Effects of Nitrogen Rates on the Productivity and Nutritive Value of Forage Grass Grown under Extreme Climatic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. The Experimental Design
2.3. The Agrotechnologies of the Experiment
2.4. The Water Regime during Experiment
2.5. Soil Moisture Dynamic
2.6. Methods
2.7. Statistical Analysis
3. Results
3.1. Growing Dynamics
3.2. Assimilating Leaf Area
3.3. Aboveground Dry Biomass
3.4. Root Dry Biomass
3.5. Nutritive Value
4. Discussion
4.1. Productivity of Forage Grasses
4.2. Nutritive Value of Forage Grasses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeroch, H.; Pilipavičius, V.; Mikulionienė, S.; Steinhöfel, O.; Matusevičius, P. Feed—Conventional and Ecological; Vitae Litera: Kaunas, Lithuania, 2015; p. 292. [Google Scholar]
- Stonevičius, E.; Štaras, A.; Valiuškevičius, G. Forecast of soil water regime changes in Lithuania under different climate change scenarios. Geography 2008, 44, 17–25. [Google Scholar]
- IPCC Publishes Full Report Climate Change 2013. The Physical Science Basis. Available online: https://www.ipcc.ch/2013/01/30/ipcc-publishes-full-report-climate-change-2013-the-physical-science-basis/ (accessed on 15 October 2021).
- Gasiūnas, V.; Misevičienė, S.; Bastienė, N.; Adamonytė, I.; Aleknevičienė, V.; Magyla, R. General Recommendations for the Implementation of Regulated Drainage Innovation; Vytautas Magnus University Publishing Center: Kaunas, Lithuania, 2019; p. 47. [Google Scholar]
- Rostamza, M.; Chaichi, M.R.; Jahansouz, M.R.; Alimadadi, A. forage quality, water use and nitrogen utilization efficiencies of pearl millet (Pennisetum americanum L.) grown under different soil moisture and nitrogen levels. Agric. Water Manag. 2011, 98, 1607–1614. [Google Scholar] [CrossRef]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017, 8, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perera, R.S.; Cullen, B.R.; Eckard, R.J. Growth and physiological responses of temperate pasture species to consecutive heat and drought stresses. Plants 2019, 8, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodner, S.B.; Robles, M.D. Enduring a decade of drought. Patterns and drivers of vegetation change in a semi-arid grassland. J. Arid Environ. 2017, 136, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Grant, K. Sensitivity of Mesic Temperate Grassland to Increased Climate Variability—Biomass Production, Forage Quality and Plant-Plant Interactions. Doctoral Dissertation, University of Bayreuth, Bayreuth, Germany, 2015; p. 245. [Google Scholar]
- Staniak, M.; Kocon´, A. Forage grasses under drought stress in conditions of Poland. Acta Physiol. Plant 2015, 37, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tong, C.; Hill, C.B.; Zhou, G.; Zhang, X.Q.; Jia, Y.; Li, C. Opportunities for improving waterlogging tolerance in cereal crops—physiological traits and genetic mechanisms. Plants 2021, 10, 1560. [Google Scholar] [CrossRef]
- Manik, S.M.N.; Pengilley, G.; Dean, G.; Field, B.; Shabala, S.; Zhou, M. Soil and crop management practices to minimize the impact of waterlogging on crop productivity. Front. Plant Sci. 2019, 10, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, J.A.; Rincón, J.; Jiménez, J.C.; Noguera, D.; Rao, I.M. Morpho-anatomical adaptations to waterlogging by germplasm accessions in a tropical forage grass. AoB Plants 2013, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hussein, M.M.; Alva, A.K. Growth, yield and water use efficiency of forage sorghum as efficiency of forage sorghum as affected by NPK fertilizer and deficit irrigation. Am. J. Plant Sci. 2014, 5, 2134–2140. [Google Scholar] [CrossRef] [Green Version]
- Saud, S.; Fahad, S.; Yajun, C.; Ihsan, M.Z.; Hammad, H.M.; Nasim, W.; Amanullah, Jr.; Arif, M.; Alharby, H. Effects of nitrogen supply on water stress and recovery mechanisms in Kentucky bluegrass plants. Front. Plant Sci. 2017, 8, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capstaff, N.M.; Miller, A.J. Improving the yield and nutritional quality of forage crops. Front. Plant Sci. 2018, 9, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helgadόttir, Á.; Suter, M.; Gylfadόttir, T.Ó.; Kristjánsdottir, T.A.; Lüscher, A. Grass-legume mixtures sustain strong yield advantage over monocultures under cool maritime growing conditions over a period of 5 years. Ann. Bot. 2018, 122, 337–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsalahy, H.H.; Bellingrath-Kimura, S.D.; Roß, C.L.; Kautz, T.; Döring, T.F. Crop resilience to drought with and without response diversity. Front. Plant Sci. 2020, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, J.G.; Nielsen, D.S. A method to separate plant roots from soil and analyze root surface area. Plant Soil 2004, 267, 225–234. [Google Scholar] [CrossRef]
