Forage Potential of Non-Native Guinea Grass in North African Agroecosystems: Genetic, Agronomic, and Adaptive Traits
Abstract
:1. Introduction
2. Morphology, Management, and Production
3. Allelopathic Effect
4. Apomixis and Polyploidy Levels
5. Guinea Grass and Drought
6. Guinea Grass and Salinity
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simon, B.K.; Jacobs, S.W.L. Megathyrsus, a new generic name for Panicum subgenus Megathyrsus. Austrobaileya 2003, 6, 571–574. [Google Scholar]
- Sánchez-Moreiras, A.M.; Weiss, O.A.; Reigosa-Roger, M.J. Allelopathic evidence in the Poaceae. Bot. Rev. 2003, 69, 300–319. [Google Scholar] [CrossRef]
- Heywood, V.H.; Moore, D.M.; Richardson, I.B.K.; Stearn, W.T. Flowering Plants of the World; Oxford University Press: Oxford, UK, 1978; Volume 336. [Google Scholar]
- Favaretto, A.; Scheffer-Basso, S.M.; Perez, N.B. Allelopathy in Poaceae species present in Brazil. A review. Agron. Sustain. Dev. 2018, 38, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Savidan, Y.; Pernès, J. Diploid-tetraploid-dihaploid cycles and the evolution of Panicum maximum Jacq. Evolution 1982, 36, 596–600. [Google Scholar] [PubMed]
- Aganga, A.A.; Tshwenyane, S. Potentials of guinea grass (Panicum maximum) as forage crop in livestock production. Pak. J. Nutr. 2004, 3, 1–4. [Google Scholar]
- de Sousa, A.C.B.; Jank, L.; de Campos, T.; Sforça, D.A.; Zucchi, M.I.; de Souza, A.P. Molecular diversity and genetic structure of guineagrass (Panicum maximum Jacq.), a tropical pasture grass. Trop. Plant Biol. 2011, 4, 185–202. [Google Scholar] [CrossRef]
- Nakajima, K.; Komatsu, T.; Mochizuki, N.; Suzuki, S. Isolation of diploid and tetraploid sexual plants in guineagrass (Panicum maximum Jacq.). Jpn. J. Breed. 1979, 29, 228–238. [Google Scholar] [CrossRef] [Green Version]
- Duke, J.A. Panicum maximum Jacq. (Poaceae: Guineagrass, Hamilgrass). 1983. Available online: http//www.hort.purdue.edu/newcrop/duke_energy/Panicum_maximum.html (accessed on 10 April 2021).
- Smith, R.L. Seed dormancy in Panicum maximum Jacq. Trop. Agric. 1979, 56, 233–239. [Google Scholar]
- Jank, L. Melhoramento e seleção de variedades de Panicum maximum. In Proc 12 th Simposio Sobre Manejo da Pastagem; FEALQ: Piracicaba, Brazil, 1995; pp. 21–58. [Google Scholar]
- Batistoti, C.; Lempp, B.; Jank, L.; Morais, M.D.G.; Cubas, A.C.; Gomes, R.A.; Ferreira, M.V.B. Correlations among anatomical, morphological, chemical and agronomic characteristics of leaf blades in Panicum maximum genotypes. Anim. Feed Sci. Technol. 2012, 171, 173–180. [Google Scholar] [CrossRef]
- Savidan, Y. Chromosomal and embryological analyses in sexual x apomictic hybrids of Panicum maximum jacq. Theor. Appl. Genet. 1980, 58, 153–156. [Google Scholar] [CrossRef]
- Jank, L.; Calixto, S.; Costa, J.C.G.; Savidan, Y.H.; Curvo, J.B.E. Catalog of the characterization and evaluation of the Panicum maximum germplasm: Morphological description and agronomical performance. Campo Grande Embrapa Gado de Corte 1997, 68, 53. [Google Scholar]
- Hare, M.D.; Phengphet, S.; Songsiri, T.; Sutin, N. Botanical and agronomic growth of two Panicum maximum cultivars, Mombasa and Tanzania, at varying sowing rates. Trop. Grasslands-Forrajes Trop. 2014, 2, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Jank, L.; Costa, J.C.G.; Savidan, Y.H.; do Valle, C.B. New Panicum maximum Cultivars for Diverse Ecosystems in Brazil. In Proceedings of the 17th International Grassland Congress, Palmerston, New Zealand, 8–21 February 1993. [Google Scholar]
- Deddabi, O.S.; Montemurro, C.; Ben Maachia, S.; Ben Amar, F.; Fanelli, V.; Gadaleta, S.; El Riachy, M.; Chehade, A.; Siblini, M.; Boucheffa, S.; et al. A Hot Spot of Olive Biodiversity in the Tunisian Oasis of Degache. Diversity 2020, 12, 358. [Google Scholar] [CrossRef]
- Ecoport. Available online: http://www.ecoport.org (accessed on 12 April 2021).
