Biodiversity of AM Fungi in Coffee Cultivated on Eroded Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Isolation and Identification of AMF Spores
2.4. Statistical Analysis
3. Results
3.1. AMF Identification
3.2. AMF Diversity (Shannon–Weaver Index)
3.3. AMF Species Richness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giovannini, L.; Sbrana, C.; Avio, L.; Turrini, A. Diversity of a phosphate transporter gene among species and isolates of arbuscular mycorrhizal fungi. FEMS Microbiol. Lett. 2020, 367, 24. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.R.; Rillig, M.C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol. 2018, 220, 1059–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Victorino, Í.M.M.; Voyron, S.; Caser, M.; Orgiazzi, A.; Demasi, S.; Berruti, A.; Scariot, V.; Bianciotto, V.; Lumini, E. Metabarcoding of soil fungal communities associated with alpine field-grown saffron (Crocus sativus L.) inoculated with am fungi. J. Fungi 2021, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Lutzoni, F.; Nowak, M.D.; Alfaro, M.E.; Reeb, V.; Miadlikowska, J.; Krug, M.; Arnold, A.E.; Lewis, L.A.; Swofford, D.L.; Hibbett, D.; et al. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat. Commun. 2018, 9, 5451. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, D.; Ma, Y.; Shen, H.; Zhao, S.; Wang, Y. Combined application of arbuscular mycorrhizal fungi and exogenous melatonin alleviates drought stress and improves plant growth in tobacco seedlings. J. Plant Growth Regul. 2020, 1–14. [Google Scholar] [CrossRef]
- Diagne, N.; Ngom, M.; Djighaly, P.I.; Fall, D.; Hocher, V.; Svistoonoff, S. Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity 2020, 12, 370. [Google Scholar] [CrossRef]
- Jacott, C.N.; Murray, J.D.; Ridout, C.J. Trade-offs in arbuscular mycorrhizal symbiosis: Disease resistance, growth responses and perspectives for crop breeding. Agronomy 2017, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- Cavagnaro, T.R.; Bender, S.F.; Asghari, H.R.; van der Heijden, M.G. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 2015, 20, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Galán, C.; Houdinet, G.; Calvo-Polanco, M.; Bonaldi, K.E.; Garcia, K.; Zimmermann, S.D. The role of plant transporters in mycorrhizal symbioses. Adv. Bot. Res. 2018, 87, 303–342. [Google Scholar]
- Chen, M.; Arato, M.; Borghi, L.; Nouri, E.; Reinhardt, D. Beneficial services of arbuscular mycorrhizal fungi-From ecology to application. Front. Plant Sci. 2018, 9, 1270. [Google Scholar] [CrossRef]
- Stürmer, S.L.; Bever, J.D.; Morton, J.B. Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): A phylogenetic perspective on species distribution patterns. Mycorrhiza 2018, 28, 587–603. [Google Scholar] [CrossRef]
- Birhane, E.; Gebretsadik, K.F.; Taye, G.; Aynekulu, E.; Rannestad, M.M.; Norgrove, L. Effects of forest composition and disturbance on arbuscular mycorrhizae spore density, arbuscular mycorrhizae root colonization and soil carbon stocks in a dry afromontane forest in Northern Ethiopia. Diversity 2020, 12, 133. [Google Scholar] [CrossRef] [Green Version]
- Hrynkiewicz, K.; Baum, C. The potential of rhizosphere microorganisms to promote the plant growth in disturbed soils. In Environmental Protection Strategies for Sustainable Development. Strategies for Sustainability; Malik, A., Grohmann, E., Eds.; Springer Science+Business: New York, NY, USA, 2011; pp. 35–64. [Google Scholar]
