Identification and Assessment of Livestock Best Management Practices (BMPs) Using the REDD+ Approach in the Ecuadorian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Data Collection
2.3. Statistical Analysis
2.4. Designing and Assessing Best Management Practices (BMPs)
3. Results
3.1. Characterization of Farms in Three Elevational Gradients
3.2. Identification of Best-Recommended Livestock BMPs
4. Discussion
4.1. How and to What Extent BMPs Contribute to the REDD+ Approach and the Conversion of Pasturelands to Other Sustainable Uses
4.1.1. BMPs for the Rehabilitation of Pasturelands
4.1.2. BMPs for Forest Restoration
4.1.3. BMPs for Implementing Waste-Management Systems
4.2. Policy Implications for Implementation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, H.; Roser, M. Land Use—Our World in Data. Available online: https://ourworldindata.org/land-use (accessed on 18 March 2021).
- Gerber, P.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; FAO: Rome, Italy, 2013; ISBN 9789251079201. [Google Scholar]
- Lerner, A.M.; Zuluaga, A.F.; Chará, J.; Etter, A.; Searchinger, T. Sustainable Cattle Ranching in Practice: Moving from Theory to Planning in Colombia’s Livestock Sector. Environ. Manag. 2017, 60, 176–184. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boval, M.; Angeon, V.; Rudel, T. Tropical grasslands: A pivotal place for a more multi-functional agriculture. Ambio 2017, 46, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Ministerio del Ambiente del Ecuador (MAE). Bosques Para el Buen Vivir—Plan de Acción REDD+ Ecuador (2016–2025); Quito, Ecuador, 2016; ISBN 9789942220790. [Google Scholar]
- Sierra, R. Patrones y Factores de Deforestación en el Ecuador Continental, 1990–2010. Y un Acercamiento a los Próximos 10 Años; Conservación Internacional Ecuador, Forest Trends: Quito, Ecuador, 2013. [Google Scholar]
- Wasserstrom, R.; Bustamante, T. Ethnicity, Labor and Indigenous Populations in the Ecuadorian Amazon, 1822-2010. Adv. Anthropol. 2015, 5, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Baynard, C.W.; Ellis, J.M.; Davis, H. Roads, petroleum and accessibility: The case of eastern Ecuador. GeoJournal 2013, 78, 675–695. [Google Scholar] [CrossRef]
- Finer, M.; Jenkins, C.N.; Pimm, S.L.; Keane, B.; Ross, C. Oil and gas projects in the Western Amazon: Threats to wilderness, biodiversity, and indigenous peoples. PLoS ONE 2008, 3, e2932. [Google Scholar] [CrossRef]
- Suárez, E.; Morales, M.; Cueva, R.; Utreras Bucheli, V.; Zapata-Ríos, G.; Toral, E.; Torres, J.; Prado, W.; Vargas Olalla, J. Oil industry, wild meat trade and roads: Indirect effects of oil extraction activities in a protected area in north-eastern Ecuador. Anim. Conserv. 2009, 12, 364–373. [Google Scholar] [CrossRef]
- Leifsen, E. The socionature that neo-extractivism can see: Practicing redistribution and compensation around large-scale mining in the Southern Ecuadorian Amazon. Polit. Geogr. 2020, 82, 102249. [Google Scholar] [CrossRef]
- Gray, C.L.; Bilsborrow, R.E.; Bremner, J.L.; Lu, F. Indigenous land use in the Ecuadorian Amazon: A cross-cultural and multilevel analysis. Hum. Ecol. 2008, 36, 97–109. [Google Scholar] [CrossRef]
- Mejia, E.; Pacheco, P.; Muzo, A.; Torres, B. Smallholders and timber extraction in the Ecuadorian Amazon: Amidst market opportunities and regulatory constraints. Int. For. Rev. 2015, 16, 1–13. [Google Scholar] [CrossRef]
- Mena, C.F.; Bilsborrow, R.E.; McClain, M.E. Socioeconomic drivers of deforestation in the Northern Ecuadorian Amazon. Environ. Manag. 2006, 37, 802–815. [Google Scholar] [CrossRef]
