Sweet Corn Research around the World 2015–2020
Abstract
:1. Introduction
2. Genetics and Breeding
2.1. Genetic Basis of Modern Sweet Corn
2.2. Genetic Modification
2.3. Endosperm Loci That Affect Quality
2.4. Other Mutations
2.5. Breeding Programs
3. Stresses
3.1. Drought
3.2. Temperature: Cold and Heat
3.3. Salinity
3.4. Other Abiotic Stresses: Plant Density, Water Aeration, and General Adaptation
4. Insects
4.1. Insects Pests
4.1.1. Corn Borers
4.1.2. Corn Earworm and Fall Armyworm
4.1.3. Pictured Wing Flies
4.1.4. Silk Fly
4.1.5. Long-Legged Flies
4.1.6. Stink Bugs
4.1.7. Northern Corn Rootworm
4.1.8. Mexican Corn Rootworm
4.2. Insect Management
4.2.1. Plant Breeding
4.2.2. Transgenic Maize
4.2.3. Natural Enemies
4.2.4. Insecticides
4.2.5. Integrated Pest Management
5. Diseases
5.1. Seedling Blights
5.2. Northern Corn Leaf Blight
5.3. Downy Mildew
5.4. High Plains Virus
6. Mineral Nutrition
6.1. Inorganic Fertilizers
6.2. Synthetic Organic Fertilizer (Urea)
6.3. Organic Fertilizers
6.4. Crop Residues
6.5. Mycorrhiza
7. Weed Control
7.1. Herbicides
7.2. Mulching
7.3. Cover Crops
7.4. Agronomic Management
7.5. Early Vigor
8. Models and Production
8.1. Prediction Models
8.2. Cultivation Models
8.3. Cropping Systems
8.4. Variety Testing
9. Nutritional Value and Quality
9.1. Antioxidants, Vitamins, and Minerals
9.2. Processing
9.3. Food Toxicity
9.4. Mycotoxins
9.5. Seed Quality
10. Alternative Uses
10.1. Baby Corn
10.2. Sprouts
10.3. Extracts
10.4. Beverages
10.5. Baking
10.6. Forage
10.7. Bioenergy
11. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tracy, W.F.; Shuler, S.L.; Dodson-Swenson, H. The Use of Endosperm Genes for Sweet Corn Improvement: A review of developments in endosperm genes in sweet corn since the seminal. Plant Breeding Reviews, Volume 1, by Charles Boyer and Jack Shannon (1984). In Plant Breeding Reviews, 1st ed.; Goldman, I., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; Volume 43, pp. 215–241. [Google Scholar]
- Tracy, W.F.; Shuler, S.L.; Dodson-Swenson, H. Sweet Corn. In The Physiology of Vegetable Crops; Wein, H.C., Stützel, H., Eds.; CAB International: Boston, MA, USA, 2020; pp. 320–335. [Google Scholar]
- Tracy, W.F. Sweet corn. In Specialty Corns, 2nd ed.; Hallauer, A.R., Ed.; CRC: Boca Raton, FL, USA, 2001; pp. 155–199. [Google Scholar]
- Tracy, W.F. History, genetics, and breeding of Supersweet (shrunken2) sweet corn. Plant Breed. Rev. 1997, 14, 189–236. [Google Scholar]
- Pacurar, L.; Apahidean, A.I.; Hoza, G.; Dinu, M.; Soare, R.; Apahidean, M.; Has, V. Estimation of variability parameters of some qualitatives components at a set of sweet corn lines from turda agricultural research station. Sci. Pap. Ser. B Hortic. 2018, 62, 345–350. [Google Scholar]
- Elayaraja, K.; Gadag, R.N.; Kumari, J.; Mishra, U. Combining ability and gene action in experimental hybrids of Sweet Corn (Zea mays var. saccharata). Indian J. Hortic. 2018, 75, 64–69. [Google Scholar] [CrossRef]
- Suzukawa, A.K.; Pereira, C.B.; Garcia, M.M.; Contreras-Soto, R.I.; Zeffa, D.M.; Coan, M.M.D.; Scapim, C.A. Diallel analysis of tropical and temperate sweet and supersweet corn inbred lines. Rev. Cienc. Agron. 2018, 49, 607–615. [Google Scholar] [CrossRef]
- Goncalves, G.M.B.; Pereira, M.G.; Ferreira, J.A.; Schwantes, I.A.; Duraes, N.N.L.; Crevelari, J.A.; do Amaral, A.T. Development and selection of super-sweet corn genotypes (sh2) through multivariate approaches. Bragantia 2018, 77, 536–545. [Google Scholar] [CrossRef]
- Khan, Z.H.; Khalil, S.K.; Ikramullah, M.A.; Iqbal, A.; Islam, B.; Ali, K.; Shah, F. Physical characteristics of cobs and kernels in sweet corn under varying planting environments. Fresenius Environ. Bull. 2019, 28, 6568–6573. [Google Scholar]
- Yang, H.L.; Dong, L.; Wang, H.; Liu, C.L.; Liu, F.; Xie, C.X. A simple way to visualize detailed phylogenetic tree of huge genome-wide SNP data constructed by SNPhylo. J. Integr. Agric. 2018, 17, 1972–1978. [Google Scholar] [CrossRef]
- Ferreira, F.; Scapim, C.A.; Maldonado, C.; Mora, F. SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks. Crop Breed. Appl. Biotechnol. 2018, 18, 309–313. [Google Scholar] [CrossRef]
- Mehta, B.; Hossain, F.; Muthusamy, V.; Baveja, A.; Zunjare, R.; Jha, S.K.; Gupta, H.S. Microsatellite-based genetic diversity analyses of sugary1-, shrunken2- and double mutant- sweet corn inbreds for their utilization in breeding programme. Physiol. Mol. Biol. Plants 2017, 23, 411–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, W.R.; Sa, K.J.; Roy, N.S.; Choi, H.J.; Lee, J.K. Analysis of the genetic diversity of super sweet corn inbred lines using SSR and SSAP markers. Genet. Mol. Res. 2016, 15, 15017392. [Google Scholar] [CrossRef]
- Mahato, A.; Shahi, J.P.; Singh, P.K.; Kumar, M. Genetic diversity of sweet corn inbreds using agro-morphological traits and microsatellite markers. 3 Biotech 2018, 8, 332. [Google Scholar] [CrossRef]
- Dermail, A.; Suriharn, B.; Chankaew, S.; Sanitchon, J.; Lertrat, K. Hybrid prediction based on SSR-genetic distance, heterosis and combining ability on agronomic traits and yields in sweet and waxy corn. Sci. Hortic. 2020, 259, 108817. [Google Scholar] [CrossRef]
- Bonchev, G.; Shtereva, L.; Vassilevska-Ivanova, R. Retrotransposon-related genetic distance among inbred lines of sweet corn (Zea mays var. saccharata) and hybrid performance. Plant Genet. Resour. Charact. Util. 2018, 16, 50–58. [Google Scholar] [CrossRef]
- Zystro, J.; Peters, T.; Miller, K.; Tracy, W.F. Classical and genomic prediction of hybrid sweet corn performance in organic environments. Crop Sci. 2020. [Google Scholar] [CrossRef]
- Zystro, J.; Peters, T.; Miller, K.; Tracy, W.F. Inbred and hybrid sweet corn genotype performance in diverse organic environments. Crop Sci. 2020. [Google Scholar] [CrossRef]
- Zystro, J.; Peters, T.; Miller, K.; Tracy, W.F. Classical and genomic prediction of synthetic open pollinated sweet corn performance in organic environments. Crop Sci. 2020. accepted. [Google Scholar]
- Anderson, J.A.; Brustkern, S.; Cong, B.; Deege, L.; Delaney, B.; Hong, B.N.; Lawit, S.; Mathesius, C.; Schmidt, J.; Wu, J.R.R.; et al. Evaluation of the History of Safe Use of the Maize ZMM28 Protein. J. Agric. Food Chem. 2019, 67, 7466–7474. [Google Scholar] [CrossRef]
- Reddy, K.N.; Cizdziel, J.V.; Williams, M.M., II; Maul, J.E.; Rimando, A.M.; Duke, S.O. Glyphosate resistance technology has minimal or no effect on maize mineral content and yield. J. Agric. Food Chem. 2018, 66, 10139–10146. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.M., II; Bradley, C.A.; Duke, S.O.; Maul, J.E.; Reddy, K.N. Goss’s wilt incidence in sweet corn is independent of transgenic traits and glyphosate. HortScience 2015, 50, 1791–1794. [Google Scholar] [CrossRef] [Green Version]
- Kelliher, T.; Starr, D.; Su, X.J.; Tang, G.Z.; Chen, Z.Y.; Carter, J.; Wittich, P.E.; Dong, S.J.; Green, J.; Burch, E.; et al. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol. 2019, 37, 287. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Zhang, C.Q.; Kernodle, B.M.; Hill, J.H.; Whitham, S.A. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize. Plant Physiol. 2016, 171, 760–772. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.N.; Nandula, V.K. Herbicide resistant crops:History, development and current technologies. Ind. J. Agron. 2012, 57, 1–7. [Google Scholar]
- Allam, M.; Ordas, B.; Djemel, A.; Tracy, W.F.; Revilla, P. Linkage disequilibrium between fitness QTLs and the sugary1 allele of maize. Mol. Breed. 2019, 39, 3. [Google Scholar] [CrossRef]
- Shuler, S.L.; Boehlein, S.K.; Hannah, L.C.; Tracy, W.F. Endosperm Carbohydrates and Debranching Enzyme Activity in Five Native sugary1 Alleles in Maize. Crop Sci. 2017, 57, 3068–3074. [Google Scholar] [CrossRef]
- De Vries, B.D.; Tracy, W.F. Characterization of Endosperm Carbohydrates in isa2-339 Maize and Interactions with su1-ref. Crop Sci. 2016, 56, 2277–2286. [Google Scholar] [CrossRef]
- Trimble, L.; Shuler, S.; Tracy, W.F. Characterization of Five Naturally Occurring Alleles at the Sugary1 Locus for Seed Composition, Seedling Emergence, and Isoamylase1 Activity. Crop Sci. 2016, 56, 1927–1939. [Google Scholar] [CrossRef]
- Xavier, L.F.S.; Pestana, J.K.; Sekiya, A.; Krause, M.D.; Moreira, R.M.P.; Ferreira, J.M. Partial diallel and potential of super sweet corn inbred lines bt(2) to obtain hybrids. Hortic. Bras. 2019, 37, 278–284. [Google Scholar] [CrossRef]
- Jha, S.K.; Singh, N.K.; Agrawal, P.K. Complementation of sweet corn mutants: A method for grouping sweet corn genotypes. J. Genet. 2016, 95, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Hu, K.L.; Zhang, L.J.; Ji, Y.Z.; Qin, W. Exploring optimal catch crops for reducing nitrate leaching in vegetable greenhouse in North China. Agric. Water Manag. 2019, 212, 273–282. [Google Scholar] [CrossRef]
- Revilla, P.; Djemel, A.; Ordas, B.; Ordas, A. Expression of the Ga1-s gametophyte factor in shrunken2 sweet corn. Euphytica 2018, 214, 131. [Google Scholar] [CrossRef]
- Jones, Z.G.; Goodman, M.M.; Krakowsky, M.D. Identification of resistance to the Ga1-m gametophyte factor in maize. Euphytica 2015, 206, 785–791. [Google Scholar] [CrossRef]
- Liu, C.X.; Zhao, Y.Z.; Bai, Y.; Lu, X.M.; Song, W.B.; Qin, L.P.; Cai, Y.L. Molecular mapping and candidate gene analysis of the semi-dominant gene Vestigial glume1 in maize. Crop J. 2019, 7, 667–676. [Google Scholar] [CrossRef]
- Jha, S.K.; Singh, N.K.; Agrawal, P.K. Modified backcross breeding method for rapid conversion of field corn line to shrunken2 (sh2) gene-based sweet corn line. Ind. J. Genet. Plant Breed. 2019, 79, 34–39. [Google Scholar] [CrossRef]
- Chhabra, R.; Hossain, F.; Muthusamy, V.; Baveja, A.; Mehta, B.K.; Zunjare, R.U. Development and validation of breeder-friendly functional markers of sugary1 gene encoding starch-debranching enzyme affecting kernel sweetness in maize (Zea mays). Crop Pasture Sci. 2019, 70, 868–875. [Google Scholar] [CrossRef]
- Wanlayaporn, K.; Somyong, S.; Pootakham, W.; Shearman, J.; Vanavichit, A.; Kumar, P.; Chee, P.W.; Tragoonrung, S. QTL Mapping of Pericarp Thickness in Immature and Mature Stages in Thai Tropical Sweet Corn (Zea mays var. saccharata). Chiang Mai J. Sci. 2018, 45, 177–187. [Google Scholar]
- Wu, X.M.; Wang, B.; Xie, F.G.; Zhang, L.P.; Gong, J.; Zhu, W.; Li, X.Q.; Feng, F.Q.; Huang, J. QTL mapping and transcriptome analysis identify candidate genes regulating pericarp thickness in sweet corn. BMC Plant Biol. 2020, 20, 117. [Google Scholar] [CrossRef]
- Sa, K.J.; Ko, W.R.; Kim, O.G.; Ma, S.J.; Choi, H.J.; Lee, J.K. Association analysis and population structure of flowering-related traits in super sweet corn inbred lines with simple sequence repeat markers. Genes Genom. 2016, 38, 891–901. [Google Scholar] [CrossRef]
- Cheng, X.X.; He, S.; Geng, G.H. Dynamic QTL analysis of seed reserve utilization in sh(2) sweet corn germination stages. Genet. Mol. Res. 2016, 15, 15038183. [Google Scholar] [CrossRef]
- Röber, F.K.; Gordillo, G.A.; Geiger, H.H. In vivo haploid induction in maize—Performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica 2005, 50, 275–283. [Google Scholar]
- Yu, W.C.; Birchler, J.A. A green fluorescent protein-engineered haploid inducer line facilitates haploid mutant screens and doubled haploid breeding in maize. Mol. Breed. 2016, 36, 5. [Google Scholar] [CrossRef]
- Simla, S.; Lertrat, K.; Suriharn, B. Combinations of multiple genes controlling endosperm characters in relation to maximum eating quality of vegetable waxy corn. Sabrao J. Breed. Genet. 2016, 48, 210–218. [Google Scholar]
- Dermail, A.; Suriharn, B.; Lertrat, K.; Chankaew, S.; Sanitchon, J. Reciprocal cross effects on agronomic traits and heterosis in sweet and waxy corn. Sabrao J. Breed. Genet. 2018, 50, 444–460. [Google Scholar]
- Altinel, B.; Tonk, F.A.; Istipliler, D.; Tosun, M.; Pazir, F. Improving sweet corn x dent corn hybrids based on kernel color, size and quality properties. Fresenius Environ. Bull. 2019, 28, 2368–2374. [Google Scholar]
- Qiu, G.J.; Lu, E.L.; Lu, H.Z.; Xu, S.; Zeng, F.G.; Shui, Q. Single-Kernel FT-NIR Spectroscopy for Detecting Supersweet Corn (Zea mays L. Saccharata Sturt) Seed Viability with Multivariate Data Analysis. Sensors 2018, 18, 1010. [Google Scholar] [CrossRef] [Green Version]
- Allam, M.; Revilla, P.; Djemel, A.; Tracy, W.F.; Ordas, B. Identification of QTLs involved in cold tolerance in sweet x field corn. Euphytica 2016, 208, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.M.; Feng, F.Q.; Zhu, Y.Z.; Xie, F.G.; Yang, J.; Gong, J.; Liu, Y.; Zhu, W.; Gao, T.L.; Chen, D.Y.; et al. Construction of High-Density Genetic Map and Identification of QTLs Associated with Seed Vigor after Exposure to Artificial Aging Conditions in Sweet Corn Using SLAF-seq. Genes 2020, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.X.; Xiong, F.; Wang, C.J.; Xie, H.; He, S.; Geng, G.H.; Zhou, Y. Seed reserve utilization and hydrolytic enzyme activities in germinating seeds of sweet corn. Pak. J. Bot. 2018, 50, 111–116. [Google Scholar]
- Huang, Y.T.; Zhang, Y.C.; Gao, C.H.; Li, Z.; Guan, Y.J.; Hu, W.M.; Hu, J. The interactions of plant growth regulators and H2O2 during germination improvement of sweet corn seed through spermidine application. Plant Growth Regul. 2018, 85, 15–26. [Google Scholar] [CrossRef]
- Somrat, N.; Sawadeemit, C.; Vearasilp, S.; Thanapornpoonpong, S.N.; Gorinstein, S. Effects of different binder types and concentrations on physical and antioxidant properties of pelleted sweet corn seeds. Eur. Food Res. Technol. 2018, 244, 547–554. [Google Scholar] [CrossRef]
- Suo, H.C.; Li, W.; Wang, K.H.; Ashraf, U.; Liu, J.H.; Hu, J.G.; Li, Z.J.; Zhang, X.L.; Xie, J.; Zheng, J.R. Plant growth regulators in seed coating agent affect seed germination and seedling growth of sweet corn. Appl. Ecol. Environ. Res. 2017, 15, 829–839. [Google Scholar] [CrossRef]
- Hirich, A.; Fatnassi, H.; Ragab, R.; Choukr-Allah, R. Prediction of Climate Change Impact on Corn Grown in the South of Morocco Using the Saltmed Model. Irrig. Drain. 2016, 65, 9–18. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.L.; Ashraf, U.; Mo, Z.W.; Suo, H.C.; Li, G.K. Dynamics of seed germination, seedling growth and physiological responses of sweet corn under peg-induced water stress. Pak. J. Bot. 2017, 49, 639–646. [Google Scholar]
- Nemeskeri, E.; Helyes, L. Physiological Responses of Selected Vegetable Crop Species to Water Stress. Agronomy 2019, 9, 447. [Google Scholar] [CrossRef] [Green Version]
- Nemeskeri, E.; Molnar, K.; Racz, C.; Dobos, A.C.; Helyes, L. Effect of Water Supply on Spectral Traits and Their Relationship with the Productivity of Sweet Corns. Agronomy 2019, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Nocco, M.A.; Zipper, S.C.; Booth, E.G.; Cummings, C.R.; Loheide, S.P.; Kucharik, C.J. Combining Evapotranspiration and Soil Apparent Electrical Conductivity Mapping to Identify Potential Precision Irrigation Benefits. Remote Sens. 2019, 11, 2460. [Google Scholar] [CrossRef] [Green Version]
- Nocco, M.A.; Kraft, G.J.; Loheide, S.P.; Kucharik, C.J. Drivers of Potential Recharge from Irrigated Agroecosystems in the Wisconsin Central Sands. Vadose Zone J. 2018, 17, 170008. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, O.F.; de Lima, S.F.; Neto, V.B.D.; Piati, G.L.; Osorio, C.R.W.D.; de Souza, H.M. Defoliation of sweet corn plants under irrigation depths and its impact on gas exchange. Rev. Bras. Eng. Agríc. Ambient. 2017, 21, 822–827. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, D.W.; Kirkham, M.B.; Marr, C.W. Limited Irrigation for Sweet Corn Planted at Different Dates on Claypan Soil. Crop Forage Turfgrass Manag. 2016, 2, 1. [Google Scholar] [CrossRef]
- Kara, B.; Ertek, A.; Atar, B. Mineral Nutrient Content of Sweet Corn under Deficit Irrigation. J. Agric. Sci. (Tar. Bil. Der.) 2016, 22, 54–61. [Google Scholar]
- Peykarestan, B.; Yarnia, M.; Madani, H.; Rashidi, V.; Abad, H.H.S. Impact of low-alternate furrow irrigiation and zinc sulfate foliar application on grain yield and enrichment of sweet corn hybrids. Pak. J. Bot. 2018, 50, 1005–1011. [Google Scholar]
- Santos, O.F.; Lima, S.F.; Piati, G.L.; Barzotto, G.R.; Gava, R. Irrigation as an alternative to reduce damages caused by defoliation of sweet corn. Hortic. Bras. 2018, 36, 341–345. [Google Scholar] [CrossRef]
- Jafarikouhini, N.; Kazemeini, S.A.; Ghadiri, H.; Lagrimini, M. Examination of photosynthetic nitrogen use efficiency of field-grown sweet corn (Zea mays L var merit) under water and nitrogen stress. Maydica 2016, 61, M35. [Google Scholar]
- Sumani, M.; Winarno, J.; Widijanto, H.; Hasanah, K. Land suitability evaluation for sweet corn in third cropping period at Wonosari Village, Karanganyar, Indonesia. Int. Conf. Clim. Chang. (ICCC 2018) 2018, 200, 012007. [Google Scholar] [CrossRef] [Green Version]
- Habibpor, S.S.; Naderi, A.; Lak, S.; Faraji, H.; Mojaddam, M. Effects of salicylic acid on morphological and physiological characteristics of sweet corn hybrids under water stress conditions. J. Fund. Appl. Sci. 2016, 8, 522–543. [Google Scholar] [CrossRef] [Green Version]
- Marinho, J.D.; da Costa, D.S.; de Carvalho, D.U.; da Cruz, M.A.; Zucareli, C. Evaluation of vigor and tolerance of sweet corn seeds under hypoxia. J. Seed Sci. 2019, 41, 180–186. [Google Scholar] [CrossRef]
- Xiang, N.; Li, C.Y.; Li, G.K.; Yu, Y.T.; Hu, J.G.; Guo, X.B. Comparative Evaluation on Vitamin E and Carotenoid Accumulation in Sweet Corn (Zea mays L.) Seedlings under Temperature Stress. J. Agric. Food Chem. 2019, 67, 9772–9781. [Google Scholar] [CrossRef]
- Mao, J.H.; Yu, Y.T.; Yang, J.; Li, G.K.; Li, C.Y.; Qi, X.T.; Wen, T.X.; Hu, J.G. Comparative transcriptome analysis of sweet corn seedlings under low-temperature stress. Crop J. 2017, 5, 396–406. [Google Scholar] [CrossRef]
- Gao, Y.; Pan, S.S.; Guo, G.Y.; Gu, Q.Q.; Pan, R.H.; Guan, Y.J.; Hu, J. Preparation of a thermoresponsive maize seed coating agent using polymer hydrogel for chilling resistance and anti-counterfeiting. Prog. Org. Coat. 2020, 139, 105452. [Google Scholar] [CrossRef]
- Douds, D.D.; Wilson, D.O.; Seidel, R.; Ziegler-Ulsh, C. A method to minimize the time needed for formation of mycorrhizas in sweet corn seedlings for outplanting using AM fungus inoculum. produced on-farm. Sci. Hortic. 2016, 203, 62–68. [Google Scholar] [CrossRef]
- Kale, S.; Arican, B. Salinity effects on sweet corn yield and water use efficiency under different hydrogel doses. Sci. Pap. Ser. A Agron. 2018, 61, 263–266. [Google Scholar]
- Tekeli, G.; Kale, S. Impacts of irrigation water salinity on leaf carbon isotope discrimination, stomatal conductance and yields of sweet corn (Zea mays saccharata). Sci. Pap. Ser. A Agron. 2017, 60, 407–412. [Google Scholar]
- Adibah, F.S.F.; Jahan, M.S.; Fatihah, H.N.N. Betaine-rich Nano fertilizer improves growth parameters of Zea mays var. saccharata and Arabidopsis thaliana under salt stress. Bulg. J. Agric. Sci. 2020, 26, 177–185. [Google Scholar]
- Huang, M.Y.; Zhang, Z.Y.; Zhu, C.L.; Zhai, Y.M.; Lu, P.R. Effect of biochar on sweet corn and soil salinity under conjunctive irrigation with brackish water in coastal saline soil. Sci. Hortic. 2019, 250, 405–413. [Google Scholar] [CrossRef]
- De Oliveira, F.D.; de Medeiros, J.F.; da Cunha, R.C.; Souza, M.W.D.; Lima, L.A. Use of biostimulants in relieving salt stress in popcorn. Rev. Cienc. Agron. 2016, 47, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.M. Relationships among phenotypic traits of sweet corn and tolerance to crowding stress. Field Crops Res. 2016, 185, 45–50. [Google Scholar] [CrossRef]
- Williams, M.M., II. Identifying crowding stress-tolerant hybrids in processing sweet corn. Agron. J. 2015, 107, 1782–1788. [Google Scholar] [CrossRef]
- Dhaliwal, D.S.; Williams, M.M., II. Optimum plant density for crowding stress tolerant processing sweet corn. PLoS ONE 2019, 14, e0223107. [Google Scholar] [CrossRef]
- Choe, E.; Drnevich, J.; Williams, M.M., II. Identification of crowding stress tolerance co-expression networks involved in sweet corn yield. PLoS ONE 2016, 11, 20. [Google Scholar] [CrossRef] [Green Version]