- Shashikanth, V.S.; Shekara, B.G.; Somashekhar, K.S.; Krishnappa, M.R. performance of guinea grass varieties in southern dry zone of Karnataka. Forage Res. 2013, 39, 147–149. [Google Scholar]
- Dahipahle, A.V.; Bhagat, S.B.; Shinde, D.B.; Mahadkar, U.V.; Gangawane, S.B. Performance of Guinea Grass Varieties in North Konkan Zone of Maharashtra. In Proceedings of the 23rd International Grassland Congress (Sustainable use of Grassland Resources for Forage Production, Biodiversity and Environmental Protection), New Delhi, India, 20–24 November 2015. [Google Scholar]
- Cook, B.G.; Pengelly, B.C.; Brown, S.D.; Donnelly, J.L.; Eagles, D.A.; Franco, M.A.; Hanson, J.; Mullen, B.F.; Partridge, I.J.; Peters, M. Tropical Forages: An Interactive Selection Tool; CSIRO/DPI&F/CIAT/ILRI: Brisbane, Australia, 2005. [Google Scholar]
- FAOG Index. A Searchable Catalogue of Grass and Forage Legumes; FAO: Rome, Italy, 2010. [Google Scholar]
- Adeyemi, I.G.; Soetan, K.O. Preliminary Investigation of Some Serum Biochemical Parameters of Confined Nigerian Cattle Breeds in Ibadan, South-West Nigeria Fed with Some Conventional and Non-Conventional Feedstuffs. Food Sci. Qual. Manag. 2018, 77, 59–65. [Google Scholar]
- Phimmasan, H. Evaluation of Tropical Forages as Feeds for Growing Rabbits. Master’s Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2005. [Google Scholar]
- Sarwatt, S.V.; Mussa, M.A.; Kategile, J.A. The nutritive value of ensiled forages cut at three stages of growth. Anim. Feed Sci. Technol. 1989, 22, 237–245. [Google Scholar] [CrossRef]
- Da Silveira, M.C.T.; Júnior, D.N.; Da Cunha, B.A.L.; Difante, G.S.; Pena, K.S.; Da Silva, S.C.; Sbrissia, A.F. Effect of cutting interval and cutting height on morphogenesis and forage accumulation of guinea grass (Panicum maximum). Trop. Grasslands 2010, 44, 103–108. [Google Scholar]
- Da Silva, S.C.; Bueno, A.A.O.; Carnevalli, R.A.; Silva, G.P.; Chiavegato, M.B. Nutritive value and morphological characteristics of Mombaça grass managed with different rotational grazing strategies. J. Agric. Sci. 2019, 157, 592–598. [Google Scholar] [CrossRef]
- Muir, J.P.; Jank, L. Guineagrass. Warm-Season (C4) Grasses 2004; The American Society of Agronomy: Madison, WI, USA, 2004; Volume 45, pp. 589–621. [Google Scholar]
- Fernandes, F.D.; Ramos, A.K.B.; Jank, L.; Carvalho, M.A.; Martha, G.B., Jr.; Braga, G.J. Forage yield and nutritive value of Panicum maximum genotypes in the Brazilian savannah. Sci. Agric. 2014, 71, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Freitas, K.R.; Rosa, B.; Ruggiero, J.A.; do Nascimento, J.L.; Heinemam, A.B.; Macedo, R.F.; Naves, M.A.T.; de Oliveira, I.P. Avaliação da composição químico-bromatológica do capim Mombaça (Panicum maximum Jacq.) submetido a diferentes doses de nitrogênio. Biosci. J. 2007, 23, 1–10. [Google Scholar]
- Benvenutti, M.A.; Gordon, I.J.; Poppi, D.P.; Crowther, R.; Spinks, W.; Moreno, F.C. The horizontal barrier effect of stems on the foraging behaviour of cattle grazing five tropical grasses. Livest. Sci. 2009, 126, 229–238. [Google Scholar] [CrossRef]
