Comparing Sensor-Based Adjustment of Weed Harrowing Intensity with Conventional Harrowing under Heterogeneous Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Camera-Controlled Harrowing Technology
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. The Five Most Abundant Weed Species at Each Trial Site
3.2. WCE, Crop Dry Mass, and Grain Yield in Hirrlingen and KHH in 2019
3.3. Mean CSC and Standard Deviation for Conventional and Automatic Settings in Hirrlingen and Eningen in 2020
3.4. WCE in Spring Oats and Winter Wheat in Eningen and Hirrlingen in 2020
3.5. Crop Density after Treatment and Weed Density at Harvest Time at Eningen and Hirrlingen in 2020
3.6. Crop Dry Mass in Spring Oats and Winter Wheat at Eningen and Hirrlingen in 2020
3.7. Grain Yield in Spring Oats and Winter Wheat at Eningen and Hirrlingen in 2020
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Busi, R.; Vila-Aiub, M.M.; Beckie, H.J.; Gaines, T.A.; Goggin, D.E.; Kaundun, S.S.; Lacoste, M.; Neve, P.; Nissen, S.J.; Norsworthy, J.K.; et al. Herbicide-resistant weeds: From research and knowledge to future needs. Evol. Appl. 2013, 6, 1218–1221. [Google Scholar] [CrossRef] [PubMed]
- Hillocks, R.J. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Protection 2012, 31, 85–93. [Google Scholar] [CrossRef]
- Marshall, E.J.P. Biodiversity, herbicides and non-target plants. In Proceedings of the 2001 of Brighton Crop Protection Conference Weeds, Farnham, UK, 13–15 November; BCPC: Farnham, UK, 2001. [Google Scholar]
- Rasmussen, J. Testing harrows for mechanical control of annual weeds in agricultural crops. Weed Res. 1992, 32, 267–274. [Google Scholar] [CrossRef]
- Brandsaeter, L.O.; Mangerud, K.; Rasmussen, J. Interactions between pre- and post-emergence weed harrowing in spring cereals. Weed Res. 2012, 52, 338–347. [Google Scholar] [CrossRef]
- Rasmussen, J. A model for prediction of yield response in weed harrowing. Weed Res. 1991, 31, 401–408. [Google Scholar] [CrossRef]
- Rasmussen, J.; Svenningsen, T. Selective Weed Harrowing in Cereals. Biol. Agric. Hortic. 1995, 12, 29–46. [Google Scholar] [CrossRef]
- Rasmussen, J.; Nielsen, H.H.; Gundersen, H. Tolerance and Selectivity of Cereal Species and Cultivars to Postemergence Weed Harrowing. Weed Sci. 2009, 57, 338–345. [Google Scholar] [CrossRef]
- Gerhards, R.; Späth, M.; Sökefeld, M.; Peteinatos, G.G.; Nabout, A.; Rueda Ayala, V. Automatic adjustment of harrowing intensity in cereals using digital image analysis. Weed Res. 2020, 61, 68–77. [Google Scholar] [CrossRef]
- Rydberg, T. Weed Harrowing—The Influence of Driving Speed and Driving Direction on Degree of Soil Covering and the Growth of Weed and Crop Plants. Biol. Agric. Hortic. 1994, 10, 197–205. [Google Scholar] [CrossRef]
- Rasmussen, J.; Bibby, B.M.; Schou, A.P. Investigating the selectivity of weed harrowing with new methods. Weed Res. 2008, 48, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Rueda-Ayala, V.; Weis, M.; Keller, M.; Andújar, D.; Gerhards, R. Development and testing of a decision-making based method to adjust automatically the harrowing intensity. Sensors 2013, 13, 6254–6271. [Google Scholar] [CrossRef] [PubMed]
- Engelke, B. Entwicklung eines Steuersystems in der Ganzflächig Mechanischen Unkrautbekämpfung. Development of a Self-Adjusting System for Broadcast Mechanical Weed Control. PhD. Thesis, Christian-Albrechts-Universität zu Kiel, Göttingen, Germany, 2001. [Google Scholar]
- Peteinatos, G.; Gierer, F.; Gerhards, R. Precision harrowing using a bispectral camera and a flexible tine harrow. In Proceedings of the 28. Deutsche Arbeitstagung über Fragen der Unkrautbiologie und -bekämpfung, Braunschweig, Germany, 27 February–1 March 2018; Nordmeyer, H., Ulber, L., Eds.; JKI: Braunschweig, Germany, 2018. [Google Scholar]
- Spaeth, M.; Machleb, J.; Peteinatos, G.G.; Saile, M.; Gerhards, R. Smart Harrowing—Adjusting the Treatment Intensity Based on Machine Vision to Achieve a Uniform Weed Control Selectivity under Heterogeneous Field Conditions. Agronomy 2020, 10, 1925. [Google Scholar] [CrossRef]
- Rueda-Ayala, V.; Peteinatos, G.; Gerhards, R.; Andújar, D. A non-chemical system for online weed control. Sensors 2015, 15, 7691–7707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueda-Ayala, V.P.; Gerhards, R. Selectivity of Weed Harrowing with Sensor Technology in Cereals in Germany. In Proceedings of the 7th European Conference on Precision Agriculture (ECPA), Wageningen, The Netherlands, 6–7 July; van Henten, E.J., Goense, D., Lokhorst, C., Eds.; Wangeningen Academic: Wageningen, The Netherlands, 2009. [Google Scholar]
- Rueda-Ayala, V.P.; Rasmussen, J.; Gerhards, R.; Fournaise, N.E. The influence of post-emergence weed harrowing on selectivity, crop recovery and crop yield in different growth stages of winter wheat. Weed Res. 2011, 51, 478–488. [Google Scholar] [CrossRef]
- Bàrberi, P.; Silvestri, N.; Peruzzi, A.; Raffaelli, M. Finger-Harrowing of Durum Wheat under Different Tillage Systems. Biol. Agric. Hortic. 2000, 17, 285–303. [Google Scholar] [CrossRef]
- Kurstjens, D.; Perdok, U. The selective soil covering mechanism of weed harrows on sandy soil. Soil Tillage Res. 2000, 55, 193–206. [Google Scholar] [CrossRef]
- Kurstjens, D.A.G.; Kropff, M.J. The impact of uprooting and soil-covering on the effectiveness of weed harrowing. Weed Res. 2001, 41, 211–228. [Google Scholar] [CrossRef]
- Home, M.C.W.; Tillett, N.D.; Hague, T.; Godwin, R.J. An experimental study of lateral positional accuracy achieved during inter-row cultivation. In Proceedings of the 2002 5th EWRS Workshop on Physical and Cultural Weed Control; Pisa, Italy, 11–13 March 2002. [Google Scholar]
- Hock, S.M.; Knezevic, S.Z.; Martin, A.R.; Lindquist, J.L. Soybean row spacing and weed emergence time influence weed competitiveness and competitive indices. Weed Sci. 2006, 54, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Søgaard, H.T. Automatic Control of a Finger Weeder with Respect to the Harrowing Intensity at Varying Soil Structures. J. Agric. Eng. Res. 1998, 70, 157–163. [Google Scholar] [CrossRef]
Year | Location | Crop | Sowing Date | Seed Rate (Seeds m−2) | Soil Texture |
---|---|---|---|---|---|
2019 | Hirrlingen | Winter wheat, cv. Porthus | 2019-10-06 | 300 | 49% Clay, 6% Sand, 45% Silt |
2019 | Hirrlingen | Spring oats, cv. Apollon | 2019-03-01 | 350 | 45% Clay, 11% Sand, 44% Silt |
2019 | KHH | Spring oats, cv. Apollon | 2016-02-26 | 400 | 24% Clay, 11% Sand, 65% Silt |
2020 | Hirrlingen | Winter wheat, cv. Patras | 2020-10-10 | 300 | 53% Clay, 7% Sand, 40% Silt |
2020 | Eningen | Spring oats, cv. Armani | 2020-03-24 | 350 | 43% Clay, 23% Sand, 35% Silt |
Year | Location | Crop and Growth Stage at Harrowing | Mechanical Treatment Intensity Level | |
---|---|---|---|---|
Conventional | Automatic | |||
2019 | Hirrlingen | Winter wheat BBCH 26–28 | Man_I | - |
Man_II | ||||
Man_III | ||||
2019 | Hirrlingen | Spring oats BBCH 26–28 | Man_I | - |
Man_II | ||||
Man_III | ||||
2019 | KHH | Spring oats BBCH 21–23 | Man_I | - |
Man_II | ||||
Man_III | ||||
2020 | Hirrlingen | Winter wheat BBCH 21–24 | Man_I | CSC 10% |
Man_II | CSC 20% | |||
Man_III | CSC 60% | |||
2020 | Eningen | Spring oats BBCH 21–24 | Man_I | CSC 10% |
Man_II | CSC 20% | |||
Man_III | CSC 60% |
Location, Year | Crop | Weed Density Weeds m−2 | Weed Species |
---|---|---|---|
Hirrlingen, 2019 | Spring oats | 275 | Chenopodium album L. (lamb’s quarters) 40% Cirsium arvense L. (creeping thistle) 27% Stellaria media L. (chickweed) 21% Galium aparine L. (cleavers) 4% Veronica persica POIR. (birdeye speedwell) 3% |