- Dhaliwal, D.S.; Williams, M.M., II. Understanding variability in optimum plant density and recommendation domains for crowding stress tolerant processing sweet corn. PLoS ONE 2020, 15, e0228809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, H.J.; Bhattarai, S.; Balsys, R.; Midmore, D.J.; Holmes, T.; Zimmerman, W. Temporal and spatial dimension of dissolved oxygen saturation with fluidic oscillator and Mazzei air injector in soil-less irrigation systems. Irrig. Sci. 2016, 34, 421–430. [Google Scholar] [CrossRef]
- Pan, B.R.; Zhong, T.L.; Zhao, G.W. Promoting deep-sowing germinability of corn (Zea mays) by seed soaking with gibberellic acid. Arch. Agron. Soil Sci. 2017, 63, 1314–1323. [Google Scholar] [CrossRef]
- Saito, S.; Niki, T.; Gladish, D.K. Comparison of Promeristem Structure and Ontogeny of Procambium in Primary Roots of Zea mays ssp. Mexicana and Z. mays “Honey Bantam’ with Emphasis on Metaxylem Vessel Histogenesis. Plants 2019, 8, 162. [Google Scholar] [CrossRef] [Green Version]
- Ucak, A.B. Effects of different irrigation levels on the mediterranean corn borer (Sesamia nonagrioides Lefebvre), European corn borer (Ostrinia nubilalis Hubner) populations and effects of proline content in corn borer preferences. Fresenius Environ. Bull. 2019, 28, 8117–8127. [Google Scholar]
- Rahayu, T.; Trisyono, Y.A. Fitness of Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae) reared in an artificial diet. J. Asia Pac. Entomol. 2018, 21, 823–828. [Google Scholar] [CrossRef]
- Rhino, B.; Busier, D.; Lenglart, A.; Ratnadass, A. Egg-laying Pattern of Helicoverpa zea in Sweet Corn: A New Pest Management Prospect. Southwest. Entomol. 2019, 44, 567–576. [Google Scholar] [CrossRef]
- Olmstead, D.L.; Nault, B.A.; Shelton, A.M. Biology, Ecology, and Evolving Management of Helicoverpa zea (Lepidoptera: Noctuidae) in Sweet Corn in the United States. J. Econ. Entomol. 2016, 109, 1667–1676. [Google Scholar] [CrossRef]
- Goyal, G.; Nuessly, G.S.; Seal, D.R.; Steck, G.J.; Capinera, J.L.; Boote, K.J. Developmental Studies of Maize-Infesting Picture-Winged Flies (Diptera: Ulidiidae). Environ. Entomol. 2017, 46, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.; Nuessly, G.S.; Kendra, P.E.; Colquhoun, T.A.; Seal, D.R. Attraction, Oviposition Preferences, and Olfactory Responses of Corn-Infesting Ulidiidae (Diptera) to Various Host-Based Substrates. Environ. Entomol. 2017, 46, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.; Cherry, R.; Karounos, M.; Nuessly, G.S. Evaluation of lures for monitoring silk flies (Diptera: Ulidiidae) in sweet corn. Fla. Entomol. 2017, 100, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Owens, D.; Larsen, N.; Nuessly, G.S. Post-harvest crop destruction effects on picture-winged fly (Diptera: Ulidiidae) emergence. Fla. Entomol. 2017, 100, 422–425. [Google Scholar] [CrossRef] [Green Version]
- Lopes, S.R.; Cruz, I. Management of Euxesta spp. in Sweet Corn with McPhail Traps Neotropical. Entomology 2020, 49, 139–146. [Google Scholar] [CrossRef]
- Kautz, A.R.; Gardiner, M.M. Agricultural intensification may create an attractive sink for Dolichopodidae, a ubiquitous but understudied predatory fly family. J. Insect Conserv. 2019, 23, 453–465. [Google Scholar] [CrossRef]
- Canton, P.E.; Bonning, B.C. Proteases and nucleases across midgut tissues of Nezara viridula (Hemiptera:Pentatomidae) display distinct activity profiles that are conserved through life stages. J. Insect Physiol. 2019, 119, 103965. [Google Scholar] [CrossRef]
- Zobel, E.S.; Hooks, C.R.R.; Dively, G.P. Seasonal Abundance, Host Suitability, and Feeding Injury of the Brown Marmorated Stink Bug, Halyomorpha halys (Heteroptera: Penatomidae), in Selected Vegetables. J. Econ. Entomol. 2016, 109, 1289–1302. [Google Scholar] [CrossRef]
- Iverson, J.M.; Cira, T.M.; Burkness, E.C.; Hutchison, W.D. Cannibalistic Oophagy in Halyomorpha halys (Hemiptera: Pentatomidae) Laboratory Colonies. J. Entomol. Sci. 2016, 51, 122–128. [Google Scholar] [CrossRef]
- Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.A.; Miret, J.A.J.; Justesen, A.F.; Magnusson, C.S.; Milonas, P.; Navas-Cortes, J.A.; et al. Pest categorisation of Diabrotica barberi. EFSA J. 2019, 17, 5857. [Google Scholar] [CrossRef]
- Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.A.; Miret, J.A.J.; Justesen, A.F.; Magnusson, C.S.; Milonas, P.; Navas-Cortes, J.A.; et al. Pest categorisation of Diabrotica virgifera zeae. EFSA J. 2019, 17, 5858. [Google Scholar] [CrossRef]
- Demirel, N.; Konuskan, O. A study on percentages of damage ratios of the European corn borer (ECB), Ostrinia nubilalis (Hubner) (Lepidoptera: Pyralidae) on sweet corn cultivars. Entomol. Appl. Sci. Lett. 2017, 4, 1–4. [Google Scholar] [CrossRef]
- Rhino, B.; Verchere, A.; Thibaut, C.; Ratnadass, A. Field evaluation of sweet corn varieties for their potential as a trap crop for Helicoverpa zea under tropical conditions. Int. J. Pest Manag. 2016, 62, 3–10. [Google Scholar] [CrossRef]
- Moore, V.M.; Tracy, W.F. Recurrent Full-sib Family Selection for Husk Extension in Sweet Corn. J. Am. Soc. Hortic. Sci. 2019, 144, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Moore, V.M.; Tracy, W.F. Combining ability of husk extension, maysin content, and corn earworm resistance. J. Am. Soc. Hortic. Sci. 2020. [Google Scholar] [CrossRef]
- Dively, G.P.; Venugopal, P.D.; Bean, D.; Whalen, J.; Holmstrom, K.; Kuhar, T.P.; Doughty, H.B.; Patton, T.; Cissel, W.; Hutchison, W.D. Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers. Proc. Nat. Acad. Sci. USA 2018, 115, 3320–3325. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Jeffris, R.A.; Huseth, A.S.; Nault, B.A. Estimating E-Race European Corn Borer (Lepidoptera: Crambidae) Adult Activity in Snap Bean Fields Based on Corn Planting Intensity and Their Activity in Corn in New York Agroecosystems. J. Econ. Entomol. 2016, 109, 2210–2214. [Google Scholar] [CrossRef]
- Dively, G.P.; Venugopal, P.D.; Finkenbinder, C. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn (vol 11, e0169115, 2016). PLoS ONE 2017, 12, e0183637. [Google Scholar] [CrossRef] [Green Version]
- Fisher, K.E.; Mason, C.E.; Flexner, J.L.; Hough-Goldstein, J.; McDonald, J.H. Survivorship of Z-Pheromone Race European Corn Borer (Lepidoptera: Crambidae) on a Range of Host Plants Varying in Defensive Chemistry. J. Econ. Entomol. 2017, 110, 978–985. [Google Scholar] [CrossRef]
- Schneider, A.M.; Gontijo, L.M.; Costa, L.L. Impact of Bt sweet corn on lepidopteran pests in Midwestern Brazil. Sci. Agric. 2019, 76, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Venugopal, P.D.; Dively, G.P. Climate change, transgenic corn adoption and field-evolved resistance in corn earworm. R. Soc. Open Sci. 2017, 4, 170210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahn, B.A.; Brandenberger, L.P. Developing Protocols for Fall Sweet Corn Production in the South-central United States. Horttechnology 2016, 26, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, A.E.; Audette, C.; Duval, B.; Boisclair, J. Can the Use of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) to Control Ostrinia nubilalis (Lepidoptera: Crambidae) Be Economically Sustainable for Processing Sweet Corn? J. Econ. Entomol. 2017, 110, 59–66. [Google Scholar] [CrossRef]
- Dionne, A.; Khelifi, M.; Todorova, S.; Boivin, G. Design and testing of a boom sprayer prototype to release Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) in sweet corn for biocontrol of Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae). Trans. ASABE 2018, 61, 1867–1879. [Google Scholar] [CrossRef]
- Gauthier, P.; Khelifi, M.; Dionne, A.; Todorova, S. Technical feasibility of spraying Trichogramma ostriniae pupae to control the European corn borer in sweet corn crops. Appl. Eng. Agric. 2019, 35, 185–192. [Google Scholar] [CrossRef]
- Viteri, D.M.; Linares, A.M.; Cabrera, I.; Sarmiento, L. Presence of corn earworm and fall armyworm (Lepidoptera: Noctuidae) populations in sweet corn and their susceptibility to insecticides in Puerto Rico. Fla. Entomol. 2019, 102, 451–454. [Google Scholar] [CrossRef] [Green Version]
- Peterson, J.A.; Burkness, E.C.; Harwood, J.D.; Hutchison, W.D. Molecular gut-content analysis reveals high frequency of Helicoverpa zea (Lepidoptera: Noctuidae) consumption by Orius insidiosus (Hemiptera: Anthocoridae) in sweet corn. Biol. Cont. 2018, 121, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, F.E.; Reche, V.A.; Bertolaccini, I.; Zarate, B.; Curis, C. A new genus and species of Eucoilinae (Hymenoptera, Cynipoidea, Figitidae) parasitoid of Euxesta eluta Loew (Diptera, Otitidae) attacked Bt sweet corn in Argentina. J. Hymenopt. Res. 2017, 54, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Bertolaccini, I.; Curis, M.C.; Lutz, A.; Favaro, J.C.; Bollati, L.; Gallardo, F. Effect of Euxestophaga argentinensis (Hymenoptera, figitidae) on corn-silk fly larvae Euxesta sp. in two sweet corn planting dates. Chil. J. Agric. Anim. Sci. 2018, 34, 185–190. [Google Scholar] [CrossRef]
- Meagher, R.L.; Nuessly, G.S.; Nagoshi, R.N.; Hay-Roe, M.M. Parasitoids attacking fall armyworm (Lepidoptera: Noctuidae) in sweet corn habitats. Biol. Control 2016, 95, 66–72. [Google Scholar] [CrossRef] [Green Version]
- De Azevedo, A.G.C.; Steinwender, B.M.; Eilenberg, J.; Sigsgaard, L. Interactions among the Predatory Midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae), the Fungal Pathogen Metarhizium brunneum (Ascomycota: Hypocreales), and Maize-Infesting Aphids in Greenhouse Mesocosms. Insects 2017, 8, 44. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.; Nuessly, G.S.; Seal, D.R.; Colquhoun, T.A. Variable Pyrethroid Susceptibility Among the Sweet Corn-Infesting Ulidiidae (Diptera) in Florida and New Baseline Susceptibilities. J. Econ. Entomol. 2016, 109, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Yajima, T.; Fujita, M.; Iijima, K.; Sato, K.; Kato, Y. Influence of various parts of sweet corn ears on pesticide residue levels. J. Pestic. Sci. 2017, 42, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.D.; Rashid, M.; Liu, J.; Hu, M.Y.; Zhong, G.H. Identification of multi-insecticide residues using GC-NPD and the degradation kinetics of chlorpyrifos in sweet corn and soils. Food Chem. 2016, 212, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Westgate, P.J.; Schultz, B.B.; Hazzard, R.V. Effects of Carriers, Emulsifiers, and Biopesticides for Direct Silk Treatments on Caterpillar Feeding Damage and Ear Development in Sweet Corn. J. Econ. Entomol. 2017, 110, 507–516. [Google Scholar] [CrossRef]
- Moore, V.M.; Tracy, W.F. Survey of organic sweet corn growers identifies corn earworm prevalence, management, and opportunities for plant breeding. Renew. Agric. Food Syst. 2020. [Google Scholar] [CrossRef]
- Jeger, M.; Bragard, C.; Caffier, D.; Candresse, T.; Chatzivassiliou, E.; Dehnen-Schmutz, K.; Gilioli, G.; Gregoire, J.C.; Miret, J.A.J.; Navarro, M.N.; et al. Pest risk assessment of Spodoptera frugiperda for the European Union. EFSA J. 2018, 16, 5351. [Google Scholar] [CrossRef] [Green Version]
- Disi, J.O.; Zebelo, S.; Kloepper, J.W.; Fadamiro, H. Seed inoculation with beneficial rhizobacteria affects European corn borer (Lepidoptera: Pyralidae) oviposition on maize plants. Entomol. Sci. 2018, 21, 48–58. [Google Scholar] [CrossRef]
- Blum, M.; Nestel, D.; Cohen, Y.; Goldshtein, E.; Helman, D.; Lensky, I.M. Predicting Heliothis (Helicoverpa armigera) pest population dynamics with an age-structured insect population model driven by satellite data. Ecol. Mod. 2018, 369, 1–12. [Google Scholar] [CrossRef]
- Olmstead, D.L.; Shelton, A.M. Effects of timing and insecticide on management of Helicoverpa zea (Lepidoptera: Noctuidae) in sweet corn (Poales: Poaceae). Fla. Entomol. 2016, 99, 161–165. [Google Scholar] [CrossRef]
- Beres, P.K. Efficacy of spinosad and Bacillus thuringiensis var. kurstaki in biological control of the European corn borer on sweet corn. Acta Sci. Pol. Hortorum Cultus 2016, 15, 19–35. [Google Scholar]
- Michalek, S.; Swiecilo, A.; Molas, J. Effect of silver nanoparticles and ions on seeds epiphytic microorganisms activity and early stages of sweet corn development. Przem. Chem. 2018, 97, 1654–1658. [Google Scholar] [CrossRef]
- Ridout, M.E.; Newcombe, G.; Godfrey, B. First report of Fusarium temperatum in biseased sweet corn ears in the western United States. Plant Dis. 2016, 100, 2527. [Google Scholar] [CrossRef]
- Solemslie, R.; Derie, M.L.; Morgan, P.; Gyawali, S.; du Toit, L.J. Sweet corn production in the Columbia Basin of Washington, Causal agents of seedling blights and prevalence of mefenoxam resistance. Phytopathology 2019, 109, 168. [Google Scholar]
- Yu, D.; Bu, F.F.; Hou, J.J.; Kang, Y.X.; Yu, Z.D. A morel improved growth and suppressed Fusarium infection in sweet corn. World J. Microb. Biotech. 2016, 32, 192. [Google Scholar] [CrossRef] [PubMed]
- Ajayi-Oyetunde, O.O.; Bradley, C.A. Identification and Characterization of Rhizoctonia Species Associated with Soybean Seedling Disease. Plant Dis. 2017, 101, 520–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chozin, M.; Guspitasari, Y.; Sudjatmiko, S. The potential use of plant extracts for controlling northern leaf blight on organic sweet corn production. In IOP Conference Series: Earth and Environmental Science, Proceedings of the International Conference on Organic Agriculture in the Tropics—State of the Art, Challenges and Opportunities, Yogyakarta, Indonesia, 20–24 August 2017; IOP Publishing Ltd.: Bristol, UK, 2018; Volume 215, p. 012014. [Google Scholar] [CrossRef]
- Kutawa, A.B.; Sijam, K.; Ahmad, K.; Seman, Z.A.; Ab Razak, M.S.F.; Abdullah, N. Characterisation and pathological variability of Exserohilum turcicum responsible for causing northern corn leaf blight (NCLB) disease in Malaysia. Malays. J. Microbiol. 2017, 13, 41–49. [Google Scholar]
- Puttarach, J.; Puddhanon, P.; Siripin, S.; Sangtong, V.; Songchantuek, S. Marker assisted selection for resistance to northern corn leaf blight in sweet corn. Sabrao J. Breed. Genet. 2016, 48, 72–79. [Google Scholar]
- Lukman, R.; Afifuddin, A.; Lubberstedt, T. Tracing the signature of Peronosclerospora maydis in maize seeds. Australas. Plant Pathol. 2016, 45, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Nischwitz, C.; Olson, B. Importance of seed as an inoculum source for High Plains Virus in sweet corn. In Proceedings of the Phytopathology CT International Congress of Plant Pathology (ICPP), Boston, MA, USA, 29 July–3 August 2018; p. 108. [Google Scholar]
- Yuan, M.W.; Couture, J.J.; Townsend, P.A.; Ruark, M.D.; Bland, W.L. Spectroscopic Determination of Leaf Nitrogen Concentration and Mass Per Area in Sweet Corn and Snap Bean. Agron. J. 2016, 108, 2519–2526. [Google Scholar] [CrossRef]
- Prasad, R.; Hochmuth, G.J. Environmental Nitrogen Losses from Commercial Crop Production Systems in the Suwannee River Basin of Florida. PLoS ONE 2016, 11, e0167558. [Google Scholar] [CrossRef]
- Zucareli, C.; Bazzo, J.H.B.; Silva, J.B.; Costa, D.S.; Fonseca, I.C.B. Nitrogen rates and side-dressing timing on sweet corn seed production and physiological potential. Rev. Caatinga 2018, 31, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Kang, L.Y.; Fan, B.Q.; Chen, S.; Chen, Q. Fertigation combined with catch crop maximize vegetable yield and minimize N and P surplus. Nutr. Cycl. Agroecosyst. 2018, 112, 87–99. [Google Scholar] [CrossRef]
- Xiong, H.F.; Xiong, Y.S.; Zhang, G.B.; Peng, Z.D.; He, S.H.; Xu, D.B.; Liu, W. Effects of Nitrogen, Phosphorus and Potassium on Yield of Sweet Corn. In Proceedings of the International Conference on Material Science, Energy and Environmental Engineering (MSEEE 2017), Xi’an, China, 26–27 August 2017; Volume 125, pp. 216–219. [Google Scholar]
- Khan, Z.H.; Khalil, S.K.; Iqbal, A.; Ullah, I.; Ali, M.; Shah, T.; Wu, W.; Shah, F. Nitrogen doses and plant density affect phenology and yield of sweet corn. Fresenius Environ. Bull. 2017, 26, 3809–3815. [Google Scholar]
- Khan, Z.H.; Khalil, S.K.; Shah, F.; Iqbal, A.; Ali, F.; Badshah Islam, I.; Ali, M. Plant density and nitrogen doses can affect growth of sweet corn. Fresenius Environ. Bull. 2017, 26, 3872–3879. [Google Scholar]
- Turk, M.; Alagoz, M. The effect of nitrogen fertilizer on the yield and quality in the sweet maize. Sci. Pap. Ser. A Agron. 2018, 61, 408–411. [Google Scholar]
- Mohammed, A.A.; Majid, Z.M.; Kasnazany, S.A.S.; Salih, S.J.; Mustafa, S.B.; Salih, O.A. Growth and yield quality of sweet corn, as influenced by nitrogen fertilization levels in Sulaimani region. Iraqi J. Agric. Sci. 2017, 48, 1582–1589. [Google Scholar]
- Yuan, M.W.; Ruark, M.D.; Bland, W.L. Adaption of the AmaizeN model for nitrogen management in sweet corn (Zea mays L.). Field Crops Res. 2017, 209, 27–38. [Google Scholar] [CrossRef]
- Tang, Y.L.; Yu, L.L.; Guan, A.M.; Zhou, X.Y.; Wang, Z.G.; Gou, Y.G.; Wang, J.W. Soil mineral nitrogen and yield-scaled soil N2O emissions lowered by reducing nitrogen application and intercropping with soybean for sweet maize production in southern China. J. Integr. Agric. 2017, 16, 2586–2596. [Google Scholar] [CrossRef] [Green Version]
- Marlina, N.; Amir, N.; Aminah, R.I.; Nasser, G.A.; Purwanti, Y.; Nisfuriah, L. Organic and Inorganic Fertilizers Application on NPK Uptake and Production of Sweet Corn in Inceptisol Soil of Lowland Swamp Area. In MATEC Web of Conferences, Proceedings of the Engineering Technology International Conference 2016 (ETIC 2016), Ho Chi Minh City, Vietnam, 5–6 August 2016; EDP Sciences: Les Ulis Cedex A, France, 2017; Volume 97, p. 01106. [Google Scholar] [CrossRef] [Green Version]
- Van Eerd, L.L. Nitrogen dynamics and yields of fresh bean and sweet corn with different cover crops and planting dates. Nutr. Cycl. Agroecosyst. 2018, 111, 33–46. [Google Scholar] [CrossRef]
- Guo, R.Y.; Qin, W.; Jiang, C.G.; Kang, L.Y.; Nendel, C.; Chen, Q. Sweet corn significantly increases nitrogen retention and reduces nitrogen leaching as summer catch crop in protected vegetable production systems. Soil Tillage Res. 2018, 180, 148–153. [Google Scholar] [CrossRef]
- Shen, W.S.; Gao, N.; Min, J.; Shi, W.M.; He, X.H.; Lin, X.G. Influences of past application rates of nitrogen and a catch crop on soil microbial communities between an intensive rotation. Acta Agric. Scan. Sect. B Soil Plant Sci. 2016, 66, 97–106. [Google Scholar] [CrossRef]
- Zhang, X.; von Mogel, K.J.H.; Lor, V.S.; Hirsch, C.N.; De Vries, B.; Kaeppler, H.F.; Tracy, W.F.; Kaeppler, S.M. Maize sugary enhancer1 (se1) is a gene affecting endosperm starch metabolism. Proc. Nat. Acad. Sci. USA 2019, 116, 20776–20785. [Google Scholar] [CrossRef] [Green Version]
- Schuller, P.; Castillo, A.; Voigt, G.; Semioshkina, N. Radiocaesium transfer from volcanic soils to Swiss chard, cabbage and sweet corn. J. Environ. Radioac. 2018, 192, 117–127. [Google Scholar] [CrossRef]
- Mondale, P.; Lakaria, B.L.; Aher, S.B.; Singh, A.B.; Gupta, S.C. Phosphorous concentration and uptake in maize varieties cultivated under organic nutrient management. Int. J. Agric. Stat. Sci. 2019, 15, 311–315. [Google Scholar]
- Cheah, Z.X.; Kopittke, P.M.; Harper, S.M.; O’Hare, T.J.; Wang, P.; Paterson, D.J.; de Jonge, M.D.; Bell, M.J. In situ analyses of inorganic nutrient distribution in sweet corn and maize kernels using synchrotron-based X-ray fluorescence microscopy. Ann. Bot. 2019, 123, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xiong, Y.S.; Xu, X.Y.; Xu, F.S.; Hussain, S.; Xiong, H.F.; Yuan, J.F. Deep placement of controlled-release urea effectively enhanced nitrogen use efficiency and fresh ear yield of sweet corn in fluvo-aquic soil. Sci. Rep. 2019, 9, 20307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pangaribuan, D.H.; Hendarto, K.; Elzhivago, S.R.; Yulistiani, A. The effect of organic fertilizer and urea fertilizer on growth, yield and quality of sweet corn and soil health. Asian J. Agric. Biol. 2018, 6, 335–344. [Google Scholar]
- Rashid, Z.O.; Tanriverdi, C. Determination of the effects of different fertilizer applications on sweet corn. Sci. Pap. Ser. A Agron. 2018, 61, 375–379. [Google Scholar]