- Januškevičius, A.; Mikulionienė, S. Feed Research Methods and Feed Nutrition; Aleksandras Stulginskis University Publishing Center: Kaunas, Lithuania, 2004; pp. 26–46. [Google Scholar]
- Fenta, B.A.; Driscoll, S.P.; Kunert, K.J.; Foyer, C.H. Characterization of drought tolerance traits in nodulated soya beans: The importance of maintaining photosynthesis and shoot biomass under drought-induced limitations on nitrogen metabolism. J. Agron. Crop Sci. 2012, 198, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Raudonius, S. Application of statistics in plant and crop research: Important issues. Zemdirb. Agric. 2017, 104, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Bahrani, M.J.; Bahrami, H.; Haghighi, A.A.K. Effect of water stress on ten forage grasses native or introduced to Iran. Grassl. Sci. 2010, 56, 1–5. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, L.; Yan, B.; Shi, L.; Liu, G.; He, Y. Morphological and physiological responses of Heteropogon contortus to drought stress in a dry-hot valley. Bot. Stud. 2016, 57, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, Q.; Jin, F.; Merewitz, E.; Huang, B. Growth and physiological traits associated with drought survival and post-drought recovery in perennial turfgrass species. J. Amer. Soc. Hort. Sci. 2010, 135, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Marshall, A.H.; Lowe, M.; Collins, R.P. Variation in response to moisture stress of young plants of interspecific hybrids between white clover (T. repens L.) and caucasian clover (T. ambiguum M. Bieb). Agriculture 2015, 5, 353–366. [Google Scholar] [CrossRef] [Green Version]
- Hajibabaee, M.; Azizi, F.; Zargari, K. Effect of drought stress on some morphological, physiological and agronomic traits in various foliage corn hybrids. Am.-Eurasian J. Agric. Environ. Sci. 2012, 12, 890–896. [Google Scholar]
- Fariaszewska, A.; Aper, J.; Van Huylenbroeck, J.; De Swaef, T.; Baert, J.; Pecio, Ł. Physiological and biochemical responses of forage grass varieties to mild drought stress under field conditions. Int. J. Plant Prod. 2020, 14, 335–353. [Google Scholar] [CrossRef] [Green Version]
- Staniak, M. The impact of drought stress on the yield and food value of selected forage grasses. Acta Agrobot. 2016, 69, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pornaro, C.; Serena, M.; Macolino, S.; Leinauer, B. Drought stress response of turf-type perennial ryegrass genotypes in a Mediterranean environment. Agronomy 2020, 10, 1810. [Google Scholar] [CrossRef]
- Staniak, M. Changes in yield and nutritive value of red clover (Trifolium pratense L.) and Festulolium (Festulolium braunii (K. Richt) A. Camus) under drought stress. Agric. Food Sci. 2019, 28, 27–34. [Google Scholar] [CrossRef]
- Kizekova, M.; Tomaškin, J.; Čunderlik, J.; Jančova, L.; Martincova, J. The yield stability and quality of legumes during two consecutive, extremely dry years. Poľnohospodárstvo/Agriculture 2013, 59, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Tucak, M.; Popović, S.; Čupić, T.; Krizmanić, G.; Španić, V.; Meglič, V.; Radović, J. Assessment of red clover (Trifolium pratense L.) productivity in environmental stress. Poljoprivreda/Agriculture 2016, 2, 3–9. [Google Scholar] [CrossRef]
- Kørup, K.; Lærke, P.E.; Baadsgaard, H.; Andersen, M.N.; Kristensen, K.; Münnich, C.; Didion, T.; Jensen, E.S.; Mårtensson, L.M.; Jørgensen, U. Biomass production and water use efficiency in perennial grasses during and after drought stress. GCB Bioenergy 2018, 10, 12–27. [Google Scholar] [CrossRef] [Green Version]
- Mäkinen, H.; Kaseva, J.; Virkajärvi, P.; Kahiluoto, H. Gaps in the capacity of modern forage crops to adapt to the changing climate in northern Europe. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 81–100. [Google Scholar]
- Eneji, A.E.; Inanaga, S.; Muranaka, S.; Li, J.; Hattori, T.; An, P.; Tsuji, W. Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. J. Plant Nutr. 2008, 31, 355–365. [Google Scholar] [CrossRef]
