Next Article in Journal
Spatial Proximity of ‘Ataulfo’ to ‘Haden’ Cultivar Increases Mango Yield and Decreases Incidence of Nubbins
Next Article in Special Issue
Intercropping in Rice Farming under the System of Rice Intensification—An Agroecological Strategy for Weed Control, Better Yield, Increased Returns, and Social–Ecological Sustainability
Previous Article in Journal
Effect of Salinity and Nitrogen Form in Irrigation Water on Growth, Antioxidants and Fatty Acids Profiles in Halophytes Salsola australis, Suaeda maritima, and Enchylaena tomentosa for a Perspective of Biosaline Agriculture
Article

Deciphering Substrate-Specific Methane Yields of Perennial Herbaceous Wild Plant Species

1
Biobased Resources in the Bioeconomy (340b), Institute of Crop Science, University of Hohenheim, Fruwirthstr. 23, 70599 Stuttgart, Germany
2
Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, Brazil
*
Author to whom correspondence should be addressed.
Academic Editor: Steven R. Larson
Agronomy 2021, 11(3), 451; https://doi.org/10.3390/agronomy11030451
Received: 2 February 2021 / Revised: 22 February 2021 / Accepted: 24 February 2021 / Published: 28 February 2021
(This article belongs to the Special Issue Social-Ecologically More Sustainable Agricultural Production)
The global demand for plant biomass to provide bioenergy and heat is continuously increasing because of a growing interest among many industrialized and developing countries towards climate sound and renewable energy supply. The exacerbation of land-use conflicts proliferates social-ecological demands on future bioenergy cropping systems. Perennial herbaceous wild plant mixtures (WPMs) represent an approach to providing social-ecologically more sustainably produced biogas substrate that has gained increasing public and political interest only in recent years. The focus of this study lies on three perennial wild plant species (WPS) that usually dominate the biomass yield performance of WPM cultivation. These WPS were compared with established biogas crops in terms of their substrate-specific methane yield (SMY) and lignocellulosic composition. The plant samples were investigated in a small-scale mesophilic discontinuous biogas batch test for determining the SMY. All WPS were found to have significantly lower SMY (241.5–248.5 lN kgVS−1) than maize (337.5 lN kgVS−1). This was attributed to higher contents of lignin (9.7–12.8% of dry matter) as well as lower contents of hemicellulose (9.9–11.5% of dry matter) in the WPS. Only minor, non-significant differences to cup plant and Virginia mallow were observed. Thus, when planning WPS as a diversification measure in biogas cropping systems, their lower SMY should be considered. View Full-Text
Keywords: anaerobic digestion; Artemisia vulgaris L.; biodiversity; biogas production; brown knapweed; Centaurea nigra L.; common tansy; mugwort; perennial crops; Tanacetum vulgare L. anaerobic digestion; Artemisia vulgaris L.; biodiversity; biogas production; brown knapweed; Centaurea nigra L.; common tansy; mugwort; perennial crops; Tanacetum vulgare L.
Show Figures

Figure 1

MDPI and ACS Style

von Cossel, M.; Pereira, L.A.; Lewandowski, I. Deciphering Substrate-Specific Methane Yields of Perennial Herbaceous Wild Plant Species. Agronomy 2021, 11, 451. https://doi.org/10.3390/agronomy11030451

AMA Style

von Cossel M, Pereira LA, Lewandowski I. Deciphering Substrate-Specific Methane Yields of Perennial Herbaceous Wild Plant Species. Agronomy. 2021; 11(3):451. https://doi.org/10.3390/agronomy11030451

Chicago/Turabian Style

von Cossel, Moritz, Lorena A. Pereira, and Iris Lewandowski. 2021. "Deciphering Substrate-Specific Methane Yields of Perennial Herbaceous Wild Plant Species" Agronomy 11, no. 3: 451. https://doi.org/10.3390/agronomy11030451

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop