Applications and Development of LEDs as Supplementary Lighting for Tomato at Different Latitudes
Abstract
1. Introduction
2. LED and Light Spectra
3. Photosynthetic Photon Flux Density (PPFD) and Daily Light Integral (DLI)
4. Toplighting (Overhead) and/or Interlighting (Intracanopy)
5. Light-Emitting Diode Development
6. Greenhouse Technology in Different Climatic Regions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, D.; Meinke, H.; Wilson, M.; Marcelis, L.F.M.; Heuvelink, E. Towards delivering on the sustainable development goals in greenhouse production systems. Resour. Conserv. Recycl. 2021, 169, 105379. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: San Francisco, CA, USA, 2015. [Google Scholar]
- Pinho, P.; Halonen, L. Influence of Light on Plant Growth and Development. Handb. Adv. Light. Technol. 2014, 1–14. [Google Scholar] [CrossRef]
- Gupta, S.D.; Agarwal, A. Artificial Lighting System for Plant Growth and Development: Chronological Advancement, Working Principles, and Comparative Assessment. In Light Emitting Diodes for Agriculture; Springer: Singapore, 2017; pp. 1–25. [Google Scholar] [CrossRef] [PubMed]
- Tamulaitis, G.; Duchovskis, P.; Bliznikas, Z.; Breivė, K.; Ulinskaite, R.; Brazaityte, A.; Novičkovas, A.; Žukauskas, A. High-power light-emitting diode based facility for plant cultivation. J. Phys. D Appl. Phys. 2005, 38, 3182–3187. [Google Scholar] [CrossRef]
- Fankhauser, C.; Chory, J. Light control of plant development. Annu. Rev. Cell Dev. Biol. 1997, 13, 203–229. [Google Scholar] [CrossRef]
- Batschauer, A. Photoreceptors of higher plants. Planta 1998, 206, 479–492. [Google Scholar] [CrossRef] [PubMed]
- Briggs, W.R.; Beck, C.F.; Cashmore, A.R.; Christie, J.M.; Hughes, J.; Jarillo, J.A.; Kagawa, T.; Kanegae, H.; Liscum, E.; Nagatani, A.; et al. The Phototropin Family of Photoreceptors. Plant Cell 2001, 13, 993–999. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Kozai, T.; Niu, G.; Zhang, X. Light-Emitting Diodes for Horticulture. In Light-Emitting Diodes; Solid State Lighting Technology and Application Series; Li, J., Zhang, G.Q., Eds.; Springer: Cham, Switzerland, 2019; Volume 4, ISBN 9783319992112. [Google Scholar]
- Bula, R.J.; Morrow, R.C.; Tibbitts, T.W.; Barta, D.J. Light-emitting Diodes as a Radiation Source for Plants. Am. Soc. Hortic. Sci. 1991, 26, 203–205. [Google Scholar] [CrossRef]
- Loi, M.; Villani, A.; Paciolla, F.; Mul, G.; Paciolla, C. Challenges and Opportunities of Light-Emitting Diode ( LED ) as Key to Modulate Antioxidant Compounds in Plants. A Review. Antioxidant 2021, 10, 42. [Google Scholar] [CrossRef]
- Bula, R.J.; Morrow, R.C.; Tibbitts, T.W.; Corey, R.B. Technology for subsystems of space- based plant growth facilities. In Controlled Ecological Life Support System: CELSS ’89 Workshop; MacElroy, R.D., Ed.; NASA, Ames Research Center: Moffett Field, CA, USA, 1990; pp. 391–408, (NASA-TM-10277) (GWU 14369). [Google Scholar]