- PLoSchuk, R.A.; Grimoldi, A.A.; PLoSchuk, E.L.; Striker, G.G. Growth during recovery evidences the waterlogging tolerance of forage grasses. Crop Pasture Sci. 2017, 68, 574–582. [Google Scholar] [CrossRef]
- Malik, A.I.; Ailewe, T.I.; Erskine, W. Tolerance of three grain legume species to transient waterlogging. AoB Plants 2015, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Basal, O.; Szabó, A. The combined effect of drought stress and nitrogen fertilization on soybean. Agronomy 2020, 10, 384. [Google Scholar] [CrossRef] [Green Version]
- Abraha, A.B.; Truter, W.F.; Annandale, J.G.; Fessehazion, M.K. Forage yield and quality response of annual ryegrass (Lolium multiflorum) to different water and nitrogen levels. Afr. J. Range Forage Sci. 2015, 32, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, J.C.; Cardoso1, J.A.; Arango-Londoño, D.; Fischer, G.; Rao, I. Influence of soil fertility on waterlogging tolerance of two Brachiaria grasses. Agron. Colomb. 2015, 33, 20–28. [Google Scholar] [CrossRef]
- Wasay, A.; Zhang, X.; Fang, Q.; Yan, Z. Root phenotyping for drought tolerance. A review. Agronomy 2018, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- De Vries, F.T.; Brown, C.; Stevens, C.J. Grassland species root response to drought: Consequences for soil carbon and nitrogen availability. Plant Soil 2016, 409, 297–312. [Google Scholar] [CrossRef]
- Skinner, R.H.; Comas, L.H. Root Distribution of Temperate Forage Species Subjected to Water and Nitrogen Stress. Crop Sci. 2010, 50, 2178–2185. [Google Scholar] [CrossRef]
- Küchenmeister, K.; Küchenmeister, F.; Kayser, M.; Wrage-Mönnig, N.; Isselstein, J. Influence of drought stress on nutritive value of perennial forage legumes. Int. J. Plant Prod. 2013, 7, 693–710. [Google Scholar]
- Kering, M.K.; Guretzky, J.; Funderburg, E.; Mosali, J. Effect of nitrogen fertilizer rate and harvest season on forage yield, quality, and macronutrient concentrations in Midland Bermuda grass. Soil Sci. Plant Anal. 2011, 42, 1958–1971. [Google Scholar] [CrossRef]
- Delevatti, L.M.; Cardoso, A.S.; Barbero, R.P.; Leite, R.G.; Romanzini, E.P.; Ruggieri, A.C.; Reis, R.A. Effect of nitrogen application rate on yield, forage quality, and animal performance in a tropical pasture. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
Soil Moisture Conditions (Factor A) | Nitrogen Rates (Factor B) | Crude Protein, % | Crude Fibre, % | Crude Ash, % |
---|---|---|---|---|
Lack of SM (drought) | N25 | 13.7 ± 0.10 abc | 28.4 ± 1.94 b | 17.2 ± 0.97 a |
N25+60 | 12.9 ± 0.26 cd | 32.6 ± 2.27 a | 14.3 ± 0.57 bc | |
N25+120 | 14.4 ± 0.20 a | 29.4 ± 1.75 ab | 13.3 ± 0.32 c | |
Optimal SM | N25 | 14.1 ± 0.27 ab | 26.9 ± 0.90 b | 16.1 ± 1.14 ab |
N25+60 | 13.4 ± 0.20 abc | 29.7 ± 1.20 ab | 14.2 ± 0.62 bc | |
N25+120 | 12.7 ± 0.43 cd | 28.7 ± 0.88 ab | 13.9 ± 0.56 bc | |
Excess of SM (waterlogging) | N25 | 13.2 ± 0.73 bcd | 28.4 ± 0.26 b | 15.6 ± 0.93 abc |
N25+60 | 12.2 ± 0.32 d | 27.3 ± 1.41 b | 17.3 ± 1.00 a | |
N25+120 | 12.8 ± 0.56 cd | 29.7 ± 0.15 ab | 15.1 ± 1.61 abc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcinkevičienė, A.; Velička, R.; Kosteckas, R.; Rudinskienė, A.; Adamonytė, I.; Kriaučiūnienė, Z. Effects of Nitrogen Rates on the Productivity and Nutritive Value of Forage Grass Grown under Extreme Climatic Conditions. Agronomy 2021, 11, 2572. https://doi.org/10.3390/agronomy11122572
Marcinkevičienė A, Velička R, Kosteckas R, Rudinskienė A, Adamonytė I, Kriaučiūnienė Z. Effects of Nitrogen Rates on the Productivity and Nutritive Value of Forage Grass Grown under Extreme Climatic Conditions. Agronomy. 2021; 11(12):2572. https://doi.org/10.3390/agronomy11122572
Chicago/Turabian StyleMarcinkevičienė, Aušra, Rimantas Velička, Robertas Kosteckas, Aušra Rudinskienė, Inga Adamonytė, and Zita Kriaučiūnienė. 2021. "Effects of Nitrogen Rates on the Productivity and Nutritive Value of Forage Grass Grown under Extreme Climatic Conditions" Agronomy 11, no. 12: 2572. https://doi.org/10.3390/agronomy11122572
APA StyleMarcinkevičienė, A., Velička, R., Kosteckas, R., Rudinskienė, A., Adamonytė, I., & Kriaučiūnienė, Z. (2021). Effects of Nitrogen Rates on the Productivity and Nutritive Value of Forage Grass Grown under Extreme Climatic Conditions. Agronomy, 11(12), 2572. https://doi.org/10.3390/agronomy11122572