- Al-Maliki, S.; Ebreesum, H. Changes in soil carbon mineralization, soil microbes, roots density and soil structure following the application of the arbuscular mycorrhizal fungi and green algae in the arid saline soil. Rhizosphere 2020, 14, 100203. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, D.; Luo, C.B.; Zhang, F.; Zhang, C.M. Arbuscular mycorrhizal fungal species identity governs plant water content and soil aggregation improvements under wet-dry climate conditions. Environ. Sci. Pollut. Res. 2020, 27, 37377–37383. [Google Scholar] [CrossRef]
- Song, Z.; Bi, Y.; Zhang, J.; Gong, Y.; Yang, H. Arbuscular mycorrhizal fungi promote the growth of plants in the mining associated clay. Sci. Rep. 2020, 10, 2663. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.C.; Gibson, K.S. Understanding multilevel selection may facilitate management of arbuscular mycorrhizae in sustainable agroecosystems. Front. Plant Sci. 2021, 11, 2316. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, A.S.; Goto, B.T.; Ganade, G. Ecological restoration methods influence the structure of arbuscular mycorrhizal fungal communities in degraded drylands. Pedobiologia 2021, 84, 150690. [Google Scholar] [CrossRef]
- Van der Heijden, M.; Ohsowski, B.; Abbott, L.K.; Hart, M. Arbuscular mycorrhizal fungus responses to disturbance are context-dependent. Mycorrhiza 2017, 27, 431–440. [Google Scholar] [CrossRef]
- House, G.L.; Bever, J.D. Disturbance reduces the differentiation of mycorrhizal fungal communities in grasslands along a precipitation gradient. Ecol. Appl. 2018, 28, 736–748. [Google Scholar] [CrossRef] [Green Version]
- Cerda, R.; Allinne, C.; Gary, C.; Tixier, P.; Harvey, C.A.; Krolczyk, L.; Mathiot, C.; Clément, E.; Aubertot, J.N.; Avelino, J. Effects of shade, altitude and management on multiple ecosystem services in coffee agroecosystems. Eur. J. Agron. 2017, 82, 308–319. [Google Scholar] [CrossRef]
- Loreto, D.; Esperón-Rodríguez, M.; Barradas, V.L. The climatic-environmental significance, status and socio-economic perspective of the grown-shade coffee agroecosystems in the central mountain region of Veracruz, Mexico. Investig. Geogr. 2017, 92, 1–14. [Google Scholar] [CrossRef]
- He, F.; Tang, M.; Zhong, S.L.; Yang, R.; Huang, L.; Zhang, H.Q. Effects of soil and climatic factors on arbuscular mycorrhizal fungi in rhizosphere soil under Robinia pseudoacacia in the Loess Plateau, China. Eur. J. Soil Sci. 2016, 67, 847–856. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Diehl, H.; Goetz, C.A.; Hach, C.C. The versenate titration for total hardness. J. Am. Water Works Assoc. 1950, 42, 40–48. [Google Scholar] [CrossRef]
- Gerdemann, J.W.; Nicolson, T.H. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Walker, C. Spore Extraction by Centrifugation-sugar Flotation; Biological Research and Imaging: New Milton, Hampshire, UK, 1997. [Google Scholar]
- Koske, R.E.; Tessier, B. A convenient, permanent slide mounting medium. Newsl. Mycol. Soc. Am. 1983, 34, 59. [Google Scholar]
- Brundrett, M.; Melville, L.; Peterson, L. Practical Methods in Mycorrhiza Research; Mycologue Publications: Ontario, CA, USA, 1994. [Google Scholar]