- Xu, Y.; Chang, Y.; Chen, G.; Lin, H. The research on LED supplementary lighting system for plants. Optik 2016, 127, 7193–7201. [Google Scholar] [CrossRef]
- Singh, D.; Basu, C.; Meinhardt-Wollweber, M.; Roth, B. LEDs for energy efficient greenhouse lighting. Renew. Sustain. Energy Rev. 2015, 49, 139–147. [Google Scholar] [CrossRef]
- Zhang, T.; Shi, Y.; Piao, F.; Sun, Z. Effects of different LED sources on the growth and nitrogen metabolism of lettuce. Plant Cell Tissue Organ Cult. 2018, 134, 231–240. [Google Scholar] [CrossRef]
- Matsuda, R.; Yamano, T.; Murakami, K.; Fujiwara, K. Effects of spectral distribution and photosynthetic photon flux density for overnight LED light irradiation on tomato seedling growth and leaf injury. Sci. Hortic. 2016, 198, 363–369. [Google Scholar] [CrossRef]
- Gomes, M.A.; Novais, S.M.V.; Abreu, C.M.; Nunes, A.B.; Almeida, J.S.; Valerio, M.E.G.; Macedo, Z.S. White light emission of CdSiO3:Gd,TM (TM=Ni, Cr) phosphors. Mater. Res. Bull. 2020, 126, 3–8. [Google Scholar] [CrossRef]
- Lu, N.; Maruo, T.; Johkan, M.; Hohjo, M. Effects of supplemental lighting with light-emitting diodes (Leds) on tomato yield and quality of single-truss tomato plants grown at high planting density. Environ. Control Biol. 2012, 50, 63–74. [Google Scholar] [CrossRef]
- Izzo, L.G.; Hay Mele, B.; Vitale, L.; Vitale, E.; Arena, C. The role of monochromatic red and blue light in tomato early photomorphogenesis and photosynthetic traits. Environ. Exp. Bot. 2020, 179, 104195. [Google Scholar] [CrossRef]
- Gomez, C.; Mitchell, C.A. Growth responses of tomato seedlings to different spectra of supplemental lighting. HortScience 2015, 50, 112–118. [Google Scholar] [CrossRef]
- Ouzounis, T.; Rosenqvist, E.; Ottosen, C.O. Spectral effects of artificial light on plant physiology and secondary metabolism: A review. HortScience 2015, 50, 1128–1135. [Google Scholar] [CrossRef]
- Javanmardi, J.; Emami, S. Response of Tomato and Pepper Transplants to Light Spectra Provided by Light Emitting Diodes. Int. J. Veg. Sci. 2013, 19, 138–149. [Google Scholar] [CrossRef]
- Wei, H.; Xiaoxiao, W.; Min, P.; Xiaoying, L.; Lijun, G.; Zhigang, X. Effect Different Spectral LED on Photosynthesis and Distribution of Photosynthate of Cherry Tomato Seedlings. In Proceedings of the 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Beijing, China, 1–3 November 2017; pp. 78–84. [Google Scholar]
- Garcia, C.; Lopez, R.G. Supplemental Radiation Quality Influences Cucumber, Tomato, and Pepper Transplant Growth and Development. HortScience 2020, 55, 804–811. [Google Scholar] [CrossRef]
- Zhen, S.; Bugbee, B. Far-red photons have equivalent efficiency to traditional photosynthetic photons: Implications for redefining photosynthetically active radiation. Plant Cell Environ. 2020, 43, 1259–1272. [Google Scholar] [CrossRef]