- Marlina, N.; Rahim, S.E.; Hawayanti, E. Utilization of Organic Fertilizer on Sweet Corn (Zea mays saccharata Sturt) Crop at Shallow Swamp Land. In MATEC Web of Conferences, Proceedings of the Engineering Technology International Conference 2016 (ETIC 2016), Ho Chi Minh City, Vietnam, 5–6 August 2016; EDP Sciences: Les Ulis Cedex A, France, 2017; Volume 97, p. 01103. [Google Scholar] [CrossRef] [Green Version]
- Fares, A.; Bensley, A.; Bayabil, H.; Awal, R.; Fares, S.; Valenzuela, H.; Abbas, F. Carbon dioxide emission in relation with irrigation and organic amendments from a sweet corn field. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2017, 52, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Ingold, M.; Schmidt, S.; Dietz, H.; Joergensen, R.G.; Schlecht, E.; Buerkert, A. Tannins in goat diets modify manure turnover in a subtropical soil. Exp. Agric. 2018, 54, 655–669. [Google Scholar] [CrossRef]
- Lukiwati, R.; Pujaningsih, R.I.; Murwani, R. The Effect of Organic Phosphorus and Nitrogen Enriched Manure on Nutritive Value of Sweet Corn Stover. In IOP Conference Series: Earth and Environmental Science, Proceedings of the International Ruminant Seminar: Eco-Friendly Livestock Production for Sustainable Agriculture, Semarang, Indonesia, 24 October 2017; IOP Publishing Ltd.: Bristol, UK, 2018; Volume 119, p. 012018. [Google Scholar] [CrossRef]
- Emam, M.S.A.; Elsayed, T.R.; Hamed, L.M.M. Sweet Corn Performance and Rhizosphere Microbial Densities in Response to Mineral and Organic Amendments. Egypt. J. Soil Sci. 2020, 60, 43–52. [Google Scholar] [CrossRef]
- Pangaribuan, D.H.; Monica, W. Growth and yield of sweet corn as affected by paddy straw plant compost and potassium fertilizer. Acta Hortic. 2018, 1208, 281–285. [Google Scholar] [CrossRef]
- Long, R.J.; Brown, R.N.; Amador, J.A. Growing Food with Garbage: Effects of Six Waste Amendments on Soil and Vegetable Crops. HortScience 2017, 52, 896–904. [Google Scholar] [CrossRef] [Green Version]
- Woodruff, L.K.; Habteselassie, M.Y.; Norton, J.M.; Boyhan, G.E.; Cabrera, M.L. Yield and Nutrient Dynamics in Conventional and Organic Sweet Corn Production Systems. Agron. J. 2019, 111, 2395–2403. [Google Scholar] [CrossRef]
- West, J.R.; Ruark, M.D.; Bussan, A.J.; Colquhoun, J.B.; Silva, E.M. Nitrogen and Weed Management for Organic Sweet Corn Production on Loamy Sand. Agron. J. 2016, 108, 758–769. [Google Scholar] [CrossRef]
- Fahrurrozi, F.; Muktamar, Z.; Setyowati, N.; Sudjatmiko, S.; Chozin, M. Comparative Effects of Soil and Foliar Applications of Tithonia-Enriched Liquid Organic Fertilizer on Yields of Sweet Corn in Closed Agriculture Production System. Agrivita 2019, 41, 238–245. [Google Scholar] [CrossRef]
- Xiong, H.F.; Xiong, Y.S.; Shao, Y.P.; Liu, W.; Xie, Y.Y. Study on Reducing Fertilization Technology of Sweet Corn. In Proceedings of the International Conference on Frontiers of Biological Sciences and Engineering (FBSE 2018), Chongqing, China, 23–24 November 2018. [Google Scholar]
- Gimondo, J.A.; Currey, C.J.; Jarboe, D.H.; Gross, M.; Graves, W.R. Wastewater-grown Algae Pellets and Paste as Fertilizers for Containerized Crops. HortScience 2019, 54, 528–536. [Google Scholar] [CrossRef] [Green Version]
- Etemadi, F.; Hashemi, M.; Zandvakili, O.; Dolatabadian, A.; Sadeghpour, A. Nitrogen Contribution from Winter-Killed Faba Bean Cover Crop to Spring-Sown Sweet Corn in Conventional and No-Till Systems. Agron. J. 2018, 110, 455–462. [Google Scholar] [CrossRef]
- Ivancic, K.A.; Ruark, M.D.; Arriaga, F.J.; Silva, E.M. Spring-seeded Green Manures Continue to Demonstrate Variable Benefits on Sandy Soil. HortScience 2019, 54, 2031–2038. [Google Scholar] [CrossRef] [Green Version]
- Fitriatin, B.N.; Fatimah, I.; Sofyan, E.T. The effect of phosphate solubilizing bacteria and organic fertilizer on phosphatase, available P, P uptake and growth sweet corn in Andisols. In IOP Conference Series: Earth and Environmental Science, Proceedings of the International Conference on Organic Agriculture in the Tropics: State of the Art, Challenges and Opportunities, Yogyakarta, Indonesia, 20–24 August 2017; IOP Publishing Ltd.: Bristol, UK, 2018; Volume 215, p. 012002. [Google Scholar] [CrossRef]
- Rojas, M.A.; Van Eerd, L.L.; O’Halloran, I.P.; Sikkema, P.H.; Robinson, D.E. Effect of herbicide residues on fall-seeded cover crops influence soil aggregate stability and mineral N. Can. J. Plant Sci. 2017, 97, 411–423. [Google Scholar] [CrossRef]
- Anyaoha, K.E.; Sakrabani, R.; Patchigolla, K.; Mouazen, A.M. Critical evaluation of oil palm fresh fruit bunch solid wastes as soil amendments: Prospects and challenges. Res. Cons. Recycl. 2018, 136, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Li, W.; Ashraf, U.; Lu, W.J.; Li, Y.L.; Li, C.Y.; Li, G.Y.; Li, G.K.; Hu, J.G. Nitrogen Fertilizer Management and Maize Straw Return Modulate Yield and Nitrogen Balance in Sweet Corn. Agronomy 2020, 10, 362. [Google Scholar] [CrossRef] [Green Version]
- Vuyyuru, M.; Sandhu, H.S.; Erickson, J.E.; Ogram, A.V. Soil chemical and biological fertility, microbial community structure and dynamics in successive and fallow Sugarcane Planting Systems. Agroecol. Sust. Food Syst. 2020, 44, 6. [Google Scholar] [CrossRef]
- Rashti, M.R.; Wang, W.J.; Chen, C.R.; Reeves, S.H.; Scheer, C. Assessment of N2O emissions from a fertilised vegetable cropping soil under different plant residue management strategies using N-15 tracing techniques. Sci. Total Environ. 2017, 598, 479–487. [Google Scholar] [CrossRef] [Green Version]
- Motazedian, A.; Kazemeini, S.A.; Bahrani, M.J. Sweet corn growth and Grain Yield as influenced by irrigation and wheat residue management. Agric. Water Manag. 2019, 224, 105748. [Google Scholar] [CrossRef]
- Pangaribuan, D.H.; Sarno, S.; Hendarto, K. Liquid Organic Fertilizer from Plant Extracts Improves the Growth, Yield and Quality of Sweet Corn (Zea mays L. var. saccharata). Pertanika J. Tropical Agric. Sci. 2019, 42, 1157–1166. [Google Scholar]
- Yu, J.; Deem, L.M.; Crow, S.E.; Deenik, J.L.; Penton, C.R. Biochar application influences microbial assemblage complexity and composition due to soil and bioenergy crop type interactions. Soil Biol. Biochem. 2018, 117, 97–107. [Google Scholar] [CrossRef]
- Cole, E.J.; Zandvakili, O.R.; Xing, B.S.; Hashemi, M.; Barker, A.V.; Herbert, S.J. Effects of Hardwood Biochar on Soil Acidity, Nutrient Dynamics, and Sweet Corn Productivity. Comm. Soil Sci. Plant Anal. 2019, 50, 1732–1742. [Google Scholar] [CrossRef]
- Sia, Z.Y.; Chang, H.Y.; Liew, J.Y. Amending inorganic fertilizers with rice straw compost to improve soil nutrients availability, nutrients uptake, and dry matter production of maize (Zea mays L.) cultivated on a tropical acid soil. AIMS Agric. Food 2019, 4, 1020–1033. [Google Scholar] [CrossRef]
- Pangaribuan, D.H.; Nurmauli, N.; Sengadji, S.F. The effect of enriched compost and nitrogen fertilizer on the growth and yield of sweet corn (Zea mays L.). Acta Hortic. 2017, 1152, 387–392. [Google Scholar] [CrossRef]
- Suan, J.D.; Datta, A.; Salam, P.A. Effect of Oil Palm Fly Ash on Soil Properties and Yield of Sweet Corn in the Tropical Zone of Thailand. Comm. Soil Sci. Plant Anal. 2017, 48, 236–244. [Google Scholar] [CrossRef]
- Abdulrahman, D.K.; Othman, R.; Saud, H.M. Effects of Empty Fruit Bunch Biochar and Nitrogen-Fixing Bacteria on Soil Properties and Growth of Sweet Corn. Malays. J. Soil Sci. 2016, 20, 177–194. [Google Scholar]
- Possinger, A.R.; Amador, J.A. Preliminary Evaluation of Seaweed Application Effects on Soil Quality and Yield of Sweet Corn (Zea mays L.). Comm. Soil Sci. Plant Anal. 2016, 47, 121–135. [Google Scholar] [CrossRef]
- Cole, A.J.; Paul, N.A.; De Nys, R.; Roberts, D.A. Good for sewage treatment and good for agriculture: Algal based compost and biochar. J. Environ. Manag. 2017, 200, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.L.; Li, M.H.; Liu, H.M.; Zhao, Q.; Lin, X.G. Intercropping with sweet corn (Zea mays L. var. rugosa Bonaf.) expands P acquisition channels of chili pepper (Capsicum annuum L.) via arbuscular mycorrhizal hyphal networks. J. Soils Sediments 2019, 19, 1632–1639. [Google Scholar] [CrossRef]
- Phanpadith, P.; Yu, Z.D.; Yu, D.; Phongsavath, S.; Shen, K.C.; Zheng, W.; Phommakoun, B. Promotion of maize growth by a yellow morel, Morchella crassipes. Symbiosis 2020, 80, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Numoto, A.Y.; Vidigal, P.S.; Scapim, C.A.; Franco, A.A.N.; Ortiz, A.H.T.; Marques, O.J.; Pelloso, M.F. Agronomic performance and sweet corn quality as a function of inoculant doses (Azospirillum brasilense) and nitrogen fertilization management in summer harvest. Bragantia 2019, 78, 26–37. [Google Scholar] [CrossRef]
- Simic, M.S.; Dragicvic, V.; Chachalis, D.; Dolijanovic, Z.; Brankov, M. Integrated weed management in long-term maize cultivation. Zemdirb. Agric. 2020, 107, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.T.; Lin, C.; He, F.; Li, Z.; Guan, Y.J.; Hu, Q.J.; Hu, J. Exogenous spermidine improves seed germination of sweet corn via involvement in phytohormone interactions, H2O2 and relevant gene expression. BMC Plant Biol. 2017, 17, 1. [Google Scholar] [CrossRef] [Green Version]
- Arena, M.; Auteri, D.; Barmaz, S.; Bellisai, G.; Brancato, A.; Brocca, D.; Bura, L.; Byers, H.; Chiusolo, A.; Marques, D.C.; et al. Peer review of the pesticide risk assessment of the active substance dimethenamid-P. EFSA J. 2018, 16, 5211. [Google Scholar] [CrossRef]
- Arena, M.; Auteri, D.; Barmaz, S.; Brancato, A.; Brocca, D.; Bura, L.; Cabrera, L.C.; Chiusolo, A.; Marques, D.C.; Crivellente, F.; et al. Peer review of the pesticide risk assessment of the active substance spinosad. EFSA J. 2018, 16, 5252. [Google Scholar] [CrossRef] [Green Version]