- Deinum, B.; Sulastri, R.D.; Zeinab, M.H.J.; Maassen, A. Effects of light intensity on growth, anatomy and forage quality of two tropical grasses (Brachiaria brizantha and Panicum maximum var. trichoglume). NJAS Wageningen J. Life Sci. 1996, 44, 111–124. [Google Scholar] [CrossRef]
- Cecato, U.; Machado, A.O.; Martins, E.N.; Pereira, L.A.F.; Barbosa, M.A.A.D.F.; dos Santos, G.T. Evaluation of production and any physiological characteristics of genotypes of Panicum maximum Jacq. under two cutting heights. Rev. Bras. Zootec. 2000, 29, 660–668. [Google Scholar] [CrossRef] [Green Version]
- Johnson, W.L.; Ordoveza, A.L.; Hardison, W.A.; Castillo, L.S. The nutritive value of Panicum maximum (Guinea grass) II. Digestibility by cattle and water buffaloes, related to season and herbage growth stage. J. Agric. Sci. 1967, 69, 161–170. [Google Scholar] [CrossRef]
- Rokomatu, I.; Aregheore, E.M. Effects of supplementation on voluntary dry matter intake, growth and nutrient digestibility of the Fiji Fantastic sheep on a basal diet of Guinea grass (Panicum maximum). Livest. Sci. 2006, 100, 132–141. [Google Scholar] [CrossRef]
- Khan, N.A.; Farooq, M.W.; Ali, M.; Suleman, M.; Ahmad, N.; Sulaiman, S.M.; Cone, J.W.; Hendriks, W.H. Effect of species and harvest maturity on the fatty acids profile of tropical forages. JAPS 2015, 25, 739–746. [Google Scholar]
- Hare, M.D.; Tatsapong, P.; Phengphet, S. Herbage yield and quality of Brachiaria cultivars, Paspalum atratum and Panicum maximum in north-east Thailand. TG Trop. Grasslands 2009, 43, 65. [Google Scholar]
- Hare, M.D.; Phengphet, S.; Songsiri, T.; Sutin, N. Effect of nitrogen on yield and quality of Panicum maximum cvv. Mombasa and Tanzania in Northeast Thailand. Trop. Grasslands-Forrajes Trop. 2015, 3, 27–33. [Google Scholar] [CrossRef]
- Paciullo, D.S.C.; Gomide, C.A.D.M.; de Castro, C.R.T.; Maurício, R.M.; Fernandes, P.B.; Morenz, M.J.F. Morphogenesis, biomass and nutritive value of Panicum maximum under different shade levels and fertilizer nitrogen rates. Grass Forage Sci. 2017, 72, 590–600. [Google Scholar] [CrossRef] [Green Version]
- Ajayi, F.T.; Babayemi, O.J.; Taiwo, A.A. Effects of supplementation of Panicum maximum with four herbaceous forage legumes on performance, nutrient digestibility and nitrogen balance in West African dwarf goats. Anim. Sci. J. 2008, 79, 673–679. [Google Scholar] [CrossRef]
- Galindo, F.S.; Buzetti, S.; Teixeira Filho, M.C.M.; Dupas, E. Rates and sources of nitrogen fertilizer application on yield and quality of Panicum maximum cv. Mombasa. Idesia 2019, 37, 67–73. [Google Scholar] [CrossRef]
- Jimoh, S.O.; Amisu, A.A.; Dele, P.A.; Ojo, V.O.A.; Adeyemi, T.A.; Olanite, J.A. Effects of Animal Manures and Cutting Height on the Chemical Composition of Two Panicum maximum Varieties (Local and Ntchisi) Harvested at Different Stages of Growth. Pertanika J. Trop. Agric. Sci. 2019, 42, 359–3769. [Google Scholar]
- Brown, W.F.; Adjei, M.B. Urea ammoniation effects on the feeding value of guineagrass (Panicum maximum) hay. J. Anim. Sci. 1995, 73, 3085–3093. [Google Scholar] [CrossRef]