- Ji, Y.; Ouzounis, T.; Courbier, S.; Kaiser, E.; Nguyen, P.T.; Schouten, H.J.; Visser, R.G.F.; Pierik, R.; Marcelis, L.F.M.; Heuvelink, E. Far-red radiation increases dry mass partitioning to fruits but reduces Botrytis cinerea resistance in tomato. Environ. Exp. Bot. 2019, 168, 103889. [Google Scholar] [CrossRef]
- Hao, X.; Little, C.; Zheng, J.M.; Cao, R. Far-red LEDs improve fruit production in greenhouse tomato grown under high-pressure sodium lighting. Acta Hortic. 2016, 1134, 95–102. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Yang, Q.; LI, T. Overhead supplemental Far-red light stimulates tomato growth under intra-canopy lighting with LEDs. J. Integr. Agric. 2018, 17, 62–69. [Google Scholar] [CrossRef]
- Jiang, C.; Johkan, M.; Maruo, T.; Hohjo, M.; Tsukagoshi, S.; Ebihara, M.; Nakaminami, A. Effect of supplemental far-red light with blue and red LED lamps on leaf photosynthesis, stomatal regulation and plant development of protected cultivated tomato. Acta Hortic. 2018, 1227, 533–540. [Google Scholar] [CrossRef]
- Eguchi, T.; Hernández, R.; Kubota, C. Far-red and blue light synergistically mitigate intumescence injury of tomato plants grown under ultraviolet-deficit light environment. HortScience 2016, 51, 712–719. [Google Scholar] [CrossRef]
- Demotes-Mainard, S.; Péron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi-Travier, S.; Crespel, L.; Morel, P.; Huché-Thélier, L.; Boumaza, R.; et al. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Leoni, B.; Montesano, F.F.; Serio, F.; Signore, A.; Santamaria, P. Supplementary Far-Red Light Did Not Affect Tomato Plant Growth or Yield under Mediterranean Greenhouse Conditions. Agronomy 2020, 10, 1849. [Google Scholar] [CrossRef]
- Kaiser, E.; Ouzounis, T.; Giday, H.; Schipper, R.; Heuvelink, E.; Marcelis, L.F.M. Adding Blue to Red Supplemental Light Increases Biomass and Yield of Greenhouse-Grown Tomatoes, but Only to an Optimum. Front. Plant Sci. 2019, 9, 2002. [Google Scholar] [CrossRef]
- Deram, P.; Lefsrud, M.G.; Orsat, V. Supplemental lighting orientation and Red-to-Blue ratio of light-emitting diodes for greenhouse tomato production. HortScience 2014, 49, 448–452. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Paciello, P.; Santamaria, P. Supplemental LED Increases Tomato Yield in mediterranean Semi-Closed Greenhouse. Agronomy 2020, 10, 1353. [Google Scholar] [CrossRef]
- Barnes, C.; Tibbitts, T.; Sager, J.; Deitzer, G.; Bubenheim, D.; Koerner, G.; Bugbee, B. Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux. HortScience 1993, 28, 1197–1200. [Google Scholar] [CrossRef] [PubMed]
- Mechatronix PAR, PPF, YPF, PPFD and DLI. Available online: https://www.horti-growlight.com/par-ppf-ypf-ppfd-dli (accessed on 20 January 2021).
- Morgan, L. Daily Light Integral (DLI) and Greenhouse Tomato Production. Tomato Mag. 2013, pp. 10–15. Available online: https://www.specmeters.com/assets/1/7/2013_-_DLI_Greenhouse_Tomato1.pdf (accessed on 25 February 2021).
