A Critical Review on Lignocellulosic Biomass Yield Modeling and the Bioenergy Potential from Marginal Land
Abstract
:1. Introduction
2. Contextualization of Lignocellulosic Crops, Bioenergy and Marginal Land
2.1. Definitions of Lignocellulosic Crops
2.2. Statistics and Forecasts
2.3. Definitions of Marginal Land
2.3.1. Food vs. Fuel Definition
2.3.2. Environmental and Biological Definition
2.3.3. Socio-Economic Definition
2.3.4. Political and Legal Definition
2.3.5. Social Definition
3. Limitations of Current Yield Modeling Approaches on Marginal Land
3.1. Overview on Yield Modeling Practice and Approaches for Marginal Land
3.2. Overview on Limitations and Shortcomings
3.3. Challenges on the Input Side of Biomass Yield Modeling
3.3.1. Scope and Basic Definitions
3.3.2. Models and Input Parameters
3.4. Challenges on the Output Side of Yield Modeling
3.4.1. Challenges Due to Future Variations
3.4.2. Limitations of Bioenergy Potential Assessments
The Compilation of Reliable Quantitative Data
The Conversion from Biomass to Bioenergy Potential
The Conversion Capacities for Lignocellulosic Crops
The Energetic Efficiency of Lignocellulosic Ethanol
The Tradeoff between Yield and Feedstock Quality
The Knowledge on the Crops’ Genetic Potentials
The Demand for Higher Sustainability
4. Recommendations and Milestones for Reliable Future Predictions
4.1. General Recommendation Regarding the Scope and Definitions
4.2. Recommendations for Models and Input Parameters
4.3. Recommendations for Consideration of Future Variations
4.4. Milestones for Improving Bioenergy Potential Assessments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Department of Economic and Social Affairs, Population Division, United Nations. World Population Prospects 2019 Highlights. 2019. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (accessed on 19 October 2021).
- Tomlinson, I. Doubling Food Production to Feed the 9 Billion: A Critical Perspective on a Key Discourse of Food Security in the UK. J. Rural Stud. 2011, 29, 81–90. [Google Scholar] [CrossRef]
- High Level Expert Forum, FAO Global Agriculture towards 2050. 2009. Available online: http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf (accessed on 19 October 2021).
- Lewandowski, I.; Lippe, M.; Castro Montoya, J.; Dicköfer, U. Agricultural Production. In Bioeconomy: Shaping the Transition to a Sustainable, Biobased Economy; Lewandowski, I., Ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2018; pp. 99–123. ISBN 978-3-319-68151-1. [Google Scholar]
- Piotrowski, S.; Carus, M.; Essel, R. Global Bioeconomy in the Conflict between Biomass Supply and Demand. Ind. Biotechnol. 2015, 11, 308–315. [Google Scholar] [CrossRef]
- Abideen, Z.; Ansari, R.; Khan, M.A. Halophytes: Potential Source of Ligno-Cellulosic Biomass for Ethanol Production. Biomass Bioenergy 2011, 35, 1818–1822. [Google Scholar] [CrossRef]
- Hadar, Y. Sources for Lignocellulosic Raw Materials for the Production of Ethanol. In Lignocellulose Conversion: Enzymatic and Microbial Tools for Bioethanol Production; Faraco, V., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 21–38. ISBN 978-3-642-37861-4. [Google Scholar]
- Chiaramonti, D.; Giovannini, A.; Janssen, R.; Mergner, R. Lignocellulosic Ethanol Process and Demonstration; WIP Renewable Energies: München, Germany, 2013; Available online: https://www.wip-munich.de/biolyfe-handbook/1_7_1_BIOLYFE_Handbook_Part-I.pdf (accessed on 19 October 2021).
- Milbrandt, A.; Overend, R.P. Assessment of Biomass Resources from Marginal Lands in APEC Economies; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2009. Available online: https://www.nrel.gov/docs/fy10osti/46209.pdf (accessed on 19 October 2021).
- IEA. Bioenergy Mobilising Sustainable Bioenergy Supply Chains: Opportunities for Agriculture. Summary and Conclusions from the IEA Bioenergy ExCo77 Workshop. 2016. Available online: https://www.ieabioenergy.com/blog/publications/ws20-mobilising-sustainable-bioenergy-supply-chains-opportunities-for-agriculture/ (accessed on 19 October 2021).
- Department for Environment, Food and Rural Affairs. Crops Grown For Bioenergy in the UK: 2018; Department for Environment Food & Rural Affairs: London, UK, 2019. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/856695/nonfood-statsnotice2018-08jan20.pdf (accessed on 22 November 2021).
- von Cossel, M.; Wagner, M.; Lask, J.; Magenau, E.; Bauerle, A.; Von Cossel, V.; Warrach-Sagi, K.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; et al. Prospects of Bioenergy Cropping Systems for a More Social-Ecologically Sound Bioeconomy. Agronomy 2019, 9, 605. [Google Scholar] [CrossRef] [Green Version]
- Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies 2019, 12, 3123. [Google Scholar] [CrossRef] [Green Version]
- Xue, S.; Lewandowski, I.; Wang, X.; Yi, Z. Assessment of the Production Potentials of Miscanthus on Marginal Land in China. Renew. Sustain. Energy Rev. 2016, 54, 932–943. [Google Scholar] [CrossRef]
- Schweier, J.; Becker, G. Economics of Poplar Short Rotation Coppice Plantations on Marginal Land in Germany. Biomass Bioenergy 2013, 59, 494–502. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Sankaran, R.; Show, P.L.; Ibrahim, T.N.B.; Chew, K.W.; Culaba, A.; Chang, J.-S. Pretreatment Methods for Lignocellulosic Biofuels Production: Current Advances, Challenges and Future Prospects. Biofuel Res. J. 2020, 7, 1115–1127. [Google Scholar] [CrossRef] [Green Version]
- Janssen, R.; Khawaja, C. Sustainable Supply of Non-Food Biomass for a Resource Efficient Bioeconomy. A Review Paper on the State-of-the-Art. 2014. Available online: http://www.s2biom.eu/images/Publications/S2biom_review_state-of_the_art_Final.pdf (accessed on 19 October 2021).
- ETIP. Bioenergy Lignocellulosic Crops for Production of Advanced Biofuels. Available online: https://www.etipbioenergy.eu/value-chains/feedstocks/agriculture/lignocellulosic-crops (accessed on 19 October 2021).
- Hao, L.C.; Sapuan, S.M.; Hassan, M.R.; Sheltami, R.M. 2—Natural fiber reinforced vinyl polymer composites. In Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites; Sapuan, S.M., Ismail, H., Zainudin, E.S., Eds.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Sawston, UK, 2018; pp. 27–70. ISBN 978-0-08-102160-6. [Google Scholar]
- Ge, X.; Chang, C.; Zhang, L.; Cui, S.; Luo, X.; Hu, S.; Qin, Y.; Li, Y. Chapter Five—Conversion of Lignocellulosic Biomass Into Platform Chemicals for Biobased Polyurethane Application. In Advances in Bioenergy; Li, Y., Ge, X., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 3, pp. 161–213. [Google Scholar]
- Shankaran, D.R. Chapter 14—Cellulose Nanocrystals for Health Care Applications. In Applications of Nanomaterials; Mohan Bhagyaraj, S., Oluwafemi, O.S., Kalarikkal, N., Thomas, S., Eds.; Micro and Nano Technologies; Woodhead Publishing: Sawston, UK, 2018; pp. 415–459. ISBN 978-0-08-101971-9. [Google Scholar]
- European Biofuels Technology Platform, Bioenergy Value Chain 5: Sugar to Alcohols. 2016. Available online: https://etipbioenergy.eu/images/EIBI-5-sugar-to-alcohols.pdf (accessed on 19 October 2021).