- Schenck, N.C.; Perez, Y. Manual for the Identification of Mycorrhizal Fungi, 3rd ed.; Synergistic Publications; Gainesville: Gainesville, FL, USA, 1990. [Google Scholar]
- Shi, N.N.; Gao, C.; Zheng, Y.; Guo, L.D. Arbuscular mycorrhizal fungus identity and diversity influence subtropical tree competition. Fungal Ecol. 2016, 20, 115–123. [Google Scholar] [CrossRef]
- Agnihotri, R.; Bharti, A.; Ramesh, A.; Prakash, A.; Sharma, M.P. Glomalin related protein and C16: 1ω5 PLFA associated with AM fungi as potential signatures for assessing the soil C sequestration under contrasting soil management practices. Eur. J. Soil Biol. 2021, 103, 103286. [Google Scholar] [CrossRef]
- Aldrich-Wolfe, L.; Black, K.L.; Hartmann, E.D.; Shivega, W.G.; Schmaltz, L.C.; McGlynn, R.D.; Johnson, P.G.; Asheim, R.J.; Vink, S.N. Taxonomic shifts in arbuscular mycorrhizal fungal communities with shade and soil nitrogen across conventionally managed and organic coffee agroecosystems. Mycorrhiza 2020, 30, 513–527. [Google Scholar] [PubMed]
- Formenti, L.; Rasmann, S. Mycorrhizal fungi enhance resistance to herbivores in tomato plants with reduced jasmonic acid production. Agronomy 2019, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Gao, X.; Ren, Y.; Ding, X.; Qiu, J.; Li, N.; Zeng, F.; Chu, Z. Improvement of Verticillium wilt resistance by applying arbuscular mycorrhizal fungi to a cotton variety with high symbiotic efficiency under field conditions. Int. J. Mol. Sci. 2018, 19, 241. [Google Scholar] [CrossRef] [Green Version]
- Schütz, L.; Gattinger, A.; Meier, M.; Müller, A.; Boller, T.; Mäder, P.; Mathimaran, N. Improving crop yield and nutrient use efficiency via biofertilization-A global meta-analysis. Front. Plant Sci. 2018, 8, 2204. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, A.; Zheng, W.; Rillig, M.C. Soil biota contributions to soil aggregation. Nat. Ecol. Evol. 2017, 1, 1828–1835. [Google Scholar] [CrossRef] [PubMed]
- Moitinho, M.R.; Fernandes, C.; Truber, P.V.; Marcelo, A.V.; Corá, J.E.; da Silva Bicalho, E. Arbuscular mycorrhizal fungi and soil aggregation in a no-tillage system with crop rotation. J. Plant Nutr. Soil Sci. 2020, 183, 482–491. [Google Scholar] [CrossRef]
- Hossain, M.B. Glomalin and contribution of glomalin to carbon sequestration in soil: A review. Turk. J. Agric. Food Sci. Technol. 2021, 9, 191–196. [Google Scholar] [CrossRef]
- Liu, M.; Shen, Y.; Li, Q.; Xiao, W.; Song, X. Arbuscular mycorrhizal fungal colonization and soil pH induced by nitrogen and phosphorus additions affects leaf C: N: P stoichiometry in chinese fir (Cunninghamia lanceolata) forests. Plant Soil. 2021, 1–20. [Google Scholar] [CrossRef]
- Jones, S.L.; French, K. Soil nutrients differentially influence root colonisation patterns of AMF and DSE in Australian plant species. Symbiosis 2021, 83, 209–223. [Google Scholar] [CrossRef]
- Tajik, S.; Ayoubi, S.; Lorenz, N. Soil microbial communities affected by vegetation, topography and soil properties in a forest ecosystem. Appl. Soil Ecol. 2020, 149, 103514. [Google Scholar] [CrossRef]
- Koziol, L.; Bever, J.D. The missing link in grassland restoration: Arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. J. Appl. Ecol. 2017, 54, 1301–1309. [Google Scholar] [CrossRef] [Green Version]