- Brancato, A.; Brocca, D.; Chiusolo, A.; Marques, D.C.; Crivellente, F.; De Lentdecker, C.; De Maglie, M.; Egsmose, M.; Erdos, Z.; Fait, G.; et al. Peer review of the pesticide risk assessment for the active substance isoxaflutole in light of negligible exposure data submitted. EFSA J. 2017, 15, 4731. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Modification of the existing maximum residue levels for fluopyram in various crops. EFSA J. 2016, 14, 4520. [Google Scholar] [CrossRef]
- EFSA. Peer review of the pesticide risk assessment of the active substance isoxaflutole. EFSA J. 2016, 14, 4416. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Evaluation of data concerning the necessity of isoxaflutole as a herbicide to control a serious danger to plant health which cannot be contained by other available means, including non-chemical methods. EFSA J. 2017, 15, 6. [Google Scholar] [CrossRef] [Green Version]
- Choe, E.; Williams, M.M. Expression and comparison of sweet corn CYP81A9s in relation to nicosulfuron sensitivity. Pest Manag. Sci. 2020, 76, 3012–3019. [Google Scholar] [CrossRef]
- Reynoso, M.S.; Alvarez, C.M.; De la Cruz, L.L.; Villalobos, A.R.A.; Landeros, J.F.G.; Sanchez, J.J.G. Genetic damage in Mexican and South American sweet corn varieties due to the herbicides nicosulfuron and topramezone. Genet. Mol. Res. 2019, 18, gmr18159. [Google Scholar] [CrossRef]
- Arslan, Z.F.; Williams, M.M.; Becker, R.; Fritz, V.A.; Peachey, R.E.; Rabaey, T.L. Alternatives to Atrazine for Weed Management in Processing Sweet Corn. Weed Sci. 2016, 64, 531–539. [Google Scholar] [CrossRef]
- Do-Thanh, C.L.; Vargas, J.J.; Thomas, J.W.; Armel, G.R.; Best, M.D. Design, Synthesis, and Evaluation of Novel Auxin Mimic Herbicides. J. Agric. Food Chem. 2016, 64, 3533–3537. [Google Scholar] [CrossRef]
- Paporisch, A.; Rubin, B. Isoxadifen safening mechanism in sweet corn genotypes with differential response to P450-metabolized herbicides. Pestic. Biochem. Physiol. 2017, 138, 22–28. [Google Scholar] [CrossRef]
- Mesarovic, J.; Srdic, J.; Mladenovic-Drinic, S.; Dragicevic, V.; Simic, M.; Brankov, M.; Milojkovic-Opsenica, D. Evaluation of the nutritional profile of sweet maize after herbicide and foliar fertilizer application. J. Cereal Sci. 2019, 87, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Cutulle, M.A.; Armel, G.R.; Kopsell, D.A.; Wilson, H.P.; Brosnan, J.T.; Vargas, J.J.; Hines, T.E.; Koepke-Hill, R.M. Several Pesticides Influence the Nutritional Content of Sweet Corn. J. Agric. Food Chem. 2018, 66, 3086–3092. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.; Li, Z.Y.; Riddle, R.; O’Sullivan, J.; Van Acker, R. Improving the field efficacy of manuka oil using tank-mixes with surfactants and commercial organic herbicides. Can. J. Plant Sci. 2018, 98, 1349–1356. [Google Scholar] [CrossRef]
- Ghimire, S.; Scheenstra, E.; Miles, C.A. Soil-biodegradable Mulches for Growth, Yield, and Quality of Sweet Corn in a Mediterranean-type Climate. HortScience 2020, 55, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Nurse, R.E.; Mensah, R.; Robinson, D.E.; Leroux, G.D. Adzuki bean [Vigna angularis (Willd.) Ohwi & Ohashi], oilseed radish (Raphanus sativus L.), and cereal rye (Secale cereale L.) as living mulches with and without herbicides to control annual grasses in sweet corn (Zea mays L.). Can. J. Plant Sci. 2019, 99, 152–158. [Google Scholar] [CrossRef]
- Martin-Closas, L.; Costa, J.; Pelacho, A.M. Agronomic Effects of Biodegradable Films on Crop and Field Environment. Soil Degr. Bioplast. Sustain. Modern Agric. 2017, 67–104. [Google Scholar] [CrossRef]
- Rojas, M.A.; Van Eerd, L.L.; O’Halloran, I.P.; Sikkema, P.H.; Robinson, D.E. Responses of spring-seeded cover crop roots by herbicide residues and short-term influence in soil aggregate stability and N cycling. Can. J. Plant Sci. 2018, 98, 990–1004. [Google Scholar] [CrossRef]
- Anesio, A.H.C.; Santos, M.V.; Silveira, R.R.; Ferreira, E.A.; Dos Santos, J.B.; Da Silva, L.D. Persistence of auxinic herbicides applied on pasture and toxicity for succeeding crops. An. Acad. Bras. Ciênc. 2018, 90, 1717–1732. [Google Scholar] [CrossRef] [PubMed]
- Boydston, R.A.; Williams, M.M. Sweet corn hybrid tolerance to weed competition under three weed management levels. Renew. Agric. Food Syst. 2016, 31, 281–287. [Google Scholar] [CrossRef]
- Lowry, C.J.; Brainard, D.C. Strip Intercropping of Rye-Vetch Mixtures: Effects on Weed Growth and Competition in Strip-Tilled Sweet Corn. Weed Sci. 2019, 67, 114–125. [Google Scholar] [CrossRef]
- Simarmata, M.; Nurjanah, U.; Setyowati, N. Determination of the critical period for weed control of sweet corn under tropical organic farming system. Asian J. Agric. Biol. 2018, 6, 447–454. [Google Scholar]
- Tursun, N.; Datta, A.; Sakinmaz, M.S.; Kantarci, Z.; Knezevic, S.Z.; Chauhan, B.S. The critical period for weed control in three corn (Zea mays L.) types. Crop Prot. 2016, 90, 59–65. [Google Scholar] [CrossRef]
- Brown, B.; Gallandt, E.R. A Systems Comparison of Contrasting Organic Weed Management Strategies. Weed Sci. 2018, 66, 109–120. [Google Scholar] [CrossRef]
- Chen, G.H.; Kolb, L.; Leslie, A.; Hooks, C.R.R. Using Reduced Tillage and Cover Crop Residue to Manage Weeds in Organic Vegetable Production. Weed Technol. 2017, 31, 557–573. [Google Scholar] [CrossRef]
- Jasinski, M.; Maczak, J.; Szulim, P.; Radkowski, S. Autonomous Agricultural Robot—Testing of the Vision System fornPlants/Weed Classification. In Automation 2018; Springer International Publishing: Cham, Switzerland, 2018; Volume 743, pp. 473–482. [Google Scholar] [CrossRef]
- Zhang, T.T.; Zhao, B.; Yang, L.M.; Wang, J.H.; Sun, Q. Determination of Conductivity in Sweet Corn Seeds with Algorithm of GA and SPA Based on Hyperspectral Imaging Technique. Spectros. Spectral Anal. 2019, 39, 2608–2613. [Google Scholar] [CrossRef]
- Lykhovyd, P. A Life Factor Approach to the Yield Prediction: A Comparison with a Technological Approach in Reliability and Accuracy. J. Ecol. Eng. 2019, 20, 177–183. [Google Scholar] [CrossRef]
- Lykhovyd, P.V.; Ushkarenko, V.O.; Lavrenko, S.O.; Lavrenko, N.M.; Zhuikov, O.H.; Mrynskyi, I.M.; Didenko, N.O. Leaf area index of sweet corn (Zea mays ssp. saccharata L.) crops depending on cultivation technology in the drip-irrigated conditions of the south of Ukraine. Modern Phytom. 2019, 13, 1–4. [Google Scholar] [CrossRef]
- Lykhovyd, P. Sweet Corn Yield Simulation Using Normalized Difference Vegetation Index and Leaf Area Index. J. Ecol. Eng. 2020, 21, 228–236. [Google Scholar] [CrossRef]
- Ghazaryan, A.; Westgren, R.; Parcell, J.; Gedikoglu, H. Factors affecting farmers market produce prices in Missouri. J. Food Prod. Mark. 2018, 24, 927–945. [Google Scholar] [CrossRef]
- Adiyoga, W.; de Putter, H. The economics of vegetable farming in the lowlands of Cirebon, West Java, Indonesia. Acta Hortic. 2018, 1208, 297–304. [Google Scholar] [CrossRef]
- Lykhovyd, P.V. Prediction of sweet corn yield depending on cultivation technology parameters by using linear regression and artificial neural network methods. Biosyst. Div. 2018, 26, 11–15. [Google Scholar] [CrossRef]
- Reid, J.B. A preliminary model of sweet corn growth and yield. N. Z. J. Crop Hortic. Sci. 2017, 45, 130–149. [Google Scholar] [CrossRef]
- Confalonieri, R.; Paleari, L.; Foi, M.; Movedi, E.; Vesely, F.M.; Thoelke, W.; Agape, C.; Borlini, G.; Ferri, I.; Massara, F.; et al. PocketPlant3D: Analysing canopy structure using a smartphone. Biosyst. Eng. 2017, 164, 1–12. [Google Scholar] [CrossRef]
- Rosa, R.; Kosterna-Kelle, E.; Franczuk, J.; Zaniewicz-Bajkowska, A. The influence of weather conditions of eastern Poland on sweet corn yields and length of growing season. J. Ecol. Eng. 2016, 17, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Isaak, M.; Yahya, A.; Razif, M.; Mat, N. Mechanization status based on machinery utilization and workers’ workload in sweet corn cultivation in Malaysia. Comp. Elect. Agric. 2020, 169, 105208. [Google Scholar] [CrossRef]
- Laosutsan, P.; Shivakoti, G.P.; Soni, P. Factors Influencing the Adoption of Good Agricultural Practices and Export Decision of Thailand’s Vegetable Farmers. Int. J. Commons 2019, 13, 867–880. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.H.; Khalil, S.K.; Iqbal, A.; Islam, B.; Shah, W.A.; Ahmad, A.; Arif, M.; Sajjad, M.; Shah, F. Growth attributes of sweet corn under different planting regimes. Fresenius Environ. Bull. 2018, 27, 6945–6951. [Google Scholar]
- Layden, I.A.; O’Halloran, J. Validating the potential of precision technology in Queensland vegetable and strawberry production. Acta Hortic. 2016, 1130, 613–618. [Google Scholar] [CrossRef]
- Owen, J.; LeBlanc, S. New agronomic techniques for high quality organic sweet corn in maritime Canada. International symposium on innovation in integrated and organic horticulture (INNOHORT). Acta Hortic. 2016, 1137, 33–38. [Google Scholar] [CrossRef]
- Moteva, M.; Gadjalska, N.; Kancheva, V.; Tashev, T.; Georgieva, V.; Koleva, N.; Mortev, I.; Petrova-Brahicheva, V. Irrigation scheduling and the impact of irrigation on the yield and yield components of sweet corn. Sci. Pap. Ser. A Agron. 2016, 59, 332–339. [Google Scholar]
- Lauriault, L.M.; Guldan, S.J.; Popiel-Powers, F.G.; Steiner, R.L.; Martin, C.A.; Heyduck, R.F.; Falk, C.L.; Petersen, M.K.; May, T. Relay Intercropping with Cover Crops Improved Autumn Forage Potential of Sweet Maize Stover. Agriculture 2018, 8, 103. [Google Scholar] [CrossRef] [Green Version]
- Manjunath, B.L.; Paramesh, V.; Mahajan, G.R.; Reddy, K.V.; Das, B.; Singh, N.P. A five years study on the selection of rice based cropping systems in Goa, for west coast region of India. J. Environ. Biol. 2018, 39, 393–399. [Google Scholar] [CrossRef]
- Sharratt, B.S.; Collins, H.P. Wind Erosion Potential Influenced by Tillage in an Irrigated Potato-Sweet Corn Rotation in the Columbia Basin. Agron. J. 2018, 110, 842–849. [Google Scholar] [CrossRef]
- Khan, Z.H.; Khalil, S.K.; Ali, F.; Islam, B.; Iqbal, A.; Ullah, I.; Ali, M.; Shah, F. Variations in planting dates of sweet corn affect its agronomic traits via altering crop micro-environment. Fresenius Environ. Bull. 2018, 27, 4822–4829. [Google Scholar]