- Pieterse, P.A.; Rethman, N.F.G.; Van Bosch, J. Production, water use efficiency and quality of four cultivars of Panicum maximum at different levels of nitrogen fertilisation. Trop. Grasslands 1997, 31, 17–123. [Google Scholar]
- Adebisi, I.A.; Ajibike, A.B.; Muraina, T.O.; Alalade, J.A.; Oladepo, O. Performance and Nutrient Digestibility of West African Dwarf goats fed Panicum maximum supplemented with Gmelina arborea leaves mixture. Niger. J. Anim. Sci. 2016, 18, 518–524. [Google Scholar]
- Abdi, H.; Tessema, Z.; Mengistu, U.; Sisay, F. Effect of nitrogen fertilizer application on nutritive value of Cenchrus ciliaris and Panicum maximum grown under irrigation at Gode, Somali Region. J. Nutr. Food Sci. 2015, S11, 1–6. [Google Scholar] [CrossRef]
- Braz, T.G.D.S.; Martuscello, J.A.; Jank, L.; da Fonseca, D.M.; Resende, M.D.V.; Evaristo, A.B. Genotypic value in hybrid progenies of Panicum maximum Jacq. Ciência Rural 2017, 47. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, E.B.; Carneiro, M.S.D.S.; Furtado, R.N.; Lopes, M.N.; Braga, M.D.M. Chemical composition of Panicum maximum ‘BRS Zuri’subjected to levels of salinity and irrigation depths. Revista Ciência Agronômica 2020, 51. [Google Scholar] [CrossRef]
- Fajemilehin, S.O.K.; Babayemi, O.J.; Fagbuaro, S.S. Effect of anhydrous magnesium sulphate fertilizer and cutting frequency on yield and chemical composition of Panicum maximum. African J. Biotechnol. 2008, 7, 907–911. [Google Scholar]
- Reigosa, M.J.; Sánchez-Moreiras, A.; González, L. Ecophysiological approach in allelopathy. Crit. Rev. Plant Sci. 1999, 18, 577–608. [Google Scholar] [CrossRef]
- Chou, C.-H. Allelopathic researches in the subtropical vegetation in Taiwan. Comp. Physiol. Ecol. 1980, 5, 222–234. [Google Scholar]
- Silva, A.C., Jr.; Goncalves, C.G.; Scarano, M.C.; Pereira, M.R.R.; Martins, D. Effect of glyphosate on guineagrass submitted to different soil water potential. Planta Daninha 2018, 36. [Google Scholar] [CrossRef]
- Hamza, H.; Jemni, M.; Benabderrahim, M.A.; Mrabet, A.; Touil, S.; Othmani, A.; Salah, M. Ben Date Palm Status and Perspective in Tunisia. In Date Palm Genetic Resources and Utilization; Springer Science & Bussines Media: Dordrecht, The Netherlands, 2015; pp. 193–221. [Google Scholar]
- Benabderrahim, M.A.; Elfalleh, W.; Belayadi, H.; Haddad, M. Effect of date palm waste compost on forage alfalfa growth, yield, seed yield and minerals uptake. Int. J. Recycl. Org. Waste Agric. 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Benabderrahim, M.A.; Guiza, M.; Haddad, M. Genetic diversity of salt tolerance in tetraploid alfalfa (Medicago sativa L.). Acta Physiol. Plant. 2020, 42, 1–11. [Google Scholar] [CrossRef]
- Young, C.C.; Chou, T.C. Autointoxication in residues of Asparagus officinalis L. Plant Soil 1985, 85, 385–393. [Google Scholar] [CrossRef]
- Nascimento, E.A.; Terrones, M.G.H.; Morais, S.A.L.; Chang, R.; Andrade, G.A.; Santos, D.Q.; Pereira, B.H.A. Allelopathic activity of Cenchrus echinatus L. extracts on weeds and crops. Allelopath. J. 2009, 24, 363–372. [Google Scholar]