- MAGAP ATPA. Reconversión Agro productiva Sostenible en la Amazonía Ecuatoriana; Ministerio de Agricultura y Ganadería: Quito, Ecuador, 2014. [Google Scholar]
- Lerner, A.M.; Rudel, T.K.; Schneider, L.C.; McGroddy, M.; Burbano, D.V.; Mena, C.F. The spontaneous emergence of silvo-pastoral landscapes in the Ecuadorian Amazon: Patterns and processes. Reg. Environ. Chang. 2014, 15, 1421–1431. [Google Scholar] [CrossRef]
- Torres, B.; Günter, S.; Acevedo-Cabra, R.; Knoke, T. Livelihood strategies, ethnicity and rural income: The case of migrant settlers and indigenous populations in the Ecuadorian Amazon. For. Policy Econ. 2018, 86, 22–34. [Google Scholar] [CrossRef]
- Bravo, C.; Torres, B.; Alemán, R.; Marín, H.; Durazno, G.; Navarrete, H.; Gutiérrez, E.T.; Tapia, A. Indicadores morfológicos y estructurales de calidad y potencial de erosión del suelo bajo diferentes usos de la tierra en la Amazonía ecuatoriana. An. Geogr. Univ. Complut. 2017, 37, 247–264. [Google Scholar] [CrossRef] [Green Version]
- Alemán, R.; Bravo, C.; Vargas, J.C.; Chimborazo, C. Agroecological typification of livestock production systems in the Ecuadorian Amazon region. Livest. Res. Rural Dev. 2020, 32, 95. Available online: http://www.lrrd.org/lrrd32/6/cbravo32095.html (accessed on 18 March 2021).
- Asamblea Nacional, R. del E. Código Orgánico del Ambiente. Available online: http://extwprlegs1.fao.org/docs/pdf/ecu167116.pdf (accessed on 18 March 2021).
- Jadán, O.; Günter, S.; Torres, B.; Selesi, D. Riqueza y potencial maderable en sistemas agroforestales tradicionales como alternativa al uso del bosque nativo, Amazonía del Ecuador. Rev. For. Mesoam. Kurú 2015, 12, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Vera, V.R.R.; Cota-Sánchez, J.H.; Grijalva Olmedo, J.E. Biodiversity, dynamics, and impact of chakras on the Ecuadorian Amazon. J. Plant Ecol. 2019, 12, 34–44. [Google Scholar] [CrossRef]
- Torres, B.; Jadan, O.; Aguirre, P.; Hinojosa, L.; Guenter, S. The contribution of traditional agroforestry to climate change adaptation in the Ecuadorian Amazon: The chakra system. In Handbook of Climate Change Adaptation; Leal Filho, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1973–1994. ISBN 9783642386695. [Google Scholar]
- Jadán, O.; Torres, B.; Selesi, D.; Peña, D.; Rosales, C.; Gunter, S. Diversidad Florística Y Estructura En Cacaotales Tradicionales Y Bosque Natural (Sumaco, Ecuador). Colomb. For. 2016, 19, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Coq-Huelva, D.; Torres-Navarrete, B.; Bueno-Suárez, C. Indigenous worldviews and Western conventions: Sumak Kawsay and cocoa production in Ecuadorian Amazonia. Agric. Hum. Values 2018, 35, 163–179. [Google Scholar] [CrossRef]
- Coq-Huelva, D.; Higuchi, A.; Alfalla-Luque, R.; Burgos-Morán, R.; Arias-Gutiérrez, R. Co-Evolution and Bio-Social construction: The Kichwa agroforestry systems (chakras) in the Ecuadorian Amazonia. Sustainability 2017, 9, 1920. [Google Scholar] [CrossRef] [Green Version]
- Rudel, T.K.; Paul, B.; White, D.; Rao, I.M.; Van Der Hoek, R.; Castro, A.; Boval, M.; Lerner, A.; Schneider, L.; Peters, M. LivestockPlus: Forages, sustainable intensification, and food security in the tropics. Ambio 2015, 44, 685–693. [Google Scholar] [CrossRef] [Green Version]
- De-Pablos-Heredero, C.; Montes-Botella, J.L.; García, A. Impact of Technological Innovation on Performance in Dairy Sheep Farms in Spain. J. Agric. Sci. Tech. 2020, 22, 597–610. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Fonseca, G.A.B.; Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Mittermeier, R.A.; Myers, N.; Thomsen, J.B.; da Fonseca, G.A.B.; Olivieri, S. Biodiversity Hotspots and Major Tropical Wilderness Areas: Approaches to Setting Conservation Priorities. Conserv. Biol. 1998, 12, 516–520. [Google Scholar] [CrossRef]