- Williams, M.M. Reproductive Sink of Sweet Corn in Response to Plant Density and Hybrid. HortScience 2018, 53, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Mehta, B.K.; Hossain, F.; Muthusamy, V.; Zunjare, R.U.; Sekhar, J.C.; Gupta, H.S. Analysis of responses of novel double mutant (sh2sh2/su1su1) sweet corn hybrids for kernel sweetness under different sowing- and harvest-time. Indian J. Agric. Sci. 2017, 87, 1543–1548. [Google Scholar]
- Promkhambut, A.; Rambo, A.T. Multiple Cropping after the Rice Harvest in Rainfed Rice Cropping Systems in Khon Kaen Province, Northeast Thailand. Southeast Asian Stud. 2017, 6, 325–338. [Google Scholar] [CrossRef]
- Lowry, C.J.; Brainard, D.C. Rye-Vetch Spatial Arrangement and Tillage: Impacts on Soil Nitrogen and Sweet Corn Roots. Agron. J. 2017, 109, 1013–1023. [Google Scholar] [CrossRef]
- Belfry, K.D.; Van Eerd, L.L. Establishment and Impact of Cover Crops Intersown into Corn. Crop Sci. 2016, 56, 1245–1256. [Google Scholar] [CrossRef]
- Hikam, S.; Timotiwu, P.B. Roles of calcium and magnesium as selection factors in sweet corn quality improvement on acidic red-yellow podsolic soil. Agrivita 2016, 38, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.G.; Goncalves, G.M.B.; Duraes, N.N.L.; Crevelari, J.A.; Ferreira, J.A.; Entringer, G.C. UENF SD 08 and UENF SD 09: Super-sweet corn hybrids for Northern Rio de Janeiro, Brazil. Crop Breed. Appl. Biotechnol. 2019, 19, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Soare, R.; Dinu, M.; Hoza, G.; Bonea, D.; Babeanu, C.; Soare, M. The influence of the hybrid and the sowing period on the production of sweet corn. Sci. Pap. Ser. B Hortic. 2019, 63, 391–397. [Google Scholar]
- Surtinah, S.; Nurwati, N. Selecting the Right Varieties in Riau Main Island: Sweet Corn Context. IOP Conf. Ser. Earth Environ. Sci. 2018, 156, 012062. [Google Scholar] [CrossRef]
- Williams, M.M. Genotype Adoption in Processing Sweet Corn Relates to Stability in Case Production. HortScience 2017, 52, 1748–1754. [Google Scholar] [CrossRef] [Green Version]
- Mehta, B.K.; Hossein, F.; Muthusamy, V.; Zunjare, R.U.; Sekhar, J.C.; Gupta, H.S. Analyzing the role of sowing and harvest time as factors for selecting super sweet (-sh2sh2) corn hybrids. Indian J. Gen. Plant Breed. 2017, 77, 348–356. [Google Scholar] [CrossRef]
- Nazli, M.H.; Halim, R.A.; Abdullah, A.M.; Hussin, G.; Samsudin, A.A. Potential of four corn varieties at different harvest stages for silage production in Malaysia. Asian-Australas. J. Anim. Sci. 2019, 32, 224–232. [Google Scholar] [CrossRef]
- Dinnella, C.; Morizet, D.; Masi, C.; Cliceri, D.; Depezay, L.; Appleton, K.M.; Giboreau, A.; Perez-Cueto, F.J.A.; Hartwell, H.; Monteleone, E. Sensory determinants of stated liking for vegetable names and actual liking for canned vegetables: A cross-country study among European adolescents. Appetite 2016, 107, 339–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasanthi, P.S.; Naveena, N.; Rao, M.V.; Bhaskarachary, K. Compositional variability of nutrients and phytochemicals in corn after processing. J. Food Sci. Technol. 2017, 54, 1080–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Liu, S.; Jia, L.; Gao, E.; Song, H. Effect of different storage temperatures on respiration and marketable quality of sweet corn. Adv. Eng. Technol. 2017, 3, 219–224. [Google Scholar]
- Xie, Y.; Song, H.; Liu, S.; Jia, L. Effect of different retailing conditions on quality of sweet corn after forced-air cooling and low temperature transportation XXIX International horticultural congress on horticulture: Sustaining lives, livelihoods and landscapes (IHC2014): International symposia on postharvest knowledge for the future and consumer and sensory driven improvements to fruits and nuts. Acta Hortic. 2016, 1120, 293–298. [Google Scholar] [CrossRef]
- Suktanarak, S.; Supprung, P.; Teerachaichayut, S. Classification of sweet corn based on storage time after harvest using near infrared spectroscopy. III International Conference On Agricultural and Food Engineering. Acta Horticulturae. 3rd International Conference on Agricultural and Food Engineering. Aug 23, 2016. Kuala Lumpur, Malaysia. Int. Soc. Hortic. Sci. 2017, 1152, 47–54. [Google Scholar]
- Chumpiya, S.; Plaingarm, W.; Tencomnao, T. Neuroprotective Effect of Rice and Corn Extracts Against H2O2-Induced Neurotoxicity in HT22 Murine Hippocampal Neuronal Cells. Med. Health 2016, 11, 151–170. [Google Scholar] [CrossRef]
- Das, A.K.; Singh, V. Antioxidative free and bound phenolic constituents in botanical fractions of Indian specialty maize (Zea mays L.) genotypes. Food Chem. 2016, 201, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.F.; Huang, L.; Deng, Y.Y.; Chi, J.W.; Zhang, Y.; Wei, Z.C.; Zhang, M.W. Phenolic content and antioxidant activity of eight representative sweet corn varieties grown in South China. Int. J. Food Prop. 2017, 20, 3043–3055. [Google Scholar] [CrossRef]
- Song, J.F.; Li, D.J.; Liu, N.Y.; Liu, C.Q.; He, M.J.; Zhang, Y. Carotenoid Composition and Changes in Sweet and Field Corn (Zea mays) During Kernel Development. Cereal Chem. 2016, 93, 409–413. [Google Scholar] [CrossRef]
- Moongngarm, A.; Homduang, A.; Hochin, W. Changes of Phytochemical Contents in Sweet and Waxy Corn (Zea mays L.) as Affected by Cultivars and Growth Stages. Curr. Nutr. Food Sci. 2020, 16, 162–169. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Liang, Z.B.; Yin, L.F.; Li, Q.X.; Wu, Z.Y. Distribution of Four Bioactive Flavonoids in Maize Tissues of Five Varieties and Correlation with Expression of the Biosynthetic Genes. J. Agric. Food Chem. 2018, 66, 10431–10437. [Google Scholar] [CrossRef] [PubMed]
- Song, J.F.; Li, D.J.; He, M.J.; Chen, J.Q.; Liu, C.Q. Comparsion of Carotenoid Composition in Immature and Mature Grains of Corn (Zea Mays L.) Varieties. Int. J. Food Prop. 2016, 19, 351–358. [Google Scholar] [CrossRef]
- Liu, H.Y.; Mao, J.H.; Yan, S.J.; Yu, Y.T.; Xie, L.H.; Hu, J.G.; Li, T.; Abbasi, A.M.; Guo, X.B.; Liu, R.H. Evaluation of carotenoid biosynthesis, accumulation and antioxidant activities in sweet corn (Zea mays L.) during kernel development. Int. J. Food Sci. Technol. 2018, 53, 381–388. [Google Scholar] [CrossRef]
- Baseggio, M.; Murray, M.; Magallanes-Lundback, M.; Kaczmar, N.; Chamness, J.; Buckler, E.S.; Smith, M.E.; DellaPenna, D.; Tracy, W.F.; Gore, M.A. Genome-Wide Association and Genomic Prediction Models of Tocochromanols in Fresh Sweet Corn Kernels. Plant Genome 2019, 12, 180038. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.C.; Yan, Z.G.; Wang, Q.F.; Li, X.Q.; Feng, F.Q. Marker-assisted backcrossing of lcyE for enhancement of proA in sweet corn. Euphytica 2018, 214, 130. [Google Scholar] [CrossRef]
- Hong, H.T.; Netzel, M.E.; O’Hare, T.J. Optimisation of extraction procedure and development of LC-DAD-MS methodology for anthocyanin analysis in anthocyanin-pigmented corn kernels. Food Chem. 2020, 319, 126515. [Google Scholar] [CrossRef]
- Hong, H.T.; Netzel, M.E.; O’Hare, T.J. Anthocyanin composition and changes during kernel development in purple-pericarp supersweet sweet corn. Food Chem. 2020, 315, 126284. [Google Scholar] [CrossRef]
- Xiang, N.; Wen, T.X.; Yu, B.L.; Li, G.K.; Li, C.Y.; Li, W.; Lu, W.J.; Hu, J.G.; Guo, X.B. Dynamic effects of post-harvest preservation on phytochemical profiles and antioxidant activities in sweet corn kernels. Int. J. Food Sci. Technol. 2020, 55, 3111–3122. [Google Scholar] [CrossRef]
- Xiao, Y.N.; Yu, Y.T.; Li, G.K.; Xie, L.H.; Guo, X.B.; Li, J.S.; Li, Y.L.; Hu, J.G. Genome-wide association study of vitamin E in sweet corn kernels. Crop J. 2020, 8, 341–350. [Google Scholar] [CrossRef]
- Baseggio, M.; Murray, M.; Magallanes-Lundback, M.; Kaczmar, N.; Chamness, J.; Buckler, E.S.; Smith, M.E.; DellaPenna, D.; Tracy, W.F.; Gore, M.A. Natural variation for carotenoids in fresh kernels is controlled by uncommon variants in sweet corn. Plant Genome 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhary, A.; Jaswal, V.S.; Choudhary, S.; Sharma, A.; Beniwal, V.; Tuli, H.S.; Sharma, S. Ferulic Acid: A Promising Therapeutic Phytochemical and Recent Patents Advances. Recent Pat. Inflamm. Allergy Drug Discov. 2019, 13, 115–123. [Google Scholar] [CrossRef]
- Chudhangkura, A.; Teangpook, C.; Sikkhamondhol, C.; Jariyavattanavijit, C. Effects of ultraviolet C.; controlled atmosphere, and ultrasound pretreatment on free ferulic acid in canned sweet corn kernels. J. Food Sci. Technol. 2018, 55, 4167–4173. [Google Scholar] [CrossRef]
- Calvo-Brenes, P.; Fanning, K.; O’Hare, T. Does kernel position on the cob affect zeaxanthin, lutein and total carotenoid contents or quality parameters, in zeaxanthin-biofortified sweet-corn? Food Chem. 2019, 277, 490–495. [Google Scholar] [CrossRef]
- Yang, T.R.; Hu, J.G.; Yu, Y.T.; Li, G.K.; Guo, X.B.; Li, T.; Liu, R.H. Comparison of phenolics, flavonoids, and cellular antioxidant activities in ear sections of sweet corn (Zea mays L. saccharata Sturt). J. Food Process. Preserv. 2019, 43, e13855. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.H.; Yu, Y.T.; Mao, J.H.; Liu, H.Y.; Hu, J.G.; Li, T.; Guo, X.B.; Liu, R.H. Evaluation of Biosynthesis, Accumulation and Antioxidant Activityof Vitamin E in Sweet Corn (Zea mays L.) during Kernel Development. Int. J. Mol. Sci. 2017, 18, 2780. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.Y.; Nan, X.; Jian, G.H.; Yan, S.J.; Xie, L.H.; Brennan, C.S.; Huang, W.J.; Guo, X.B. The manipulation of gene expression and the biosynthesis of Vitamin C.; E and folate in light-and dark-germination of sweet corn seeds. Sci. Rep. 2017, 7, 7484. [Google Scholar] [CrossRef] [Green Version]
- Cheah, Z.X.; Kopittke, P.M.; Harper, S.M.; Meyer, G.; O’Hare, T.J.; Bell, M.J. Speciation and accumulation of Zn in sweet corn kernels for genetic and agronomic biofortification programs. Planta 2019, 250, 219–227. [Google Scholar] [CrossRef]
- Cheah, Z.W.; O’Hare, T.J.; Harper, S.M.; Bell, M.J. Variation in Sweet Corn Kernel Zn Concentration a Reflection of Source-Sink Dynamics Influenced by Kernel Number. 2020. Available online: http://creativecommons.org/licenses/by/4.0/ (accessed on 14 June 2020).