- Marcelis, L.F.M.; Broekhuijsen, A.G.M.; Meinen, E.; Nijs, E.M.F.M.; Raaphorst, M.G.M. Quantification of the growth response to light quantity of greenhouse grown crops. Acta Hortic. 2006, 711, 97–103. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, C.; Gao, L. Polychromatic Supplemental Lighting from underneath Canopy Is More Effective to Enhance Tomato Plant Development by Improving Leaf Photosynthesis and Stomatal Regulation. Front. Plant Sci. 2016, 7, 1–14. [Google Scholar] [CrossRef]
- Lanoue, J.; Leonardos, E.D.; Grodzinski, B. Effects of Light Quality and Intensity on Diurnal Patterns and Rates of Photo-Assimilate Translocation and Transpiration in Tomato Leaves. Front. Plant Sci. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Velez Ramirez, A.I.; Heuvelink, E.; van Ieperen, W.; Vreugdenhil, D.; Millenaar, F.F. Continuous Light as a way to increase Greenhouse Tomato Production. In Proceedings of the VIIth International Symposium on Light in Horticultural Systems, Wageningen, The Netherlands, 14–18 October 2012; Volume 956, pp. 51–58. [Google Scholar] [CrossRef]
- Demers, D.A.; Dorais, M.; Wien, C.H.; Gosselin, A. Effects of supplemental light duration on greenhouse tomato (Lycopersicon esculentum Mill.) plants and fruit yields. Sci. Hortic. 1998, 74, 295–306. [Google Scholar] [CrossRef]
- Hikosaka, S.; Iyoki, S.; Hayakumo, M.; Goto, E. Effects of light intensity and amount of supplemental LED lighting on photosynthesis and fruit growth of tomato plants under artificial conditions. J. Agric. Meteorol 2013, 69, 93–100. [Google Scholar] [CrossRef]
- Wei, H.; Zhao, J.; Hu, J.; Jeong, B.R. Effect of supplementary light intensity on quality of grafted tomato seedlings and expression of two photosynthetic genes and proteins. Agronomy 2019, 9, 339. [Google Scholar] [CrossRef]
- Fan, X.X.; Xu, Z.G.; Liu, X.Y.; Tang, C.M.; Wang, L.W.; Han, X. lin Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci. Hortic. 2013, 153, 50–55. [Google Scholar] [CrossRef]
- Globig, S.; Rosen, I.; Janes, H.W. Continuous light effects on photosynthesis and carbon metabolism in tomato. Acta Hortic. 1997, 418, 141–151. [Google Scholar] [CrossRef]
- O’Carrigan, A.; Hinde, E.; Lu, N.; Xu, X.Q.; Duan, H.; Huang, G.; Mak, M.; Bellotti, B.; Chen, Z.H. Effects of light irradiance on stomatal regulation and growth of tomato. Environ. Exp. Bot. 2014, 98, 65–73. [Google Scholar] [CrossRef]
- Vanlommel, W.; Huysmans, M.; Bosmans, L.; Vanderbruggen, R.; Van Delm, T. Optimal artificial light intensity for protected tomato cultivation under LEDs. Acta Hortic. 2020, 575–582. [Google Scholar] [CrossRef]
- Mitchell, C.A.; Dzakovich, M.P.; Gomez, C.; Lopez, R.; Burr, J.F.; Hernández, R.; Kubota, C.; Currey, C.J.; Meng, Q.; Runkle, E.S.; et al. Light-Emitting Diodes in Horticulture. Hortic. Rev. 2015, 43, 1–88. [Google Scholar] [CrossRef]
- Trouwborst, G.; Hogewoning, S.W.; Harbinson, J.; van Ieperen, W. The influence of light intensity and leaf age on the photosynthetic capacity of leaves within a tomato canopy. J. Hortic. Sci. Biotechnol. 2011, 86, 403–407. [Google Scholar] [CrossRef]