- Jackson, J. Is there a relationship between herbaceous species richness and buffel grass (Cenchrus ciliaris)? Austral Ecol. 2005, 30, 505–517. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Warren, S.D.; Perry, J.L.; Giambelluca, T.W. Reassessment of revegetation strategies for Kaho’olawe Island, Hawai’i. Rangel. Ecol. Manag. Range Manag. Arch. 2000, 53, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Santiago-Hernández, F.; López-Ortiz, S.; Ávila-Reséndiz, C.; Jarillo-Rodríguez, J.; Pérez-Hernández, P.; de Dios Guerrero-Rodríguez, J. Physiological and production responses of four grasses from the genera Urochloa and Megathyrsus to shade from Meliaazedarach L. Agrofor. Syst. 2016, 90, 339–349. [Google Scholar] [CrossRef]
- Hojsgaard, D.; Hörandl, E. The rise of apomixis in natural plant populations. Front. Plant Sci. 2019, 10, 358. [Google Scholar] [CrossRef]
- Warmke, H.E. Apomixis in Panicum maximum. Am. J. Bot. 1954, 41, 5–11. [Google Scholar] [CrossRef]
- de Wet, J.M.J. Chromosome Numbers of a few South African Grasses. Cytologia 1954, 19, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Moffett, A.A.; Hurcombe, R. Chromosome numbers of South African grasses. Heredity 1949, 3, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Combes, D.; Pernes, J. Variations in chromosome numbers in Panicum maximum Jacq. in relation to method of reproduction. Compte Rendu Hebdomadaire Seances Academie Sciences 1970, 270, 782–785. [Google Scholar]
- Lara, L.A.D.C.; Santos, M.F.; Jank, L.; Chiari, L.; Vilela, M.D.M.; Amadeu, R.R.; dos Santos, J.P.R.; Pereira, G.D.S.; Zeng, Z.-B.; Garcia, A.A.F. Genomic Selection with Allele Dosage in Panicum maximum Jacq. G3 Genes Genomes Genet. 2019, 9, 2463–2475. [Google Scholar] [CrossRef] [Green Version]
- Hamed, Y.; Hadji, R.; Redhaounia, B.; Zighmi, K.; Bâali, F.; El Gayar, A. Climate impact on surface and groundwater in North Africa: A global synthesis of findings and recommendations. Euro-Mediterranean J. Environ. Integr. 2018, 3, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, M.E.; Páez, A. Effect of water deficit applied at different growth stages of Panicum maximum Jacq. Revista Facultad Agronomía Universidad Zulia 1996, 13, 79–93. [Google Scholar]
- Ng, T.T.; Wilson, J.R.; Ludlow, M.M. Influence of water stress on water relations and growth of a tropical (C4) grass, Panicum maximum var. trichoglume. Funct. Plant Biol. 1975, 2, 581–595. [Google Scholar] [CrossRef]
- Wilson, J.R.; Ng, T.T. Influence of water stress on parameters associated with herbage quality of Panicum maximum var. trichoglume. Aust. J. Agric. Res. 1975, 26, 127–136. [Google Scholar] [CrossRef]
- Ludlow, M.M.; Ng, T.T. Leaf elongation rate in Panicum maximum var. trichoglume following removal of water stress. Funct. Plant Biol. 1977, 4, 263–272. [Google Scholar] [CrossRef]