- Ding, H.; Xu, F. Chapter 20—Production of Phytochemicals, Dyes and Pigments as Coproducts in Bioenergy Processes. In Bioenergy Research: Advances and Applications; Gupta, V.K., Tuohy, M.G., Kubicek, C.P., Saddler, J., Xu, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 353–365. ISBN 978-0-444-59561-4. [Google Scholar]
- Patel, M.; Zhang, X.; Kumar, A. Techno-Economic and Life Cycle Assessment on Lignocellulosic Biomass Thermochemical Conversion Technologies: A Review. Renew. Sustain. Energy Rev. 2016, 53, 1486–1499. [Google Scholar] [CrossRef]
- Jing, Q.; Conijn, S.J.G.; Jongschaap, R.E.E.; Bindraban, P.S. Modeling the Productivity of Energy Crops in Different Agro-Ecological Environments. Biomass Bioenergy 2012, 46, 618–633. [Google Scholar] [CrossRef]
- Elbersen, H.W.; Lammens, T.M.; Alankangas, E.A.; Annevelink, E.; Harmsen, P.F.H.; Elbersen, B.S. Lignocellulosic Biomass Quality: Matching Characteristics With Biomass Conversion Requirements. In Modeling and Optimization of Biomass Supply Chains: Top down and Bottom up Assessment for Agricultural, Forest and Waste Feedstock; Academic Press: Cambridge, MA, USA, 2017; pp. 55–78. [Google Scholar] [CrossRef]
- FAO FAOSTAT. Available online: http://www.fao.org/faostat/en/#home (accessed on 19 October 2021).
- FAO. Food Balance Sheets. A Handbook; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; Available online: http://www.fao.org/3/x9892e/x9892e00.htm (accessed on 19 October 2021).
- FAO Definition and Classification of Commodities. Fibres of Vegetal and Animal Origin. Available online: http://www.fao.org/waicent/faoinfo/economic/faodef/fdef09e.htm (accessed on 19 October 2021).
- Raschka, A.; Carus, M. Stoffliche Nutzung von Biomasse Basisdaten für Deutschland, Europa und die Welt; Nova-Institut GmbH: Hürth, Germany, 2012; Available online: https://www.iwbio.de/fileadmin/Publikationen/IWBio-Publikationen/Stoffliche_Nutzung_von_Biomasse_nova.pdf (accessed on 19 October 2021).
- Berndes, G. Bioenergy, Land Use Change and Climate Change Mitigation. 2010. Available online: https://www.ieabioenergy.com/wp-content/uploads/2013/10/Bioenergy-Land-Use-Change-and-Climate-Change-Mitigation-Background-Technical-Report.pdf (accessed on 19 October 2021).
- Edrisi, S.A.; Abhilash, P.C. Exploring Marginal and Degraded Lands for Biomass and Bioenergy Production: An Indian Scenario. Renew. Sustain. Energy Rev. 2016, 54, 1537–1551. [Google Scholar] [CrossRef]
- Eurostat, Archive: Main Annual Crop Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Main_annual_crop_statistics&oldid=258003 (accessed on 19 October 2021).
- Eurostat Eurostat—Data Explorer—Industrial Crops by NUTS 2 Regions. Available online: https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (accessed on 19 October 2021).
- Scarlat, N.; Dallemand, J.-F.; Monforti-Ferrario, F.; Nita, V. The Role of Biomass and Bioenergy in a Future Bioeconomy: Policies and Facts. Environ. Dev. 2015, 15, 3–34. [Google Scholar] [CrossRef]
- Phillips, S.; Flach, B.; Lieberz, S.; Bolla, S. Biofuels Annual EU-28. 2019. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Biofuels%20Annual_The%20Hague_EU-28_7-15-2019.pdf (accessed on 19 October 2021).
- International Energy Agency (IEA). Technology Roadmap: Delivering Sustainable Bioenergy 2017. Available online: https://www.ieabioenergy.com/publications/technology-roadmap-delivering-sustainable-bioenergy/ (accessed on 19 October 2021).
- Intergovernmental Panel on Climate Change (IPCC). Special Report on Renewable Energy and Climate Mitigation. 2011. Available online: https://www.ipcc.ch/2011/06/28/special-report-on-renewable-energy-sources-and-climate-change-mitigation-srren/ (accessed on 19 October 2021).