- Ouzounis, T.; Giday, H.; Kjaer, K.H.; Ottosen, C.O. LED or HPS in ornamentals? A case study in roses and campanulas. Eur. J. Hortic. Sci. 2018, 83, 166–172. [Google Scholar] [CrossRef]
- Särkkä, L.E.; Jokinen, K.; Ottosen, C.O.; Kaukoranta, T. Effects of HPS and LED lighting on cucumber leaf photosynthesis, light quality penetration and temperature in the canopy, plant morphology and yield. Agric. Food Sci. 2017, 26, 101–109. [Google Scholar] [CrossRef]
- Wojciechowska, R.; Dugosz-Grochowska, O.; Koton, A.; Zupnik, M. Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Sci. Hortic. 2015, 187, 80–86. [Google Scholar] [CrossRef]
- Nelson, J.A.; Bugbee, B. Economic analysis of greenhouse lighting: Light emitting diodes vs. high intensity discharge fixtures. PLoS ONE 2014, 9, e99010. [Google Scholar] [CrossRef] [PubMed]
- Gómez, C.; Morrow, R.C.; Bourget, C.M.; Massa, G.D.; Mitchell, C.A. Comparison of intracanopy light-emitting diode towers and overhead high-pressure sodium lamps for supplemental lighting of greenhouse-grown tomatoes. Horttechnology 2013, 23, 93–98. [Google Scholar] [CrossRef]
- Kim, H.; Yang, T.; Choi, S.; Wang, Y.; Lin, M.; Liceaga, A.M. Supplemental intracanopy far-red radiation to red LED light improves fruit quality attributes of greenhouse tomatoes. Sci. Hortic. 2019, 108985. [Google Scholar] [CrossRef]
- Kim, H.; Lin, M.; Mitchell, C.A. Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes. Environ. Exp. Bot. 2019, 157, 228–240. [Google Scholar] [CrossRef]
- Massa, G.D.; Kim, H.H.; Wheeler, R.M.; Mitchell, C.A. Plant productivity in response to LED lighting. HortScience 2008, 43, 1951–1956. [Google Scholar] [CrossRef]
- Gunnlaugsson, B.; Adalsteinsson, S. Interlight and plant density in year-round production of tomato at northern latitudes. Acta Hortic. 2006, 711, 71–75. [Google Scholar] [CrossRef]
- Hovi-Pekkanen, T.; Tahvonen, R. Effects of interlighting on yield and external fruit quality in year-round cultivated cucumber. Sci. Hortic. 2008, 116, 152–161. [Google Scholar] [CrossRef]
- Pepin, S.; Fortier, É. Beneficial Effects of Using a 3-D LED Interlighting System for Organic Greenhouse Tomato Grown in Canada under Low Natural Light Conditions. Acta Hortic. 2014, 239–246. [Google Scholar] [CrossRef]
- Dueck, T.A.; Janse, J.; Eveleens, B.A.; Kempkes, F.L.K.; Marcelis, L.F.M. Growth of tomatoes under hybrid LED and HPS lighting. Acta Hortic. 2012, 952, 335–342. [Google Scholar] [CrossRef]
- Hemming, S. Use of natural and artificial light in horticulture -interaction of plant and technology. Proc. VI Int. Symp. Light Hortic. 2011, 15–19. [Google Scholar] [CrossRef]
- Pattison, P.M.; Tsao, J.Y.; Krames, M.R. Light-emitting diode technology status and directions: Opportunities for horticultural lighting. Acta Hortic. 2016, 1134, 413–426. [Google Scholar] [CrossRef]
- Pattison, P.M.; Tsao, J.Y.; Brainard, G.C.; Bugbee, B. LEDs for photons, physiology and food. Nature 2018, 563, 493–500. [Google Scholar] [CrossRef]
- Paucek, I.; Appolloni, E.; Pennisi, G.; Quaini, S.; Gianquinto, G.; Orsini, F. LED Lighting Systems for Horticulture: Business Growth and Global Distribution. Sustainability 2020, 12, 7516. [Google Scholar] [CrossRef]
- Paucek, I.; Pennisi, G.; Pistillo, A.; Appolloni, E.; Crepaldi, A.; Calegari, B.; Spinelli, F.; Cellini, A.; Gabarrell, X.; Orsini, F.; et al. Supplementary LED Interlighting Improves Yield and Precocity of Greenhouse Tomatoes in the Mediterranean. Agronomy 2020, 10, 1002. [Google Scholar] [CrossRef]
- Nhut, D.T.; Nam, N.B. Light-Emitting Diodes (LEDs): An Artificial Lighting Source for Biological Studies. In Proceedings of the Third International Conference on the Development of Biomedical Engineering in Vietnam, Ho Chi Minh City, Vietnam, 11–14 January 2010; pp. 134–139. [Google Scholar]
- Engler, N.; Krarti, M. Review of energy efficiency in controlled environment agriculture. Renew. Sustain. Energy Rev. 2021, 141, 110786. [Google Scholar] [CrossRef]
- Stenitz, B.; Poff, K.L. A single positive phototropic response induced with pulsed light in hypocotyls of Arabidopsis thaliana seedlings. Planta 1986, 168, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, K.; Mory, Y. Method of Cultivating Plant and Illuminator for Cultivating Plant. U.S. Patent 10468155, 10 June 2004. [Google Scholar]
- Olvera-Gonzalez, E.; Alaniz-Lumbreras, D.; Ivanov-Tsonchev, R.; Villa-Hernández, J.; Olvera-Olvera, C.; González-Ramírez, E.; Araiza-Esquivel, M.; Torres-Argüelles, V.; Castaño, V. Intelligent lighting system for plant growth and development. Comput. Electron. Agric. 2013, 92, 48–53. [Google Scholar] [CrossRef]
- Ahn, Y.D.; Bae, S.; Kang, S.J. Power controllable LED system with increased energy efficiency using multi-sensors for plant cultivation. Energies 2017, 10, 1607. [Google Scholar] [CrossRef]
- Stanghellini, C.; van’t Oosfer, B.; Heuvelink, E. Greenhouse Horticulture: Technology for Optimal Crop Production, 1st ed.; Wageningen Academic Publisher: Wageningen, The Netherlands, 2019; ISBN 9789086863297. [Google Scholar]
- Hickman, G.W. International Greenhouse Vegetable Production—Statistics (2018 and 2019). Available online: http://www.cuestaroble.com/listghproducers.htm (accessed on 2 February 2021).
- Campiotti, C.; Viola, C.; Alonzo, G.; Bibbiani, C.; Giagnacovo, G.; Scoccianti, M.; Tumminelli, G. Sustainable greenhouse horticulture in Europe. J. Sustain. Energy 2012, 3, 159–163. [Google Scholar]
- Campiotti, C.A.; Bibbiani, C.; Greco, C. Renewable energy for greenhouse agriculture. J. Sustain. Energy 2019, 20, 152–156. [Google Scholar]
- Pardossi, A.; Tognoni, F.; Incrocci, L. Mediterranean Greenhouse Technology. Chron. Horticult. 2004, 44, 28–34. [Google Scholar]
- Costa, J.M.; Heuvelink, E. The Global Tomato Industry. In Tomatoes; CABI Publishing: Wallingford, UK, 2018; pp. 1–27. ISBN 9781780641942. [Google Scholar]
- Shao, L.; Liu, Z.; Li, H.; Zhang, Y.; Dong, M.; Guo, X.; Zhang, H.; Huang, B.; Ni, R.; Li, G.; et al. The impact of global dimming on crop yields is determined by the source–sink imbalance of carbon during grain filling. Glob. Chang. Biol. 2021, 27, 689–708. [Google Scholar] [CrossRef] [PubMed]
- Fluence Introducing the Concept of DLI to the World—Fluence By OSRAM. Available online: https://fluence.science/science-articles/introducing-the-concept-of-dli-to-the-world/ (accessed on 2 February 2021).