- Myers, N. Threatened biotas: “hot spots” in tropical forests. Environmentalist 1988, 8, 187–208. [Google Scholar] [CrossRef]
- Borges, J.A.R.; Tauer, L.W.; Lansink, A.G.J.M.O. Using the theory of planned behavior to identify key beliefs underlying Brazilian cattle farmers’ intention to use improved natural grassland: A MIMIC modelling approach. Land Use Policy 2016, 55, 193–203. [Google Scholar] [CrossRef]
- Rangel, J.; Perea, J.; De-Pablos-heredero, C.; Espinosa-García, J.A.; Mujica, P.T.; Feijoo, M.; Barba, C.; García, A. Structural and technological characterization of tropical smallholder farms of dual-purpose cattle in mexico. Animals 2020, 10, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangel, J.; Espinosa, J.A.; de Pablos-Heredero, C.; Rivas, J.; Perea, J.; Angón, E.; García-Martínez, A. Is the increase of scale in the tropics a pathway to smallholders? Dimension and ecological zone effect on the mixed crop-livestock farms. Span. J. Agric. Res. 2017, 15, 109. [Google Scholar] [CrossRef] [Green Version]
- Rivas, J.; Perea, J.M.; De-Pablos-Heredero, C.; Angon, E.; Barba, C.; García, A. Canonical correlation of technological innovation and performance in sheep’s dairy farms: Selection of a set of indicators. Agric. Syst. 2019, 176, 102665. [Google Scholar] [CrossRef]
- García-Martínez, A.; Rivas-Rangel, J.; Rangel-Quintos, J.; Espinosa, J.A.; Barba, C.; de-Pablos-Heredero, C. A methodological approach to evaluate livestock innovations on small-scale farms in developing countries. Future Internet 2016, 8, 25. [Google Scholar] [CrossRef]
- Vasco, C.; Torres, B.; Jácome, E.; Torres, A.; Eche, D.; Velasco, C. Use of chemical fertilizers and pesticides in frontier areas: A case study in the Northern Ecuadorian Amazon. Land Use Policy 2021, 107, 105490. [Google Scholar] [CrossRef]
- Sellers, S.; Bilsborrow, R. Agricultural technology adoption among migrant settlers and indigenous populations of the Northern Ecuadorian Amazon: Are differences narrowing? J. Land Use Sci. 2019, 14, 347–361. [Google Scholar] [CrossRef]
- Vasco, C.; Bilsborrow, R.; Torres, B.; Griess, V. Agricultural land use among mestizo colonist and indigenous populations: Contrasting patterns in the Amazon. PLoS ONE 2018, 13. [Google Scholar] [CrossRef]
- Godoy, R.; Jacobson, M.; De Castro, J.; Aliaga, V.; Romero, J.; Davis, A. The role of tenure security and private time preference in neotropical deforestation. Land Econ. 1998, 74, 162–171. [Google Scholar] [CrossRef]
- Heredia-R, M.; Torres, B.; Cayambe, J.; Ramos, N.; Luna, M.; Diaz-Ambrona, C.G.H. Sustainability Assessment of Smallholder Agroforestry Indigenous Farming in the Amazon: A Case Study of Ecuadorian Kichwas. Agronomy 2020, 10, 1973. [Google Scholar] [CrossRef]
- León, V.; Torres, B.; Luna, M.; Torres, A.; Ramírez, P.; Andrade-Yucailla, V.; Muñoz-Rengifo, J.C.; Heredia-R, M. Perception of climate change in four communities oriented to cattle ranching in the central zone of the Ecuadorian Andes. Livest. Res. Rural Dev. 2020, 32. [Google Scholar]
- McGroddy, M.E.; Lerner, A.M.; Burbano, D.V.; Schneider, L.C.; Rudel, T.K. Carbon Stocks in Silvopastoral Systems: A Study from Four Communities in Southeastern Ecuador. Biotropica 2015, 47, 407–415. [Google Scholar] [CrossRef]
- Rodríguez, D.I.; Anríquez, G.; Riveros, J.L. Seguridad alimentaria y ganadería: El caso de América Latina y el Caribe. Cienc. Investig. Agrar. 2016, 43, 5–15. [Google Scholar]