- Fritsche, U.; Eppler, U.; Fehrenbach, H.; Giergrich, J. Linkages between the Sustainable Development Goals (SDGs) and the GBEP Sustainability Indicators for Bioenergy (GSI)—Technical Paper for the GBEP Task Force on Sustainability. 2018. Available online: http://www.globalbioenergy.org/fileadmin/user_upload/gbep/docs/Indicators/IINAS_IFEU__2018__Linkages_SDGs_and_GSIs_-_final.pdf (accessed on 19 October 2021).
- Merriam-Webster Dictionary, Definition of MARGINAL. Available online: https://www.merriam-webster.com/dictionary/marginal (accessed on 19 October 2021).
- Elbersen, B.; Van Eupen, E.; Mantel, S.; Verzandvoort, S.; Boogaard, H.; Mucher, S.; Cicarreli, T.; Elbersen, W.; Bai, Z.; Iqbal, Y.; et al. Methodological Approaches to Identify and Map Marginal Land Suitable for Industrial Crops in Europe; WUR: Wageningen, The Netherlands, 2018. [Google Scholar]
- Shortall, O.K. “Marginal Land” for Energy Crops: Exploring Definitions and Embedded Assumptions. Energy Policy 2013, 62, 19–27. [Google Scholar] [CrossRef]
- Lewis, S.; Kelly, M. Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales. IJGI 2014, 3, 430–459. [Google Scholar] [CrossRef] [Green Version]
- von Cossel, M.; Iqbal, Y.; Scordia, D.; Cosentino, S.L.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Mantel, S.; Prysiazhniuk, O.; Maliarenko, O.; et al. D4.1 Low-Input Agricultural Practices for Industrial Crops on Marginal Land. Zenodo 2019. [Google Scholar] [CrossRef]
- Ramirez-Almeyda, J.; Elbersen, B.; Monti, A.; Staritsky, I.; Panoutsou, C.; Alexopoulou, E.; Schrijver, R.; Elbersen, W. Assessing the Potentials for Nonfood Crops. In Modeling and Optimization of Biomass Supply Chains: Top down and Bottom up Assessment for Agricultural, Forest and Waste Feedstock; Panoutsou, C., Ed.; Elsevier: Cambridge, CA, USA, 2017; pp. 219–251. ISBN 978-0-12-812303-4. [Google Scholar]
- Parr, J.F.; Stewart, B.A.; Hornick, S.B.; Singh, R.P. Improving the Sustainability of Dryland Farming Systems: A Global Perspective. In Advances in Soil Science; Singh, R.P., Parr, J.F., Stewart, B.A., Eds.; Advances in Soil Science; Springer: New York, NY, USA, 1990; Volume 13, pp. 1–8. ISBN 978-1-4613-8984-2. [Google Scholar]
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.-H. Use of U.S. Croplands for Biofuels Increases Greenhouse Gases through Emissions from Land-Use Change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef]
- Krasuska, E.; Cadórniga, C.; Tenorio, J.L.; Testa, G.; Scordia, D. Potential Land Availability for Energy Crops Production in Europe. Biofuels Bioprod. Bioref. 2010, 4, 658–673. [Google Scholar] [CrossRef]
- Confalonieri, R.; Jones, B.; Van Diepen, K.; Van Orshoven, J. Scientific Contribution on Combining Biophysical Criteria Underpinning the Delineation of Agricultural Areas Affected by Specific Constraints: Methodology and Factsheets for Plausible Criteria Combinations; Terres, J.M., Hagyo, A., Wania, A., Eds.; European Comission-Joint Research Centre, Institute for Environment and Sustainability: Luxembourg, 2014; ISBN 978-92-79-44340-4. Available online: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC92686/lbna26940enn.pdf (accessed on 19 October 2021).
- Gopalakrishnan, G.; Negri, M.C.; Wang, M.; Wu, M.; Snyder, S.W.; LaFreniere, L. Biofuels, Land, and Water: A Systems Approach to Sustainability. Environ. Sci. Technol. 2009, 43, 6094–6100. [Google Scholar] [CrossRef] [Green Version]
- Strijker, D. Marginal Lands in Europe—Causes of Decline. Basic Appl. Ecol. 2005, 6, 99–106. [Google Scholar] [CrossRef]
- Peterson, G.M.; Galbraith, J.K. The Concept of Marginal Land. J. Farm. Econ. 1932, 14, 295. [Google Scholar] [CrossRef]
- Plassmann, K. Direct and Indirect Land Use Change. In Biokerosene; Kaltschmitt, M., Neuling, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 375–402. ISBN 978-3-662-53063-4. [Google Scholar]
- Young, A. Is There Really Spare Land? A Critique of Estimates of Available Cultivable Land in Developing Countries. Environ. Dev. Sustain. 1999, 1, 3–18. [Google Scholar] [CrossRef]
- Gerwin, W.; Repmann, F.; Galatsidas, S.; Vlachaki, D.; Gounaris, N.; Baumgarten, W.; Volkmann, C.; Keramitzis, D.; Kiourtsis, F.; Freese, D. Assessment and Quantification of Marginal Lands for Biomass Production in Europe Using Soil-Quality Indicators. SOIL 2018, 4, 267–290. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Report From The Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions on the Status of Production Expansion of Relevant Food and Feed Crops Worldwide. 2019. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/report.pdf (accessed on 22 November 2021).
- Ramirez-Almeyda, J. Lignocellulosic Crops in Europe: Integrating Crop Yield Potentials with Land Potentials. Ph.D. Thesis, University of Bologna, Bologna, Italy, 2017. Available online: http://amsdottorato.unibo.it/7854/ (accessed on 19 October 2021).
- Eisentraut, A. SuStainable Production of Second-Generation Biofuels-Potential and Perspectives in Major Economies and Developing Countries. 2010. Available online: https://www.oecd-ilibrary.org/energy/sustainable-production-of-second-generation-biofuels_5kmh3njpt6r0-en (accessed on 19 October 2021).
- Pancaldi, F.; Trindade, L.M. Marginal Lands to Grow Novel Bio-Based Crops: A Plant Breeding Perspective. Front. Plant. Sci. 2020, 11, 227. [Google Scholar] [CrossRef] [Green Version]
- Nijsen, M.; Smeets, E.; Stehfest, E.; Vuuren, D.P. An Evaluation of the Global Potential of Bioenergy Production on Degraded Lands. Glob. Chang. Biol. Bioenergy 2012, 4, 130–147. [Google Scholar] [CrossRef]
- Alexopoulou, E.; Zanetti, F.; Scordia, D.; Zegada-Lizarazu, W.; Christou, M.; Testa, G.; Cosentino, S.L.; Monti, A. Long-Term Yields of Switchgrass, Giant Reed, and Miscanthus in the Mediterranean Basin. Bioenerg. Res. 2015, 8, 1492–1499. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, X.; Wang, D. Land Availability for Biofuel Production. Environ. Sci. Technol. 2011, 45, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Graves, R.A.; Pearson, S.M.; Turner, M.G. Landscape Patterns of Bioenergy in a Changing Climate: Implications for Crop Allocation and Land-Use Competition. Ecol. Appl. 2016, 26, 515–529. [Google Scholar] [CrossRef]
- Gu, Y.; Wylie, B.K. Mapping Marginal Croplands Suitable for Cellulosic Feedstock Crops in the Great Plains, United States. GCB Bioenergy 2017, 9, 836–844. [Google Scholar] [CrossRef]