- Borjas-Ventura, R.; Alves, L.R.; de Oliveira, R.; Martínez, C.A.; Gratão, P.L. Impacts of warming and water deficit on antioxidant responses in Panicum maximum Jacq. Physiol. Plant. 2019, 165, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Viciedo, D.O.; de Mello Prado, R.; Martínez, C.A.; Habermann, E.; de Cássia Piccolo, M. Short-term warming and water stress affect Panicum maximum Jacq. stoichiometric homeostasis and biomass production. Sci. Total Environ. 2019, 681, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Páez, A.; González, O.M.E.; Yrausquín, X.; Salazar, A.; Casanova, A. Water stress and clipping management effects on guineagrass: I. Growth and biomass allocation. Agron. J. 1995, 87, 698–706. [Google Scholar] [CrossRef]
- Klar, A.E.; Usberti, J.A., Jr.; Henderson, D.W. Differential Responses of Guinea Grass Populations to Drought Stress 1. Crop Sci. 1978, 18, 853–857. [Google Scholar] [CrossRef]
- de Souza, É.M.; Isepon, O.J.; Alves, J.B.; Bastos, J.F.P.; Lima, R.C. Effects of irrigation and nitrogen fertilization on dry matter yield of Panicum maximum cultivars. Rev. Bras. Zootec. 2005, 34, 1146–1155. [Google Scholar]
- Carnevalli, R.A.; Da Silva, S.C.; Bueno, A.A.D.O.; Uebele, M.C.; Bueno, F.O.; Hodgson, J.; Silva, G.N.; Morais, J.P.G. Herbage production and grazing losses in Panicum maximum cv. Mombaça under four grazing managements. Trop. Grasslands 2006, 40, 165. [Google Scholar]
- de Araujo, L.C.; Santos, P.M.; Rodriguez, D.; Pezzopane, J.R.M. Key factors that influence for seasonal production of Guinea grass. Sci. Agric. 2018, 75, 191–196. [Google Scholar] [CrossRef] [Green Version]
- de Jesus, F.L.F.; Sanches, A.C.; de Souza, D.P.; Mendonça, F.C.; Gomes, E.P.; Santos, R.C.; Santos, J.E.O.; da Silva, J.L.B. Seasonality of biomass production of irrigated Mombaça ‘Guinea grass’. Acta Agric. Scand. Sect. B Soil Plant Sci. 2021, 1–9. [Google Scholar] [CrossRef]
- Mendoza-Labrador, J.; Romero-Perdomo, F.; Hernández, J.-P.; Uribe, D.; Buitrago, R.B. Enhancement of drought tolerance on guinea grass by dry alginate macrobeads as inoculant of Bacillus strains. bioRxiv 2019, 761056. [Google Scholar] [CrossRef]
- Kissmann, K.G.; Groth, D. Plantas Infestantes e Nocivas–Tomo 1; BASF Brasileira SA: São Paulo, Brazil, 1997. [Google Scholar]
- Hussain, T.; Koyro, H.-W.; Zhang, W.; Liu, X.; Gul, B.; Liu, X. Low Salinity Improves Photosynthetic Performance in Panicum antidotale Under Drought Stress. Front. Plant Sci. 2020, 11, 481. [Google Scholar] [CrossRef]
- Malaviya, D.R.; Roy, A.K.; Anand, A.; Choubey, R.N.; Baig, M.J.; Dwivedi, K.; Kushwaha, N.; Kaushal, P. Salinity tolerance of Panicum maximum genotypes for germination and seedling growth. Range Manag. Agrofor. 2019, 40, 227–235. [Google Scholar]
- Ashraf, M. Relationships between leaf gas exchange characteristics and growth of differently adapted populations of Blue panicgrass (Panicum antidotale Retz.) under salinity or waterlogging. Plant Sci. 2003, 165, 69–75. [Google Scholar] [CrossRef]
- Sawen, D.; Lekitoo, M.N.; Kayadoe, M.; Yoku, O.; Djunaedi, M. Respon Produksi Rumput Gajah (Pennisetum purpureum), Benggala (Panicum maximum) dan Setaria (Setaria spacelata) terhadap Perbedaan Salinitas. Jurnal Riset Agribisnis Dan Peternakan 2020, 5, 20–29. [Google Scholar] [CrossRef]
- Da Silva, E.B. Composição Mineral e Química em Panicum Maximum cv. brs Zuri Submetida a Diferentes Níveis de Salinidade e Lâminas de Irrigação. Ph.D. Thesis, Universidade Federal do Ceará, Fortaleza, Brasil, 2017. [Google Scholar]