- Kroll, S.A.; Oakland, H.C. A Review of Studies Documenting the Effects of Agricultural Best Management Practices on Physiochemical and Biological Measures of Stream Ecosystem Integrity. Nat. Areas J. 2019, 39, 58. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Smart livestock feeding strategies for harvesting triple gain—The desired outcomes in planet, people and profit dimensions: A developing country perspective. Anim. Prod. Sci. 2016, 56, 519. [Google Scholar] [CrossRef]
- Bardos, R.P.; Bone, B.D.; Boyle, R.; Evans, F.; Harries, N.D.; Howard, T.; Smith, J.W.N. The rationale for simple approaches for sustainability assessment and management in contaminated land practice. Sci. Total Environ. 2016, 563–564, 755–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira Domingues, V. Best management practices from agricultural economics: Mitigating air, soil and water pollution. Sci. Total Environ. 2019, 688, 346–360. [Google Scholar] [CrossRef]
- Torres, B.; Vasco, C.; Günter, S.; Knoke, T. Determinants of agricultural diversification in a hotspot area: Evidence from colonist and indigenous communities in the Sumaco Biosphere Reserve, Ecuadorian Amazon. Sustainability 2018, 10, 1432. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, E.; Wandelli, E.; Perin, R.; Garcia, S. Restoring Productivity to Degraded Pasture Lands in the Amazon through Agroforestry Practices. In Biological Approaches to Sustainable Soil Systems; Uphoff, N., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 305–321. ISBN 9781420017113. [Google Scholar]
- Corbin, J.D.; Robinson, G.R.; Hafkemeyer, L.M.; Handel, S.N. A long-term evaluation of applied nucleation as a strategy to facilitate forest restoration. Ecol. Appl. 2016, 26, 104–114. [Google Scholar] [CrossRef]
- Strassburg, B.B.N.; Latawiec, A.E.; Barioni, L.G.; Nobre, C.A.; da Silva, V.P.; Valentim, J.F.; Vianna, M.; Assad, E.D. When enough should be enough: Improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Glob. Environ. Chang. 2014, 28, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Harvey, C.A.; Villanueva, C.; Villacís, J.; Chacón, M.; Muñoz, D.; López, M.; Ibrahim, M.; Gómez, R.; Taylor, R.; Martinez, J.; et al. Contribution of live fences to the ecological integrity of agricultural landscapes. Agric. Ecosyst. Environ. 2005, 111, 200–230. [Google Scholar] [CrossRef]
- Green, R.E.; Cornell, S.J.; Scharlemann, J.P.W.; Balmford, A. Farming and the fate of wild nature. Science 2005, 307, 550–555. [Google Scholar] [CrossRef] [Green Version]
- Phalan, B.; Onial, M.; Balmford, A.; Green, R.E. Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science 2011, 333, 1289–1291. [Google Scholar] [CrossRef]
- Simo, A.; van der, M. Livelihood impacts of plantation forests on farmers in the greater mekong subregion: A systematic review of plantation forest models. Forests 2020, 11, 1–20. [Google Scholar]
- Sherman, M.; Ford, J.; Llanos-Cuentas, A.; Valdivia, M.J.; Bussalleu, A. Vulnerability and adaptive capacity of community food systems in the Peruvian Amazon: A case study from Panaillo. Nat. Hazards 2015, 77, 2049–2079. [Google Scholar] [CrossRef] [Green Version]
- Knoke, T.; Bendix, J.; Pohle, P.; Hamer, U.; Hildebrandt, P.; Roos, K.; Gerique, A.; Sandoval, M.L.; Breuer, L.; Tischer, A.; et al. Afforestation or intense pasturing improve the ecological and economic value of abandoned tropical farmlands. Nat. Commun. 2014, 5, 5612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sattler, D.; Seliger, R.; Nehren, U.; de Torres, F.N.; da Silva, A.S.; Raedig, C.; Hissa, H.R.; Heinrich, J. Pasture Degradation in South East Brazil: Status, Drivers and Options for Sustainable Land Use Under Climate Change. In Climate Change Management; Springer: Cham, Switzerland, 2018; pp. 3–17. [Google Scholar] [CrossRef]
- Wilmer, H.; Augustine, D.J.; Derner, J.D.; Fernández-Giménez, M.E.; Briske, D.D.; Roche, L.M.; Tate, K.W.; Miller, K.E. Diverse Management Strategies Produce Similar Ecological Outcomes on Ranches in Western Great Plains: Social-Ecological Assessment. Rangel. Ecol. Manag. 2018, 71, 626–636. [Google Scholar] [CrossRef]
- Sánchez-Romero, R.; Balvanera, P.; Castillo, A.; Mora, F.; García-Barrios, L.E.; González-Esquivel, C.E. Management strategies, silvopastoral practices and socioecological drivers in traditional livestock systems in tropical dry forests: An integrated analysis. For. Ecol. Manag. 2021, 479, 118506. [Google Scholar] [CrossRef]
- Bennett, N.J.; Roth, R.; Klain, S.C.; Chan, K.; Christie, P.; Clark, D.A.; Cullman, G.; Curran, D.; Durbin, T.J.; Epstein, G.; et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Conserv. 2017, 205, 93–108. [Google Scholar] [CrossRef] [Green Version]
- Santos Martin, F.; van Noordwijk, M. Is native timber tree intercropping an economically feasible alternative for smallholder farmers in the Philippines? Aust. J. Agric. Resour. Econ. 2011, 55, 257–272. [Google Scholar] [CrossRef] [Green Version]
- Knoke, T.; Calvas, B.; Moreno, S.O.; Onyekwelu, J.C.; Griess, V.C. Food production and climate protection-What abandoned lands can do to preserve natural forests. Glob. Environ. Chang. 2013, 23, 1064–1072. [Google Scholar] [CrossRef]
Variables | Description |
---|---|
Sociodemographic characteristics | |
Settlement, y | Year of settlement of the farm |
Ethnicity, % | Household head is Kichwa (0/1) |
Household size, n° | Number of household members |
Household labor, n° | Number of household members working on the farm |
Generational replacement, % | What percentage of children consider continuing with the activity in the future and what percentage, on the contrary, consider leaving the occupation? |
Age of household head, y | Age of household head in years |
Without regulated education, % | Percent of household heads without formal education |
Primary education, % | Percent of household heads with at least formal primary education |
Secondary education, % | Percent of household heads with at least formal secondary education |
Land-use | |
Pastureland, ha | Pasture area per farm |
Cropland, ha | Crop area per farm |
Remaining forest land, ha | Land for forest |
Total land, ha | Total surface per farm |
Forage types | Percentage of grass and legume species in each farm |
Structure and economic performance | |
Total animal units, UA | Total animals by household. Animals of different categories are included |
Breeds | Type of cattle used. Most frequent breeds in each farm |
Total investment, $ | Total household investment amount in livestock and facilities without amortization |
Total gross income, $ | Total gross income from livestock. Total costs (fixed and variables) were considered |
Net profit, $ | Total net profit from livestock |
Variables | Elevational Gradients (Zones) | Statistical Test | |||
---|---|---|---|---|---|
Low | Medium | High | F-Snedecor | p-Value 1 | |
Sociodemographic characteristics | |||||
Average elevation, masl | 543.1 a | 1114.1 b | 1778.0 c | 816.58 | 0.001 |
Settlement, y | 1975 | 1984 | 1952 | 0.58 | n.s. |
Ethnicity, % | 0.0 | 56.1 | 0.0 | 0.43 | 0.001 |
Household size, n° | 5.56 a,b | 6.70 a | 5.04 b | 1.04 | 0.01 |
Household labor, n° | 2.63 | 3.00 | 2.32 | 0.75 | n.s |
Generational replacement (Yes, %) | 56.1 a, | 78.9 b | 56.6 a | 8.73 | 0.01 |
Age of household head, y | 54.79 | 56.77 | 57.60 | 0.71 | n.s. |
Without regulated education, % | 8.8 | 15.8 | 3.8 | 4.83 | n.s. |
Primary education, % | 61.4 | 47.4 | 28.3 | 12.46 | 0.002 |
Secondary education, % | 22.8 | 24.6 | 49.1 | 11.57 | 0.003 |
Land-use | |||||
Pastureland, ha | 26.8 ± 19.2 | 27.2 ± 28.6 | 22.5 ± 17.2 | 18.49 | 0.001 |
Crops land, ha | 1.6 a ± 1.9 | 2.2 a ± 3.3 | 0.4 b ± 1.1 | 17.32 | 0.001 |
Remaining forest land, ha | 20.1 a,b ± 29.8 | 32.9 a ± 56.2 | 12.2 b ± 28.1 | 22.35 | 0.05 |
Total land, ha | 47.3 a,b ± 42.1 | 62.4 a ±70.6 | 35.2 b ± 40.2 | 0.73 | 0.05 |
Forage | |||||
Grasses, % | 60 | 86.7 | 91.7 | 77.82 | 0.05 |
Legumes, % | 40 | 13.3 | 8.3 | 12.10 | 0.05 |
Economic performance | |||||
Total animal unit, UA | 24.2 a ± 13.8 | 18.8 a,b ± 17.1 | 30.4 b ± 21.8 | 5.82 | 0.01 |
Breeds | Creole, Charoles, Santa Gertrudis and Jersey | Creole, Brown Swiss and Brahman | Holstein and Normando | ||
Total investment, $ | 1709.9 b ± 1547.1 | 1555.8 b± 1403.7 | 4307.3 a ± 2814.7 | 32.42 | 0.001 |
Total gross income, $ | 2762.7 b ± 3038.1 | 3415.1 b ± 4939.6 | 19,042.6 a ± 26,204.6 | 20.11 | 0.001 |
Net profit, $ | 1052.7 b ± 3259.3 | 1859.3 b ± 4682.1 | 14,735.3 a ± 25,120.3 | 15.15 | 0.001 |
Components | Best Management Practices (BMPs) | Low Zone | Medium Zone | High Zone |
---|---|---|---|---|
1. Improvement of livestock management | Farm planning | ✓✓✓ | ✓✓✓ | ✓✓✓ |
Implementation of accounting registers | ✓✓ | ✓✓ | ✓✓ | |
Implement compensation area | ✓ | ✓ | ✓ | |
Implementation of fences with sheds | ✓✓ | ✓✓ | ✓✓ | |
Improvement of animal diet with salt minerals and dietary supplements | ✓✓✓ | ✓✓✓ | ✓✓✓ | |
2. Rehabilitation of pasturelands | Planting of new trees in degraded and non-degraded pasturelands | ✓✓✓ | ✓✓✓ | ✓✓✓ |
Establishment of tree nucleation around grazing areas 1 | ✓✓ | ✓✓ | ✓✓ | |
Establishment of live fences around grazing areas | ✓ | ✓ | ✓ | |
3. Pasture area restoration | Forest plantations | ✓✓✓ | ✓✓✓ | - |
Active restoration | ✓✓ | ✓✓ | - | |
Passive restoration | ✓✓ | ✓✓ | - | |
Agroforestry system | ✓ | ✓ | - | |
Chakra system | ✓✓✓ | ✓✓✓ | - | |
4. Implementation of waste-management systems | Artisanal lombriculture | ✓ | ✓ | ✓ |
Compost area | ✓✓✓ | ✓✓✓ | ✓✓✓ | |
Semi-artisanal biodigesters | ✓✓ | ✓✓ | ✓✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, B.; Eche, D.; Torres, Y.; Bravo, C.; Velasco, C.; García, A. Identification and Assessment of Livestock Best Management Practices (BMPs) Using the REDD+ Approach in the Ecuadorian Amazon. Agronomy 2021, 11, 1336. https://doi.org/10.3390/agronomy11071336
Torres B, Eche D, Torres Y, Bravo C, Velasco C, García A. Identification and Assessment of Livestock Best Management Practices (BMPs) Using the REDD+ Approach in the Ecuadorian Amazon. Agronomy. 2021; 11(7):1336. https://doi.org/10.3390/agronomy11071336
Chicago/Turabian StyleTorres, Bolier, David Eche, Yenny Torres, Carlos Bravo, Christian Velasco, and Antón García. 2021. "Identification and Assessment of Livestock Best Management Practices (BMPs) Using the REDD+ Approach in the Ecuadorian Amazon" Agronomy 11, no. 7: 1336. https://doi.org/10.3390/agronomy11071336
APA StyleTorres, B., Eche, D., Torres, Y., Bravo, C., Velasco, C., & García, A. (2021). Identification and Assessment of Livestock Best Management Practices (BMPs) Using the REDD+ Approach in the Ecuadorian Amazon. Agronomy, 11(7), 1336. https://doi.org/10.3390/agronomy11071336