- Harvolk, S.; Kornatz, P.; Otte, A.; Simmering, D. Using Existing Landscape Data to Assess the Ecological Potential of Miscanthus Cultivation in a Marginal Landscape. GCB Bioenergy 2014, 6, 227–241. [Google Scholar] [CrossRef] [Green Version]
- Khamzina, A.; Lamers, J.P.A.; Vlek, P.L.G. Tree Establishment under Deficit Irrigation on Degraded Agricultural Land in the Lower Amu Darya River Region, Aral Sea Basin. For. Ecol. Manag. 2008, 255, 168–178. [Google Scholar] [CrossRef]
- Beale, C.V.; Long, S.P. Can Perennial C4 Grasses Attain High Efficiencies of Radiant Energy Conversion in Cool Climates? Plant. Cell Environ. 1995, 18, 641–650. [Google Scholar] [CrossRef]
- Clifton-Brown, J.C.; Lewandowski, I.; Andersson, B.; Basch, G.; Christian, D.G.; Kjeldsen, J.B.; Jørgensen, U.; Mortensen, J.V.; Riche, A.B.; Schwarz, K.-U. Performance of 15 Miscanthus Genotypes at Five Sites in Europe. Agron. J. 2001, 93, 1013–1019. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Yan, J.; Li, J.; Sang, T. Yield Potential of Miscanthus Energy Crops in the Loess Plateau of China. Glob. Chang. Biol. Bioenergy 2012, 4, 545–554. [Google Scholar] [CrossRef]
- Panoutsou, C.; Chiaramonti, D. Socio-Economic Opportunities from Miscanthus Cultivation in Marginal Land for Bioenergy. Energies 2020, 13, 2741. [Google Scholar] [CrossRef]
- Qin, Z.; Zhuang, Q.; Cai, X. Bioenergy Crop Productivity and Potential Climate Change Mitigation from Marginal Lands in the United States: An Ecosystem Modeling Perspective. GCB Bioenergy 2015, 7, 1211–1221. [Google Scholar] [CrossRef] [Green Version]
- Hastings, A.; Clifton-Browon, J.; Wattenbach, M.; Mitchell, C.P.; Smith, P. The Development of MISCANFOR, a New Miscanthus Crop Growth Model: Towards More Robust Yield Predictions under Different Climatic and Soil Conditions. GCB Bioenergy 2009, 1, 154–170. [Google Scholar] [CrossRef]
- Liu, J.; Williams, J.R.; Zehnder, A.J.B.; Yang, H. GEPIC—Modelling Wheat Yield and Crop Water Productivity with High Resolution on a Global Scale. Agric. Syst. 2007, 94, 478–493. [Google Scholar] [CrossRef]
- Zhang, B.; Hastings, A.; Clifton-Brown, J.C.; Jiang, D.; Faaij, A.P.C. Modeled Spatial Assessment of Biomass Productivity and Technical Potential of Miscanthus × Giganteus, Panicum Virgatum L., and Jatropha on Marginal Land in China. GCB Bioenergy 2020, 12, 328–345. [Google Scholar] [CrossRef] [Green Version]
- Cobuloglu, H.I.; Büyüktahtakın, İ.E. A Mixed-Integer Optimization Model for the Economic and Environmental Analysis of Biomass Production. Biomass Bioenergy 2014, 67, 8–23. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Ibrahim, M.; Rashid, U.; Nawaz, M.; Ali, S.; Hussain, A.; Gull, M. Biomass Production for Bioenergy Using Marginal Lands. Sustain. Prod. Consum. 2017, 9, 3–21. [Google Scholar] [CrossRef]
- Pulighe, G.; Bonati, G.; Colangeli, M.; Morese, M.M.; Traverso, L.; Lupia, F.; Khawaja, C.; Janssen, R.; Fava, F. Ongoing and Emerging Issues for Sustainable Bioenergy Production on Marginal Lands in the Mediterranean Regions. Renew. Sustain. Energy Rev. 2019, 103, 58–70. [Google Scholar] [CrossRef]
- Wiggins, S.; Henley, G.; Keats, S. Competitive or Complementary? Industrial Crops and Food Security in Sub-Saharan Africa. ODI Rep. 2015. Available online: https://odi.org/en/publications/competitive-or-complementary-industrial-crops-and-food-security-in-sub-saharan-africa/ (accessed on 19 October 2021).