- Hage-Ahmed, K.; Rosner, K.; Steinkellner, S. Arbuscular mycorrhizal fungi and their response to pesticides. Pest. Manag. Sci. 2019, 75, 583–590. [Google Scholar] [CrossRef]
- Kakabouki, I.; Efthimiadou, A.; Folina, A.; Zisi, C.; Karydogianni, S. Effect of different tomato pomace compost as organic fertilizer in sweet maize crop. Commun. Soil Sci. Plant. Anal. 2020, 51, 2858–2872. [Google Scholar] [CrossRef]
- Wilkes, T.I.; Warner, D.J.; Davies, K.G.; Edmonds-Brown, V. Tillage, Glyphosate and beneficial arbuscular mycorrhizal fungi: Optimising crop management for plant–fungal symbiosis. Agriculture 2020, 10, 520. [Google Scholar] [CrossRef]
- Qin, Z.; Zhang, H.; Feng, G.; Christie, P.; Zhang, J.; Li, X.; Gai, J. Soil phosphorus availability modifies the relationship between AM fungal diversity and mycorrhizal benefits to maize in an agricultural soil. Soil Biol. Biochem. 2020, 144, 107790. [Google Scholar] [CrossRef]
- Luo, X.; Su, X.; Cui, J.; Lou, Y.; Li, R.; Luo, X.; Zeng, Y.; Xu, Y.; Dong, J. Biodiversity of arbuscular mycorrhizal fungi in the drawdown zone of the three gorges reservoir under different fertilization histories. Ecol. Res. 2016, 31, 407–416. [Google Scholar] [CrossRef]
- Verbruggen, E.; Xiang, D.; Chen, B.; Xu, T.; Rillig, M.C. Mycorrhizal fungi associated with high soil N:P ratios are more likely to be lost upon conversion from grasslands to arable agriculture. Soil Biol. Biochem. 2015, 86, 1–4. [Google Scholar] [CrossRef]
- Muleta, D.; Assefa, F.; Nemomissa, S.; Granhall, U. Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biol. Fertil. Soils. 2008, 44, 653–659. [Google Scholar] [CrossRef]
- Arias, R.M.; Heredia-Abarca, G.; Sosa, V.J.; Fuentes-Ramírez, L.E. Diversity and abundance of arbuscular mycorrhizal fungi spores under different coffee production systems and in a tropical montane cloud forest patch in Veracruz, Mexico. Agrofor. Syst. 2012, 85, 179–193. [Google Scholar] [CrossRef]
- De Assis, D.M.A.; Oehl, F.; Gonçalves, C.M.; da Silva, D.K.A.; da Silva, G.A. Community structure of arbuscular mycorrhizal fungi in fluvial and maritime dunes of Brazilian Northeast. Appl. Soil Ecol. 2016, 108, 136–146. [Google Scholar] [CrossRef]
Site | pH | Organic Matter (%) | N (%) | P (ppm) | meq 100·g−1 | ||
---|---|---|---|---|---|---|---|
K | Ca | Mg | |||||
1. EroC1-3 | 5.2 | 7.77 | 0.39 | 4.0 | 0.03 | 3.2 | 2.47 |
2. EroC2-3 | 4.5 | 7.91 | 0.40 | 8.0 | 0.02 | 2.7 | 5.0 |
3. EroC3-3 | 4.6 | 7.10 | 0.36 | 7.0 | 0.025 | 3.37 | 3.96 |
4. SevEroC1-3 | 5.0 | 1.76 | 0.36 | 5.0 | 0.02 | 1.9 | 1.88 |
5. SevEroC2-3 | 4.9 | 1.0 | 0.36 | 11.0 | 0.02 | 3.32 | 1.92 |
6. SevEroC3-3 | 4.7 | 0.90 | 0.21 | 13.0 | 0.051 | 3.48 | 2.6 |
7. MinEroC | 4.6 | 7.10 | 0.36 | 21.0 | 0.05 | 2.25 | 2.92 |
8. NonEroC | 4.8 | 7.10 | 0.49 | 4.0 | 0.06 | 4.0 | 2.39 |
Site | Abbreviation | Topographic and Slope | Chemical Fertilization | Pest Management | Crop Management | |
---|---|---|---|---|---|---|
1. | Coffee on eroded soil | EroC1-3 | Steep slope (≥85%) and herb strata | No | Chemical control | Rejuvenation program |
2. | EroC2-3 | |||||
3. | EroC3-3 | |||||
4. | Coffee on severe eroded soil | SevEroC1-3 | Steep slope (≥85%) | 20-10-10 17-17-17 CaCO3 | ||
5. | SevEroC2-3 | |||||
6. | SevEroC3-3 | |||||