Hirrlingen, 2019 | Winter wheat | 35 | Capsella bursa-pastoris L. (Shepherd’s purse) 33% Veronica persica (birdeye speedwell) 12% Galium aparine (cleavers) 11% Viola arvensis Murray (field pansy) 9% Fumaria officinalis L. (common fumitory) 8% |
KHH, 2019 | Spring oats | 74 | Galium aparine (cleavers) 28% Veronica persica (birdeye speedwell) 23% Chenopodium album (lamb’s quarters) 21% Stellaria media (chickweed) 12% Sinapis arvensis L. (charlock mustard) 4% |
Hirrlingen, 2020 | Winter wheat | 70 | Galium aparine (cleavers) 27% Veronica persica (birdeye speedwell) 22% Lamium purpureum L. (red dead-nettle) 14% Capsella bursa-pastoris (shepherd’s purse 13% Stellaria media (chickweed) 7% |
Eningen, 2020 | Spring oats | 140 | Thlaspi arvense L. (field pennycress) 36% Veronica persica (birdeye speedwell) 25% Polygonum aviculare L. (common knotgrass) 15% Chenopodium album (lamb’s quarters) 10% Capsella bursa-pastoris (shepherd’s purse) 9% |
Location, Year | Crop | Treatment | WCE (%) | Dry Biomass (g m−2) ±SD | Grain Yield (t ha−1) ±SD |
---|---|---|---|---|---|
Hirrlingen, 2019 | Winter wheat, cv. Porthus | CON HERB Man_I, Man_II, Man_III | - | 302 (±9) c | 9.0 (±0.3) b |
98% a | 389 (±12) a | 10.6 (±0.1) a | |||
19% c | 333 (±31) bc | 10.4 (±0.5) ab | |||
59% b | 378 (±24) ab | 10.6 (±0.3) a | |||
73% ab | 352 (±14) b | 10.1 (±0.9) ab | |||
Hirrlingen, 2019 | Spring oats, cv. Apollon | CON HERB Man_I, Man_II, Man_III | - | 269 (±11) b | 6.6 (±0.5) c |
98% a | 304 (±8) a | 8.4 (±0.2) a | |||
32% c | 269 (±14) b | 6.9 (±0.4) bc | |||
66% b | 291 (±21) ab | 8.2 (±0.2) a | |||
80% ab | 290 (±18) ab | 7.6 (±0.3) b | |||
KHH, 2019 | Spring oats, cv. Apollon | CON HERB Man_I, Man_II, Man_III | - | 384 (±12) c | 5.0 (±0.3) b |
99% a | 452 (±17) b | 6.0 (±0.2) a | |||
25% c | 401 (±31) bc | 5.5 (±0.4) ab | |||
62% b | 482 (±11) a | 5.7 (±0.5) ab | |||
88% a | 402 (±42) bc | 5.0 (±0.4) b |
Treatment | Crop Density (Plants m−1) | Weed Density at Harvest Time (Weeds m−2) | ||
---|---|---|---|---|
Winter Wheat Hirrlingen (±SD) | Spring Oats Eningen (±SD) | Winter Wheat Hirrlingen (±SD) | Spring Oats Eningen (±SD) | |
CON | 52 (±1.4) a | 60 (±1.4) a | 29 (±1.8) a | 33 (±1.2) a |
HERB | 45 (±3.3) b | 58 (±1.4) a | 0 (±0) c | 0 (±0) c |
Man_I | 39 (±2.6) c | 56 (±1.6) b | 18 (±1.1) b | 8 (±0.3) b |
Man_II | 49 (±2.3) ab | 59 (±1.0) a | 5 (±2.2) bc | 0 (±0) c |
Man_III | 46 (±1.0) b | 49 (±2.2) c | 0 (±0) c | 0 (±0) c |
CSC 10% | 54 (±1.2) a | 61 (±1.2) a | 1 (±0.8) c | 0 (±0) c |
CSC 20% | 52 (±1.5) a | 60 (±1.9) a | 0 (±0) c | 0 (±0) c |
CSC 60% | 51 (±1.2) a | 61 (±0.7) a | 0 (±0) c | 0 (±0) c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spaeth, M.; Schumacher, M.; Gerhards, R. Comparing Sensor-Based Adjustment of Weed Harrowing Intensity with Conventional Harrowing under Heterogeneous Field Conditions. Agronomy 2021, 11, 1605. https://doi.org/10.3390/agronomy11081605
Spaeth M, Schumacher M, Gerhards R. Comparing Sensor-Based Adjustment of Weed Harrowing Intensity with Conventional Harrowing under Heterogeneous Field Conditions. Agronomy. 2021; 11(8):1605. https://doi.org/10.3390/agronomy11081605
Chicago/Turabian StyleSpaeth, Michael, Matthias Schumacher, and Roland Gerhards. 2021. "Comparing Sensor-Based Adjustment of Weed Harrowing Intensity with Conventional Harrowing under Heterogeneous Field Conditions" Agronomy 11, no. 8: 1605. https://doi.org/10.3390/agronomy11081605
APA StyleSpaeth, M., Schumacher, M., & Gerhards, R. (2021). Comparing Sensor-Based Adjustment of Weed Harrowing Intensity with Conventional Harrowing under Heterogeneous Field Conditions. Agronomy, 11(8), 1605. https://doi.org/10.3390/agronomy11081605