- Shepherd, A.; Littleton, E.; Clifton-Brown, J.; Martin, M.; Hastings, A. Projections of Global and UK Bioenergy Potential from Miscanthus × Giganteus—Feedstock Yield, Carbon Cycling and Electricity Generation in the 21st Century. GCB Bioenergy 2020, 12, 287–305. [Google Scholar] [CrossRef]
- Peng, R.D. Reproducible Research in Computational Science. Science 2011, 334, 1226–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, T.; Brozović, N.; Butler, A.P.; Neale, C.M.U.; Raes, D.; Steduto, P.; Fereres, E.; Hsiao, T.C. AquaCrop-OS: An Open Source Version of FAO’s Crop Water Productivity Model. Agric. Water Manag. 2017, 181, 18–22. [Google Scholar] [CrossRef]
- Semenov, M.A.; Porter, J.R. Climatic Variability and the Modelling of Crop Yields. Agric. For. Meteorol. 1995, 73, 265–283. [Google Scholar] [CrossRef]
- Jiang, R.; Wang, T.; Shao, J.; Guo, S.; Zhu, W.; Yu, Y.; Chen, S.; Hatano, R. Modeling the Biomass of Energy Crops: Descriptions, Strengths and Prospective. J. Integr. Agric. 2017, 16, 1197–1210. [Google Scholar] [CrossRef]
- Holzworth, D.P.; Snow, V.; Janssen, S.; Athanasiadis, I.N.; Donatelli, M.; Hoogenboom, G.; White, J.W.; Thorburn, P. Agricultural Production Systems Modelling and Software: Current Status and Future Prospects. Environ. Model. Softw. 2015, 72, 276–286. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.; Kiesel, A.; Hastings, A.; Iqbal, Y. Miscanthus. In Perennial Grasses for Bioenergy and Bioproducts; Alexopoulou, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 35–59. ISBN 978-0-12-812900-5. [Google Scholar]
- Clifton-Brown, J.; Lewandowski, I. Water Use Efficiency and Biomass Partitioning of Three Different Miscanthus Genotypes with Limited and Unlimited Water Supply. Ann. Bot. 2000, 86, 191–200. [Google Scholar] [CrossRef]
- Mickelbart, M.V.; Hasegawa, P.M.; Bailey-Serres, J. Genetic Mechanisms of Abiotic Stress Tolerance That Translate to Crop Yield Stability. Nat. Rev. Genet. 2015, 16, 237–251. [Google Scholar] [CrossRef]
- Bauen, A.W.; Dunnett, A.J.; Richter, G.M.; Dailey, A.G.; Aylott, M.; Casella, E.; Taylor, G. Modelling Supply and Demand of Bioenergy from Short Rotation Coppice and Miscanthus in the UK. Bioresour. Technol. 2010, 101, 8132–8143. [Google Scholar] [CrossRef]
- Richter, G.M.; Riche, A.B.; Dailey, A.G.; Gezan, S.A.; Powlson, D.S. Is UK Biofuel Supply from Miscanthus Water-Limited? Soil Use Manag. 2008, 24, 235–245. [Google Scholar] [CrossRef]
- Aylott, M.J.; Casella, E.; Tubby, I.; Street, N.R.; Smith, P.; Taylor, G. Yield and Spatial Supply of Bioenergy Poplar and Willow Short-Rotation Coppice in the UK. New Phytol. 2008, 178, 358–370. [Google Scholar] [CrossRef] [PubMed]
- Schorling, M.; Enders, C.; Voigt, C.A. Assessing the Cultivation Potential of the Energy Crop Miscanthus × Giganteus for Germany. GCB Bioenergy 2015, 7, 763–773. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Growing Dedicated Energy Crops on Marginal Lands and Ecosystem Services. Soil Sci. Soc. Am. J. 2016, 80, 845–858. [Google Scholar] [CrossRef]
- McIsaac, G.F.; David, M.B.; Mitchell, C.A. Miscanthus and Switchgrass Production in Central Illinois: Impacts on Hydrology and Inorganic Nitrogen Leaching. J. Environ. Qual. 2010, 39, 1790–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dees, M.; Elbersen, B.; Fitzgerald, J.; Vis, M.; Anttila, P.; Forsell, N.; Ramirez-Almeyda, J.; García Galindo, D.; Glavonjic, B.; Staritsky, I.; et al. A Spatial Data Base on Sustainable Biomass Cost-Supply of Lignocellulosic Biomass in Europe—Methods & Data Sources; S2BIOM Project Report 1.6; University of Freiburg: Breisgau, Germany, 2017; 176p. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Special Report on Climate Change and Land. 2019. Available online: https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf (accessed on 19 October 2021).