Lamp Type | Spectral Output | Energy Use Efficiency | Power Requirements | Life Span |
---|---|---|---|---|
(μmol∙W−1) % | W | Hours | ||
Incandescent | Broad spectrum | 1–5 | 15–1000 | 1000 |
Gas discharge | Broad spectrum | >30 | 5–125 | 1000–30,000 |
High-pressure sodium (HPS) | Broad spectrum | 30–40 | 100–250 | 10,000–30,000 |
Metal halide | Broad spectrum | 25 | 34–4000 | 10,000–20,000 |
Light-emitting diodes (LED) | Specific wavelengths | >40 | 0.1–5 | >50,000 |
Light Spectrum | Wavelength (nm) | Photoreceptor | Physiological Responses |
---|---|---|---|
FR | 730 | phy A | Germination |
R | 660 | phy B | De-etiolation |
R | 660 | phy C-E | Shade avoidance |
Blue/UV-A | 450/330 | CRY 1 | Shade avoidance |
Blue/UV-A | 450/330 | CRY 2 | Flowering |
Blue/UV-A | 450/330 | PHO | Phototropism |
Materials | Formula | Wavelength (nm) | Light Spectra | Forward Voltage (V) |
---|---|---|---|---|
Gallium–Phosphide | GaP | 610–770 | Red | 1.6–2.0 |
Aluminium–Gallium–Arsenide | GaAsP | |||
Gallium–Arsenide–Phosphide | AlGaAs | |||
Aluminium–Gallium–Indium–Phosphide | AlGaInP | |||
Gallium–Phosphide | GaP | 590–610 | Orange | 2.0–2.1 |
Gallium–Arsenide–Phosphide | AlGaP | |||
Aluminium–Gallium–Indium–Phosphide | AlGaInP | |||
Gallium–Phosphide | GaP | 570–590 | Yellow | 2.1–2.2 |
Gallium–Arsenide –Phosphide | GaAsP | |||
Gallium–Phosphide | GaP | 500–570 | Green | 1.9–4.0 |
Aluminium–Gallium–Phosphide | AlGaInP | |||
Aluminium–Gallium–Indium–Phosphide | AlGaInP | |||
Silicon carbide | SiC | 450–500 | Blue | 2.4–3.7 |
Zinc sulfide | ZnS | |||
Gallium–Nitride | GaN | 400–450 | Violet | 2.7–4.0 |
Indium–Gallium–Nitride | InGaN | |||
Blue diode with yellow phosphor | Broad spectrum | White | 3.5 |
Light Spectra | Crop Response | Reference |
---|---|---|
Monochromatic R | Increased upward or downward leaf curling | [21] |
Monochromatic R | Stimulated hypocotyl and epicotyl elongation, cotyledon expansion, plant height, and leaf area | [19] |
Monochromatic R | Lower stem diameter, leaf area, and shoot dry weight | [20] |
Monochromatic R | Enhanced photosynthesis and seedling biomass production | [19] |
Monochromatic B | Increased stomatal conductance | [33] |
Monochromatic B | Induced highest Rubisco content, more compact size, and reduced biomass in tomato seedlings | [19] |
Monochromatic B | Increased vitamin C and TSS, reduced plant height, stimulated growth of lateral shoots, and higher leaf area | [22] |
Monochromatic B | Increased net rate of photosynthesis | [23] |
R + B | Increased total dry matter | [21] |
R + B | Increased photosynthetic pigment content, stomata number, photosynthate distribution, and photosynthetic net rate | [23] |
R + B | Increased average fruit weight | [34] |
R + B | Increased leaf dry weight and fruit number | [35] |
W | Increased yield and fruit growth rate | [18] |
W | Increased net assimilation rate | [16] |
W | Decreased lateral shoot number | [22] |
FR | Increased fruit dry matter weight improving light interception | [31] |
FR | Promoted stem elongation, light interception, plant growth, and fruit production | [27] |
FR | Alleviated intumescence injury | [30] |
FR | Increased plant total biomass production and ripe fruit yield | [15] |
FR | Increased dry matter partitioning to fruits | [26] |
FR | Reduced Botrytis cinerea resistance in tomato | [26] |