- Alfaidi, M.A.; Al-Toukhy, A.A.; Al-Zahrani, H.S.; Howladar, M.M. Effect of irrigation by magnetized sea water on guinea grass (Panicum maximum) leaf content of chlorophyll a, b, carotenoids, Pigments, protein & proline. Adv. Environ. Biol. 2017, 11, 73–84. [Google Scholar]
- Kusmiyati, F. Turnitin-Nfluence of Rice Straw Mulch on Saline Soil: Forage Production, Feed Quality and Feed Intake by Sheep. J. ISAAS 2018, 22, 42–51. [Google Scholar]
DM | CP | Ashes | NDF | ADF | ADL | Main Characteristics | Ref. |
---|---|---|---|---|---|---|---|
44.9 | 8.2 | 11.3 | 69.5 | 44.9 | 12 | Stems and leaves | [35] |
25.6 | 16.8 | 12.3 | 33 | 60.4 | - | Early Maturity. Stem and leaves | [36] |
36.1 | 16.7 | 14.1 | 35.9 | 60.9 | - | Medium Maturity. stem and leaves | [36] |
- | - | - | 61.2 | 32.5 | - | 1st Harvest. Stem and leaves. cv. Gatton | [6] |
- | 10.4 | - | 65.5 | 38.1 | - | Leaf. cv. Purple | [37] |
- | 6.7 | - | 69.7 | 42.6 | - | Stem. cv. Purple | [37] |
- | 6.1 | - | 67.9 | 36.3 | - | Leaf. cv. Mombaca (20 kg N/ha) | [38] |
- | 2.8 | - | 69.3 | 41.6 | - | Stem. cv. Mombaca (20 kg N/ha) | [38] |
- | - | - | 65.77 | 34.71 | - | Leaf. cv. Massai | [39] |
- | - | - | 63.31 | 30.31 | - | Leaf. cv. Tanzania | [39] |
38.49 | 8.74 | 9.78 | 64.28 | 39.14 | 9.67 | - | [40] |
- | 14.4 | - | 74.3 | 37.1 | - | Leaf and Stem. cv. Mombaca. 1st Year | [29] |
- | 12.4 | - | 73.1 | 36.9 | - | Leaf and Stem. cv. Mombaca. 2nd Year | [29] |
- | 9.5 | - | 70.6 | 39.8 | - | cv. Mombaca. Summer. Without nitrogen fertilization | [41] |
- | 12.1 | - | 68.2 | 34.8 | - | cv. Mombaca. Winter. Without nitrogen fertilization) | [41] |
- | 9.7 | - | 65.44 | 47.63 | 13.89 | Average of three harvest times (8. 10 and 12 weeks) | [42] |
- | 4.3 | - | 75.5 | 48.9 | 10.6 | Stem and leaves | [43] |
- | - | - | 62.13 | 31.19 | - | Mean of three harvest of cv. Gatton | [44] |
32.80 | 5.3 | 3.3 | 66 | - | - | - | [45] |
- | 16.73 | 11.82 | 67.68 | 46.54 | 9.21 | Stem and leaves. field trial under irrigation | [46] |
- | 13.4 | - | 72.91 | 38.62 | - | Hybrid of guinea grass progenies. overall mean | [47] |
- | 11.11 | - | 58.57 | 29.1 | - | Irrigated with saline water (3 dSm-1) | [48] |
- | 7.17 | - | 62.38 | 41.42 | - | Unfertilized (Mg) at 3 weeks cutting interval | [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benabderrahim, M.A.; Elfalleh, W. Forage Potential of Non-Native Guinea Grass in North African Agroecosystems: Genetic, Agronomic, and Adaptive Traits. Agronomy 2021, 11, 1071. https://doi.org/10.3390/agronomy11061071
Benabderrahim MA, Elfalleh W. Forage Potential of Non-Native Guinea Grass in North African Agroecosystems: Genetic, Agronomic, and Adaptive Traits. Agronomy. 2021; 11(6):1071. https://doi.org/10.3390/agronomy11061071
Chicago/Turabian StyleBenabderrahim, Mohamed Ali, and Walid Elfalleh. 2021. "Forage Potential of Non-Native Guinea Grass in North African Agroecosystems: Genetic, Agronomic, and Adaptive Traits" Agronomy 11, no. 6: 1071. https://doi.org/10.3390/agronomy11061071