3.03b ± 0.05 | 2.84b ± 0.06 | 2.61b ± 0.09 | 37.63a ± 1.73 | 83.39a ± 3.51 | 87.03b ± 3.80 | 69.35ab ± 4.19 |
3 Omolio | 2.07a ± 0.17 | 2.97b ± 0.18 | 3.17ab ± 0.20 | 2.74b ± 0.13 | 1.72bc ± 0.10 | 2.70c ± 0.04 | 2.82b ± 0.05 | 2.42c ± 0.09 | 34.10a ± 1.67 | 80.33a ± 4.99 | 88.46b ± 4.68 | 67.63b ± 4.64 |
4 Papadates | 2.24a ± 0.21 | 3.42a ± 0.30 | 3.46a ± 0.32 | 3.04a ± 0.18 | 1.60c ± 0.06 | 2.59c ± 0.08 | 2.85b ± 0.10 | 2.34c ± 0.10 | 34.58a ± 2.50 | 86.37a ± 5.98 | 95.58a ± 6.41 | 72.18a ± 5.41 |
5 Vytina | 1.29c ± 0.11 | 1.67d ± 0.10 | 1.78d ± 0.11 | 1.58d ± 0.07 | 2.10a ± 0.16 | 3.35a ± 0.16 | 3.32a ± 0.14 | 2.93a ± 0.13 | 25.48b ± 0.84 | 54.42c ± 1.43 | 57.68d ± 1.96 | 45.86d ± 2.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ninou, E.; Cook, C.M.; Papathanasiou, F.; Aschonitis, V.; Avdikos, I.; Tsivelikas, A.L.; Stefanou, S.; Ralli, P.; Mylonas, I. Nitrogen Effects on the Essential Oil and Biomass Production of Field Grown Greek Oregano (Origanum vulgare subsp. hirtum) Populations. Agronomy 2021, 11, 1722. https://doi.org/10.3390/agronomy11091722
Ninou E, Cook CM, Papathanasiou F, Aschonitis V, Avdikos I, Tsivelikas AL, Stefanou S, Ralli P, Mylonas I. Nitrogen Effects on the Essential Oil and Biomass Production of Field Grown Greek Oregano (Origanum vulgare subsp. hirtum) Populations. Agronomy. 2021; 11(9):1722. https://doi.org/10.3390/agronomy11091722
Chicago/Turabian StyleNinou, Elissavet, Catherine M. Cook, Fokion Papathanasiou, Vasilis Aschonitis, Ilias Avdikos, Athanasios L. Tsivelikas, Stefanos Stefanou, Parthenopi Ralli, and Ioannis Mylonas. 2021. "Nitrogen Effects on the Essential Oil and Biomass Production of Field Grown Greek Oregano (Origanum vulgare subsp. hirtum) Populations" Agronomy 11, no. 9: 1722. https://doi.org/10.3390/agronomy11091722
APA StyleNinou, E., Cook, C. M., Papathanasiou, F., Aschonitis, V., Avdikos, I., Tsivelikas, A. L., Stefanou, S., Ralli, P., & Mylonas, I. (2021). Nitrogen Effects on the Essential Oil and Biomass Production of Field Grown Greek Oregano (Origanum vulgare subsp. hirtum) Populations. Agronomy, 11(9), 1722. https://doi.org/10.3390/agronomy11091722