7. | Coffee on very low eroded soil | MinEroC | Very gentle slope (2–4%) with manual weeding control | 17-17-17 | Organic control | |
8. | Non-eroded coffee | NonEroC | Very gentle slope (2–4%) with dense herbaceous stratum |
Species | Spore Abundance of AMFs—No. of Spores (% Spores per Site) | |||||||
---|---|---|---|---|---|---|---|---|
EroC1-3 | ErocC2-3 | EroC3-3 | SevEroC1-3 | SevEroC2-3 | SevEroC3-3 | MinEroC | NonEroC | |
C. etunicatum | -- | 58 (37.6) | -- | -- | -- | -- | 93 (40.9) | 2 (0.2) |
F. geosporum | 30 (39.4) | 85 (55.2) | 64 (48.8) | 47 (23.2) | 22 (14) | -- | 28 (12.3) | 63 (8.7) |
F. coronatum | 4 (5.2) | -- | -- | -- | -- | -- | 2 (0.8) | 9 (1.2) |
R. clarum | -- | -- | -- | -- | -- | -- | -- | 6 (0.8) |
R. intraradices | 17 (22.3) | 4 (2.6) | 19 (14.5) | -- | -- | -- | 8 (3.5) | 29 (4) |
R. microaggregatum | 20 (26.3) | -- | -- | 56 (27.8) | -- | -- | 50 (22.1) | 451 (62.2) |
S. constrictum | -- | 4 (2.6) | -- | -- | -- | -- | -- | 6 (0.8) |
D. versiformis | -- | 3 (1.9) | -- | -- | -- | -- | -- | 5 (0.7) |
Gl. dussii | -- | -- | 1 (0.8) | -- | -- | -- | -- | 2 (0.2) |
Gl. sp. 1 | 5 (6.5) | -- | -- | -- | -- | -- | -- | 2 (0.2) |
Gl. sp. 2 | -- | -- | -- | -- | -- | -- | -- | 3 (0.4) |
Gl. sp. 3 | -- | -- | -- | -- | -- | -- | 2 (0.8) | -- |
Gl. sp. 4 | -- | -- | -- | -- | -- | -- | -- | 2 (0.2) |
Gl. sp. 5 | -- | -- | -- | -- | -- | -- | 1 (0.4) | 2 (0.2) |
Gl. sp. 6 | -- | -- | -- | -- | -- | -- | 2 (0.8) | 2 (0.2) |
Gl. sp. 7 | -- | -- | -- | -- | -- | -- | -- | 3 (0.4) |
Gl. sp. 8 | -- | -- | -- | -- | -- | -- | 1 (0.4) | 3 (0.4) |
A. rugosa | -- | -- | 12 (9.1) | -- | 21 (13.3) | 28 (28.2) | 31 (13.6) | 42 (5.8) |
A. mellea | -- | -- | -- | -- | -- | -- | -- | 4 (0.5) |
A. foveata | -- | -- | -- | -- | -- | -- | 6 (2.6) | 5 (0.7) |
Acaulospora sp. | -- | -- | -- | -- | -- | -- | -- | 3 (0.4) |
G. gigantea | -- | -- | 35 (26.7) | 99 (49) | 114 (72.6) | 71 (71.7) | 3 (1.3) | 66 (9.1) |
Gigaspora sp. | -- | -- | -- | -- | -- | -- | -- | 4 (0.5) |
Scutellospora sp. 1 | -- | -- | -- | -- | -- | -- | -- | 3 (0.4) |
Scutellospora sp. 2 | -- | -- | -- | -- | -- | -- | -- | 4 (0.5) |
Scutellospora sp. 3 | -- | -- | -- | -- | -- | -- | -- | 4 (0.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lara-Capistran, L.; Zulueta-Rodriguez, R.; Murillo-Amador, B.; Preciado-Rangel, P.; Verdecia-Acosta, D.M.; Hernandez-Montiel, L.G. Biodiversity of AM Fungi in Coffee Cultivated on Eroded Soil. Agronomy 2021, 11, 567. https://doi.org/10.3390/agronomy11030567
Lara-Capistran L, Zulueta-Rodriguez R, Murillo-Amador B, Preciado-Rangel P, Verdecia-Acosta DM, Hernandez-Montiel LG. Biodiversity of AM Fungi in Coffee Cultivated on Eroded Soil. Agronomy. 2021; 11(3):567. https://doi.org/10.3390/agronomy11030567
Chicago/Turabian StyleLara-Capistran, Liliana, Ramon Zulueta-Rodriguez, Bernardo Murillo-Amador, Pablo Preciado-Rangel, Danis M. Verdecia-Acosta, and Luis G. Hernandez-Montiel. 2021. "Biodiversity of AM Fungi in Coffee Cultivated on Eroded Soil" Agronomy 11, no. 3: 567. https://doi.org/10.3390/agronomy11030567
APA StyleLara-Capistran, L., Zulueta-Rodriguez, R., Murillo-Amador, B., Preciado-Rangel, P., Verdecia-Acosta, D. M., & Hernandez-Montiel, L. G. (2021). Biodiversity of AM Fungi in Coffee Cultivated on Eroded Soil. Agronomy, 11(3), 567. https://doi.org/10.3390/agronomy11030567