Sunflower Metabolites Involved in Resistance Mechanisms against Broomrape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Chemicals
2.2. Hydroponic Culture of Sunflower and Root Exudate Collection
2.3. LC-MS/MS Analysis
2.4. Cluster Analysis
3. Results
3.1. Stimulators of Parasitic Plant Germination
3.2. Inhibitors of Haustorial Elongation
3.3. Cluster Analysis
4. Discussion
4.1. Stimulators of Parasitic Plant Germination
4.2. Inhibitors of Haustorial Elongation
4.3. Cluster Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 6 January 2019).
- Kaya, Y. Sunflower. In Breeding Oilseed Crops for Sustainable Production; Gupta, S.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 55–88. [Google Scholar]
- Echevarría-Zomeño, S.; Pérez-De-Luque, A.; Jorrín, J.; Maldonado, A.M. Pre-haustorial resistance to broomrape (Orobanche cumana) in sunflower (Helianthus annuus): Cytochemical studies. J. Exp. Bot. 2006, 57, 4189–4200. [Google Scholar] [CrossRef]
- Heide-Jørgensen, H.S. The Parasitic syndrome in higher plants. In Parasitic Orobanchaceae—Parasitic Mechanisms and Control Strategies; Joel, D.M., Gressel, J., Musselman, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–18. [Google Scholar]
- Labrousse, P.; Delmail, D. Sunflower resistance to the vampire weed broomrape: A Van Helsing quest story. In Oilseed Crops: Yield and Adaptations under Environmental Stress; Parvaiz, A., Ed.; John Wiley: Hoboken, NJ, USA, 2017; pp. 123–151. ISBN 9781119048770. [Google Scholar]
- Joel, D.M.; Gressel, J.; Musselman, L.J. Parasitic Orobanchaceae. Parasitic Mechanisms and Control Strategies; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 9783642381454. [Google Scholar]
- Brown, R.; Greenwood, A.D.; Johnson, A.W.; Long, A.G. The stimulant involved in the germination of Orobanche minor Sm. Chromatographic purification of crude concentrates. Biochem. J. 1951, 48, 564–568. [Google Scholar] [CrossRef] [Green Version]
- Yoneyama, K.; Awad, A.A.; Xie, X.; Takeuchi, Y. Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol. 2010, 51, 1095–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.; Yoneyama, K.K.; Yoneyama, K.K. The strigolactone story. Annu. Rev. Phytopathol. 2010, 48, 93–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoneyama, K.K.; Xie, X.; Kisugi, T.; Nomura, T.; Sekimoto, H.; Yokota, T.; Yoneyama, K.K. Characterization of strigolactones exuded by Asteraceae plants. Plant Growth Regul. 2011, 65, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Yoneyama, K.; Xie, X.; Yoneyama, K.; Takeuchi, Y. Strigolactones: Structures and biological activities. Pest Manag. Sci. 2009, 65, 467–470. [Google Scholar] [CrossRef]
- Yoneyama, K.K.K.; Xie, X.; Yoneyama, K.K.K.; Kisugi, T.; Nomura, T.; Nakatani, Y.; Akiyama, K.; McErlean, C.S.P. Which are the major players, canonical or non-canonical strigolactones? J. Exp. Bot. 2018, 69, 2231–2239. [Google Scholar] [CrossRef]
- Raupp, F.M.; Spring, O. New sesquiterpene lactones from sunflower root exudate as germination stimulants for Orobanche cumana. J. Agric. Food Chem. 2013, 61, 10481–10487. [Google Scholar] [CrossRef]
- Cala, A.; Molinillo, J.M.G.; Fernández-Aparicio, M.; Ayuso, J.; Álvarez, J.A.; Rubiales, D.; Macías, F.A. Complexation of sesquiterpene lactones with cyclodextrins: Synthesis and effects on their activities on parasitic weeds. Org. Biomol. Chem. 2017, 15, 6500–6510. [Google Scholar] [CrossRef]
- Rubiales, D.; Verkleij, J.; Vurro, M.; Murdoch, A.J.; Joel, D.M. Parasitic plant management in sustainable agriculture. Weed Res. 2009, 49, 1–5. [Google Scholar] [CrossRef]
- Rodriguez-Ojeda, M.I. Estudios Genéticos y de Biología Reproductiva en Orobanche cumana Wallr; University of Cordoba: Andalusia, Spain, 2016. [Google Scholar]
- Velasco, L.; Pérez-Vich, B.; Yassein, A.A.M.; Jan, C.-C.; Fernández-Martínez, J.M. Inheritance of resistance to sunflower broomrape (Orobanche cumana Wallr.) in an interspecific cross between Helianthus annuus and Helianthus debilis subsp. tardiflorus. Plant Breed. 2012, 131, 220–221. [Google Scholar] [CrossRef] [Green Version]
- Hladni, N.; Jocic, S.; Miklic, V.; Saftic-Pankovic, D.; Skoric, D. Using new Rf inbred lines originating from an interspecific population with H. deserticola for development of sunflower hybrids resistant to broomrape. Helia 2009, 32, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Akhtouch, B.; del Moral, L.; Leon, A.; Velasco, L.; Fernández-Martínez, J.M.; Pérez-Vich, B. Genetic study of recessive broomrape resistance in sunflower. Euphytica 2016, 209, 419–428. [Google Scholar] [CrossRef]
- Akhtouch, B.; Muñoz-Cuz, J.; Melero-Vara, J.; Fernandez-Martinez, J.; Dominguez, J. Inheritance of resistance to race F of broomrape in sunflower lines of different origins. Plant Breed. 2002, 121, 266–268. [Google Scholar] [CrossRef]
- Shindrova, P.; Penchev, E. Race composition and distribution of broomrape (Orobanche cumana Wallr.) in Bulgaria during 2007–2011. Helia 2012, 57, 87–94. [Google Scholar] [CrossRef]
- Antonova, T.S.; Araslanova, N.M.; Strelnikov, E.A.; Ramazanova, S.A.; Guchetl, S.Z.; Chelyustnikova, T.A. Distribution of highly virulent races of sunflower broomrape (Orobanche cumana Wallr.) in the southern regions of the Russian Federation. Russ. Agric. Sci. 2013, 39, 46–50. [Google Scholar] [CrossRef]
- Kaya, Y.; Evci, G.; Pekcan, V.; Gucer, T.; Yilmaz, M.I. Evaluation of broomrape resistance in sunflower hybrids. Helia 2009, 51, 161–170. [Google Scholar] [CrossRef]
- Pérez-de-Luque, A.; Moreno, M.T.T.; Rubiales, D. Host plant resistance against broomrapes (Orobanche spp.): Defence reactions and mechanisms of resistance. Ann. Appl. Biol. 2008, 152, 131–141. [Google Scholar] [CrossRef]
- Wegmann, K.; Von Elert, E.; Harloff, H.J.; Stadler, M. Tolerance and resistance to Orobanche. In Progress in Orobanche Research, Proceedings International Workshop on Orobanche Research; Wegmann, K., Musselman, L.J., Eds.; Eberhard-Karls University: Tübingen, Germany, 1991; pp. 318–321. [Google Scholar]
- Gutiérrez-Mellado, C.; Parry, A.; Tena, M.; Jorrin, J.; Edwards, R. Abiotic elicitation of coumarin phytoalexins in sunflower. Phytochem. Resour. Med. Agric. 1995, 38, 1185–1191. [Google Scholar] [CrossRef]
- Serghini, K.; de Luque, A.P.; Castejón-Muñoz, M.; García-Torres, L.; Jorrín, J.V.; Pérez De Luque, A.; Castejón-Muñoz, M.; García-Torres, L.; Jorrín, J.V.; de Luque, A.P.; et al. Sunflower (Helianthus annuus L.) response to broomrape (Orobanche cernua Loefl.) parasitism: Induced synthesis and excretion of 7-hydroxylated simple coumarins. J. Exp. Bot. 2001, 52, 2227–2234. [Google Scholar] [CrossRef]
- Labrousse, P.; Arnaud, M.C.; Serieys, H.; Bervillé, A.; Thalouarn, P. Several mechanisms are involved in resistance of Helianthus to Orobanche cumana Wallr. Ann. Bot. 2001, 88, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Rubiales, D.; Pérez-de-Luque, A.; Joel, D.M.; Alcántara, C.; Sillero, J.C. Characterization of resistance in chickpea to crenate broomrape (Orobanche crenata). Weed Sci. 2003, 51, 702–707. [Google Scholar] [CrossRef]
- Perez-de-Luque, A.; Jorri, J.N.; Cubero, J.I.; Rubiales, D. Orobanche crenata resistance and avoidance in pea ( Pisum spp.) operate at different developmental stages of the parasite. Weed Res. 2005, 45, 379–387. [Google Scholar] [CrossRef]
- Haussmann, B.I.G.; Hess, D.E.; Welz, H.G.; Geiger, H.H. Improved methodologies for breeding striga-resistant sorghums. Field Crop. Res. 2000, 66, 195–211. [Google Scholar] [CrossRef] [Green Version]
- Joel, D.M.; Chaudhuri, S.K.; Plakhine, D.; Ziadna, H.; Steffens, J.C. Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana. Phytochemistry 2011, 72, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Furumoto, T.; Umeda, S.; Mizutani, M.; Takikawa, H.; Batchvarova, R.; Sugimoto, Y. Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry 2014, 108, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Martínez, J.; Pérez-Vich, B.; Akhtouch, B.; Velasco, L.; Muñoz-Ruz, J.; Melero-Vara, J.M.; Domínguez, J. Registration of four sunflower germplasms resistant to race F of broomrape. Crop Sci. 2004, 44, 1033–1034. [Google Scholar] [CrossRef]
- Jan, C.C.; Fernández-Martínez, J.M.; Ruso, J.; Muñoz-Ruz, J. Registration of four sunflower germplasms with resistance to Orobanche cumana race F. Crop Sci. 2002, 42, 2217–2218. [Google Scholar] [CrossRef]
- Cala, A.; Zorrilla, J.G.; Rial, C.; Molinillo, J.M.G.; Varela, R.M.; Macías, F.A. Easy access to alkoxy, amino, carbamoyl, hydroxy, and thiol derivatives of sesquiterpene lactones and evaluation of their bioactivity on parasitic weeds. J. Agric. Food Chem. 2019, 67, 10764–10773. [Google Scholar] [CrossRef]
- Niu, B.; Zhao, W.; Ding, Y.; Bian, Z.; Pittman, C.U.; Zhou, A.; Ge, H. Regioselective cross-couplings of coumarins and flavones with ethers via C(sp 3 )–H functionalization. J. Org. Chem. 2015, 80, 7251–7257. [Google Scholar] [CrossRef]
- López-Ráez, J.A.; Charnikhova, T.; Gómez-Roldán, V.; Matusova, R.; Kohlen, W.; De Vos, R.; Verstappen, F.; Puech-Pages, V.; Bécard, G.; Mulder, P.; et al. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 2008, 178, 863–874. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, K.; Xie, X.; Kim, H., II; Kisugi, T.; Nomura, T.; Sekimoto, H.; Yokota, T.; Yoneyama, K. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 2012, 235, 1197–1207. [Google Scholar] [CrossRef] [Green Version]
- Rial, C.; Varela, R.M.; Molinillo, J.M.G.; López-Ráez, J.A.; Macías, F.A. A new UHPLC-MS/MS method for the direct determination of strigolactones in root exudates and extracts. Phytochem. Anal. 2019, 30, 110–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rial, C.; Tomé, S.; Varela, R.M.; Molinillo, J.M.G.; Macías, F.A. Phytochemical study of safflower roots (Carthamus tinctorius) on the induction of parasitic plant germination and weed control. J. Chem. Ecol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Yoneyama, K.K.K.; Kurita, J.; Harada, Y.; Yamada, Y.; Takeuchi, Y.; Yoneyama, K.K.K. 7-Oxoorobanchyl acetate and 7-Oxoorobanchol as germination stimulants for root parasitic plants from flax (Linum usitatissimum). Biosci. Biotechnol. Biochem. 2009, 73, 1367–1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.; Kusumoto, D.; Takeuchi, Y.; Yoneyama, K.K.; Yamada, Y.; Yoneyama, K.K. 2′-Epi-orobanchol and solanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J. Agric. Food Chem. 2007, 55, 8067–8072. [Google Scholar] [CrossRef]
- Yokota, T.; Sakai, H.; Okuno, K.; Yoneyama, K.; Takeuchi, Y. Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry 1998, 49, 1967–1973. [Google Scholar] [CrossRef]
- Cook, C.E.; Whichard, L.P.; Turner, B.; Wall, M.E.; Egley, G.H. Germination of witchweed (Striga lutea Lour.): Isolation and properties of a potent stimulant. Science 1966, 154, 1189–1190. [Google Scholar] [CrossRef]
- Cook, C.; Whichard, L.; Wall, M.; Egley, G. Germination stimulants. II. Structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea). J. Am. Chem. Soc. 1972, 94, 6198–6199. [Google Scholar] [CrossRef]
- Xie, X.; Yoneyama, K.; Harada, Y.; Fusegi, N.; Yamada, Y.; Ito, S.; Yokota, T.; Takeuchi, Y.; Yoneyama, K. Fabacyl acetate, a germination stimulant for root parasitic plants from Pisum sativum. Phytochemistry 2009, 70, 211–215. [Google Scholar] [CrossRef]
- Xie, X.; Yoneyama, K.; Kusumoto, D.; Yamada, Y.; Yokota, T.; Takeuchi, Y.; Yoneyama, K. Isolation and identification of alectrol as (+)-orobanchyl acetate, a germination stimulant for root parasitic plants. Phytochemistry 2008, 69, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, K.; Matsuzaki, K.; Hayashi, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 2005, 435, 824–827. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rial, C.; Varela, R.M.; Molinillo, J.M.G.; Peralta, S.; Macías, F.A. Sunflower Metabolites Involved in Resistance Mechanisms against Broomrape. Agronomy 2021, 11, 501. https://doi.org/10.3390/agronomy11030501
Rial C, Varela RM, Molinillo JMG, Peralta S, Macías FA. Sunflower Metabolites Involved in Resistance Mechanisms against Broomrape. Agronomy. 2021; 11(3):501. https://doi.org/10.3390/agronomy11030501
Chicago/Turabian StyleRial, Carlos, Rosa M. Varela, José M.G. Molinillo, Sara Peralta, and Francisco A. Macías. 2021. "Sunflower Metabolites Involved in Resistance Mechanisms against Broomrape" Agronomy 11, no. 3: 501. https://doi.org/10.3390/agronomy11030501