FR | Could help prevent stomatal closure and promote root development, ensuring leaf photosynthesis and dry matter production | [29] |
SL PPFD (μmol m−2s−1) | Photoperiod (Hours) | SL DLI (mol m−2d−1) | Reported Efficacy | Reference |
---|---|---|---|---|
50, 150, 200, 300, 450, 550 | 12 | 2.2, 6.5, 8.6, 13.0, 19.4, 23.8 | 300 μmol∙m−2∙s−1 induced highest energy efficiency | [46] |
200 | 16 | 11.5 | Satisfactory growth and photosynthesis | [40] |
110 | 14, 16, 20, 24 | 5.5, 6.3, 7.9, 9.5 | Photoperiods > 14 h did not increase tomato plant growth and yields | [43] |
110, 115, 135 | 16 | 6.3, 6.6, 7.8 | Increasing light intensity induced higher fruit mass and plant biomass | [34] |
300 | 16 | 17.3 | Optimal plant growth | [22] |
110 | 12, 24 | 4.8, 9.5 | Continuous light caused leaf injury | [47] |
200, 500, 1000 | 16 | 11.5, 28.8, 57.6 | PPFD > 500 μmol∙m−2∙s−1 caused leaf stress and physiological disorders | [44] |
200, 500, 1000 | 16 | 11.5, 28.8, 57.6 | Increasing light intensity to promote stomatal closure, reducing gas exchange | [48] |
161, 162, 163, 174, 243, 247, 250, 260, 319, 329 | 18 | 10.4, 10.5, 10.6, 11.3, 15.7, 16.0, 16.2, 16.8, 20.7, 21.3 | Fruit weight and total yield increased linearly with increasing installed light intensity, without loss of fruit quality. Maximum yield potential was not established in the range of light intensities tested | [49] |
50, 100, 150 | 16 | 2.9, 5.8, 8.6 | In terms of power consumption and economic benefits, SL with a PPFD of 100 μmol∙m−2∙s−1 was the best choice to improve the quality of grafted vegetable seedlings | [45] |
Crop | SL PPFD Min (μmol∙m−2∙s−1) | SL PPFD Max (μmol∙m−2∙s−1) | SL DLI Range (mol∙m−2∙d−1) |
---|---|---|---|
Tomato | 170 | 350 | 11–23 |
Pepper | 120 | 300 | 8–20 |
Cucumber | 120 | 350 | 8–23 |
Country | Average DLI (mol∙m−2d−1) | Country | Average DLI (mol∙m−2∙d−1) |
---|---|---|---|
Austria | 21–35 | Italy | 31–35 |
Belarus | 21–25 | Latvia | 16–20 |
Belgium | 21–25 | Lithuania | 16–20 |
Bulgaria | 31–35 | Montenegro | 31–35 |
Croatia | 31–35 | The Netherlands | 21–25 |
Czech Republic | 21–25 | Poland | 21–25 |
Denmark | 16–20 | Portugal | 31–35 |
Estonia | 10–15 | Romania | 26–30 |
France | 26–30 | Spain | 31–40 |
Germany | 16–20 | Switzerland | 26–30 |
Greece | 36–40 | Turkey | 31–40 |
Hungary | 26–30 | Ukraine | 21–30 |
Ireland | 16–20 | United Kingdom | 10–20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmitessa, O.D.; Pantaleo, M.A.; Santamaria, P. Applications and Development of LEDs as Supplementary Lighting for Tomato at Different Latitudes. Agronomy 2021, 11, 835. https://doi.org/10.3390/agronomy11050835
Palmitessa OD, Pantaleo MA, Santamaria P. Applications and Development of LEDs as Supplementary Lighting for Tomato at Different Latitudes. Agronomy. 2021; 11(5):835. https://doi.org/10.3390/agronomy11050835
Chicago/Turabian StylePalmitessa, Onofrio Davide, Marco Antonio Pantaleo, and Pietro Santamaria. 2021. "Applications and Development of LEDs as Supplementary Lighting for Tomato at Different Latitudes" Agronomy 11, no. 5: 835. https://doi.org/10.3390/agronomy11050835
APA StylePalmitessa, O. D., Pantaleo, M. A., & Santamaria, P. (2021). Applications and Development of LEDs as Supplementary Lighting for Tomato at Different Latitudes. Agronomy, 11(5), 835. https://doi.org/10.3390/agronomy11050835