- Szymanek, M.; Dziwulska-Hunek, A.; Tanas, W. Influence of Blanching Time on Moisture, Sugars, Protein, and Processing Recovery of Sweet Corn Kernels. Processes 2020, 8, 340. [Google Scholar] [CrossRef] [Green Version]
- Kachhadiya, S.; Kumar, N.; Seth, N. Process kinetics on physico-chemical and peroxidase activity for different blanching methods of sweet corn. J. Food Sci. Technol. 2018, 55, 4823–4832. [Google Scholar] [CrossRef]
- Calvo-Brenes, P.; O’Hare, T. Effect of freezing and cool storage on carotenoid content and quality of zeaxanthin-biofortified and standard yellow sweet-corn (Zea mays L.). J. Food Comp. Anal. 2020, 86, 103353. [Google Scholar] [CrossRef]
- Song, J.F.; Chen, J.Q.; Li, D.J.; Xiao, Y.D.; Liu, C.Q. Thermal Isomerization and Degradation Behaviours of Carotenoids in Simulated Sweet Corn Juice. Food Bioprocess Technol. 2018, 11, 836–844. [Google Scholar] [CrossRef]
- Song, J.F.; Meng, L.L.; Liu, C.Q.; Li, D.J.; Zhang, M. Changes in color and carotenoids of sweet corn juice during high-temperature heating. Cereal Chem. 2018, 95, 486–494. [Google Scholar] [CrossRef]
- Sitthitrai, K.; Lertrat, K.; Tangwongchai, R. Effects of domestic cooking on enzyme activities, bioactives and antioxidant capacities in mini-ear supersweet corn. Int. Food Res. J. 2016, 23, 1564–1575. [Google Scholar]
- Usubharatana, P.; Phungrassami, H. Ecological footprint analysis of canned sweet corn. J. Ecol. Eng. 2016, 17, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Ainerua, M.O.; Erhunmwunse, N.; Tongo, I.; Ezemonye, L. Food toxicity assessment of selected canned foods in Nigeria. Toxicol. Res. 2020, 36, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Priyadi, S.; Harieni, S.; Prasetyowati, K. Identifications of Heavy Metal in Sweet Corn and Soybean Seeds on Transition Organic Agriculture System. agriTECH 2018, 38, 456–462. [Google Scholar] [CrossRef]
- Sukiasyan, A.R. New approach to determining the environmental risk factor by the biogeochemical coefficients of heavy metals. South Russia Ecol. Dev. 2018, 13, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.X.; Bai, L.Y.; Zeng, X.B.; Zhang, J.Z.; Wang, Y.N.; Wu, C.X.; Su, S.M. Is maize suitable for substitution planting in arsenic-contaminated farmlands? Plant Soil Environ. 2019, 65, 425–434. [Google Scholar] [CrossRef]
- He, L.; Ma, X.L.; Li, Z.Z.; Jiao, Z.L.; Li, Y.Q.; Ow, D.W. Maize oxidative stress2 Homologs Enhance Cadmium Tolerance in Arabidopsis through Activation of a Putative SAM-Dependent Methyltransferase Gene. Plant Physiol. 2016, 171, 1675–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, M.; Mondaca, P.; Ginocchio, R.; Vidal, K.; Sauve, S.; Neaman, A. Comparison of exposure to trace elements through vegetable consumption between a mining area and an agricultural area in central Chile. Environ. Sci. Pollut. Res. 2018, 25, 19114–19121. [Google Scholar] [CrossRef] [PubMed]
- Kaltner, F.; Rampl, C.; Rychlik, M.; Zimmermann, T.; Rohe, A. Development and Validation of a Cost-Effective HPLC-FLD Method for Routine Analysis of Fumonisins B-1 and B-2 in Corn and Corn Products. Food Anal. Methods 2017, 10, 1349–1358. [Google Scholar] [CrossRef]
- Ridout, M.E.; Godfrey, B.; Newcombe, G. Effects of Antagonists on Mycotoxins of Seedborne Fusarium spp. in Sweet Corn. Toxins 2019, 11, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, B.A.; Rosa, R.; Silva, J.R.; Savi, G.D.; Scussel, V.M. Natural occurrence of fumonisins and characteristics of pamonhas sweet type from Southern Brazil. Food Addit. Contam. Part B 2017, 10, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Al Momany, A.M.; Arabiat, S.; Fardous, A. Growth and quality of sweet corn irrigated with treated waste water to control fusarium wilt. Fresenius Environ. Bull. 2019, 28, 4613–4621. [Google Scholar]
- Kljujev, I.; Raicevic, V.; Jovicic-Petrovic, J.; Vujovic, B.; Mirkovic, M.; Rothballer, M. Listeria monocytogenes—Danger for health safety vegetable production. Microb. Pathog. 2018, 120, 23–31. [Google Scholar] [CrossRef]
- Wit, M.; Ochodzki, P.; Warzecha, R.; Golinski, P.; Waskiewicz, A.; Mirzwa-Mroz, E.; Wakulinski, W. The risks of sweet corn and popcorn contamination by fumonisin fb1 produced due to Fusarium verticillioides infection. Acta Sci. Pol. Hortorum Cultus 2018, 17, 145–155. [Google Scholar] [CrossRef]
- Sivparsad, B.J.; Laing, M.D. Pre-harvest silk treatment with Trichoderma harzianum reduces aflatoxin contamination in sweet corn. J. Plant Dis. Prot. 2016, 123, 285–293. [Google Scholar] [CrossRef]
- Huang, K.J.; Song, J.; Zhu, C. Quantitative analysis of aflatoxins content in sweet corn at early stages using an improved electronic nose. Adv. Eng. Mat. Appl. Mech. In Proceedings of the 5th International Conference on Machinery, Materials Science and Engineering Applications (MMSE), Wuhan, China, 27–28 June 2015. [Google Scholar]
- Pairochteerakul, P.; Jothityangkoon, D.; Ketthaisong, D.; Simla, S.; Lertrat, K.; Suriharn, B. Seed Germination in Relation to Total Sugar and Starch in Endosperm Mutant of Sweet Corn Genotypes. Agronomy 2018, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Qiu, G.J.; Lu, E.L.; Wang, N.; Lu, H.Z.; Wang, F.R.; Zeng, F.G. Cultivar Classification of Single Sweet Corn Seed Using Fourier Transform Near-Infrared Spectroscopy Combined with Discriminant Analysis. Appl. Sci. 2019, 9, 1530. [Google Scholar] [CrossRef] [Green Version]
- Lau, T.; Harbourne, N.; Oruna-Concha, M.J. Valorisation of sweet corn (Zea mays) cob by extraction of valuable compounds. Int. J. Food Sci. Technol. 2019, 54, 1240–1246. [Google Scholar] [CrossRef] [Green Version]
- Awosusi, A.A.; Ayeni, A.O.; Adeleke, R.; Daramola, M.O. Biocompositional and thermodecompositional analysis of South African agro-waste corncob and husk towards production of biocommodities. Asia Pac. J. Chem. Eng. 2017, 12, 960–968. [Google Scholar] [CrossRef]
- Simons, G.A.; Scapim, C.A.; Moraes, R.N.O.; Gomes, L.R.D.; Kuki, M.C. Genotype-environment interaction on baby corn production. Semin. Cienc. Agrar. 2020, 41, 383–394. [Google Scholar] [CrossRef]
- Chaudhary, D.P.; Kumar, A.; Kumar, R.; Singode, A.; Mukri, G.; Sah, R.P.; Tiwana, U.S.; Kumar, B. Evaluation of normal and specialty corn for fodder yield and quality traits. Range Manag. Agrofor. 2016, 37, 79–83. [Google Scholar]
- Xiang, N.; Guo, X.B.; Liu, F.Y.; Li, Q.; Hu, J.G.; Brennan, C.S. Effect of Light- and Dark-Germination on the Phenolic Biosynthesis, Phytochemical Profiles, and Antioxidant Activities in Sweet Corn (Zea mays L.) Sprouts. Int. J. Mol. Sci. 2017, 18, 1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalorcharoenying, W.; Lomthaisong, K.; Suriharn, B.; Lertrat, K. Germination process increases phytochemicals in corn. Int. Food Res. J. 2017, 24, 552–558. [Google Scholar]
- Mishra, U.; Tyagi, S.K.; Gadag, R.N.; Elayaraja, K.; Pathak, H. Analysis of water soluble and insoluble polysaccharides in kernels of different corns (Zea mays L.). Curr. Sci. 2016, 111, 1522–1524. [Google Scholar] [CrossRef]
- Shamana, H.; Grossutti, M.; Papp-Szabo, E.; Miki, C.; Dutcher, J.R. Unusual polysaccharide rheology of aqueous dispersions of soft phytoglycogen nanoparticles. Soft Matter 2018, 14, 6496–6505. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.J.; Boehlein, S.K.; Tracy, W.F.; Resende, M.E.R.; Hudalla, G.A. Characterizing the Physical Properties and Cell Compatibility of Phytoglycogen Extracted from Different Sweet Corn Varieties. Molecules 2020, 25, 637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, X.Y.; Yao, Y. Small-granule starches from sweet corn and cow cockle, Physical properties and amylopectin branching pattern. Food Hydrocoll. 2018, 74, 349–357. [Google Scholar] [CrossRef]
- Chen, B.; Luo, Z.F.; Cai, T.T.; Cai, D.; Zhang, C.W.; Qin, P.Y.; Cao, H. The effect of corn varieties on the production of fiber-reinforced high-density polyethylene composites. Biomass Convers. Biorefinery 2018, 8, 953–963. [Google Scholar] [CrossRef]
- Jusoh, N.; Ahmad, A.; Tengah, R.Y. Evaluation of nutritive values and consumer acceptance of sweet corn (Zea mays) juice as a recovery beverage for exercising people. Malays. J. Fundam. Appl. Sci. 2019, 15, 504–507. [Google Scholar] [CrossRef]
- Aini, N.; Prihananto, V.; Wijonarko, G.; Arimah, A.; Syaifudin, M. Effect of Culture Concentration and Sweet Potato Prebiotic to the Properties of Sweet Corn Juice Probiotic. agriTECH 2017, 37, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Trikoomdun, W.; Leenanon, B. Production of corn milk yogurt supplemented with probiotics. Int. Food Res. J. 2016, 23, 1733–1738. [Google Scholar]
- Lao, Y.X.; Yu, Y.Y.; Li, G.K.; Chen, S.Y.; Li, W.; Xing, X.P.; Wang, X.M.; Hu, J.G.; Guo, X.B. Effect of Sweet Corn Residue on Micronutrient Fortification in Baked Cakes. Foods 2019, 8, 260. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.L.; Ouyang, Z.; Zhang, X.L.; Wei, Y.Q.; Tang, S.X.; Ma, Z.Y.; Tan, Z.L.; Zhu, N.; Teklebrhan, T.; Han, X.F. Sweet Corn Stalk Treated with Saccharomyces Cerevisiae Alone or in Combination with Lactobacillus Plantarum: Nutritional Composition, Fermentation Traits and Aerobic Stability. Animals 2019, 9, 598. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.S.; Wang, L.N.; Yu, Z. Fermentation dynamics and bacterial diversity of mixed lucerne and sweet corn stalk silage ensiled at six ratios. Grass Forage Sci. 2019, 74, 264–273. [Google Scholar] [CrossRef]
- Lopez, M.D.F.; Rigal, M.; Rigal, L.; Vilarem, G.; Vandenbossche, V. Influence of temperature and soda concentration in a thermo-mechano-chemical pretreatment for bioethanol production from sweet corn co-products. Ind. Crops Prod. 2019, 133, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Pan-in, S.; Sukasem, N. Methane production potential from anaerobic co-digestions of different animal dungs and sweet corn residuals. In Proceedings of the 2017 International Conference on Alternative Energy in Developing Countries and Emerging Economies, Energy Procedia, Bangkok, Thailand, 25–26 May 2017; Volumne 138, pp. 943–948. [Google Scholar] [CrossRef]
- Bautista, K.; Unpaprom, Y.; Ramaraj, R. Bioethanol production from corn stalk juice using Saccharomyces cerevisiae. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1615–1621. [Google Scholar] [CrossRef]
- Ghio, S.; Ontanon, O.; Piccinni, F.E.; de Villegas, R.M.D.; Talia, P.; Grasso, D.H.; Campos, E. Paenibacillus sp A59 GH10 and GH11 Extracellular Endoxylanases: Application in Biomass Bioconversion. Bioenergy Res. 2018, 11, 174–190. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revilla, P.; Anibas, C.M.; Tracy, W.F. Sweet Corn Research around the World 2015–2020. Agronomy 2021, 11, 534. https://doi.org/10.3390/agronomy11030534
Revilla P, Anibas CM, Tracy WF. Sweet Corn Research around the World 2015–2020. Agronomy. 2021; 11(3):534. https://doi.org/10.3390/agronomy11030534
Chicago/Turabian StyleRevilla, Pedro, Calli M. Anibas, and William F. Tracy. 2021. "Sweet Corn Research around the World 2015–2020" Agronomy 11, no. 3: 534. https://doi.org/10.3390/agronomy11030534
APA StyleRevilla, P., Anibas, C. M., & Tracy, W. F. (2021). Sweet Corn Research around the World 2015–2020. Agronomy, 11(3), 534. https://doi.org/10.3390/agronomy11030534