- Haberl, H.; Erb, K.-H.; Krausmann, F.; Bondeau, A.; Lauk, C.; Müller, C.; Plutzar, C.; Steinberger, J.K. Global Bioenergy Potentials from Agricultural Land in 2050: Sensitivity to Climate Change, Diets and Yields. Biomass Bioenergy 2011, 35, 4753–4769. [Google Scholar] [CrossRef] [Green Version]
- Powell, J.P.; Reinhard, S. Measuring the Effects of Extreme Weather Events on Yields. Weather Clim. Extrem. 2016, 12, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Wicke, B. Bioenergy Production on Degraded and Marginal Land: Assessing Its Potentials, Economic Performance, and Environmental Impacts for Different Settings and Geographical Scales; Utrecht University: Utrecht, The Netherlands, 2011; Available online: /paper/Bioenergy-production-on-degraded-and-marginal-land-Wicke/b6b235cafcdb8139039fa28ff3c0be17369df4b5 (accessed on 19 October 2021).
- Metzger, J.O.; Hüttermann, A. Sustainable Global Energy Supply Based on Lignocellulosic Biomass from Afforestation of Degraded Areas. Naturwissenschaften 2009, 96, 279–288. [Google Scholar] [CrossRef]
- Skevas, T.; Swinton, S.M.; Hayden, N.J. What Type of Landowner Would Supply Marginal Land for Energy Crops? Biomass Bioenergy 2014, 67, 252–259. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. In Global Warming of 1.5 °C; World Meteorological Organization: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/sr15/ (accessed on 19 October 2021).
- Scagline-Mellor, S.; Griggs, T.; Skousen, J.; Wolfrum, E.; Holásková, I. Switchgrass and Giant Miscanthus Biomass and Theoretical Ethanol Production from Reclaimed Mine Lands. Bioenerg. Res. 2018, 11, 562–573. [Google Scholar] [CrossRef]
- Saha, M.; Eckelman, M.J. Geospatial Assessment of Potential Bioenergy Crop Production on Urban Marginal Land. Appl. Energy 2015, 159, 540–547. [Google Scholar] [CrossRef]
- Smith, P.; Porter, J.R. Bioenergy in the IPCC Assessments. GCB Bioenergy 2018, 10, 428–431. [Google Scholar] [CrossRef]
- Hoogwijk, M.; Faaij, A.; Eickhout, B.; Devries, B.; Turkenburg, W. Potential of Biomass Energy out to 2100, for Four IPCC SRES Land-Use Scenarios. Biomass Bioenergy 2005, 29, 225–257. [Google Scholar] [CrossRef]
- Tilman, D.; Hill, J.; Lehman, C. Carbon-Negative Biofuels from Low-Input High-Diversity Grassland Biomass. Science 2006, 314, 1598–1600. [Google Scholar] [CrossRef] [Green Version]
- Lynd, L.R.; Laser, M.S.; Bransby, D.; Dale, B.E.; Davison, B.; Hamilton, R.; Himmel, M.; Keller, M.; McMillan, J.D.; Sheehan, J.; et al. How Biotech Can Transform Biofuels. Nat. Biotechnol. 2008, 26, 169–172. [Google Scholar] [CrossRef]
- BASIS – Biomass Availability and Sustainability Information System. Report on Conversion Efficiency of Biomass. 2015. Available online: http://www.basisbioenergy.eu/fileadmin/BASIS/D3.5_Report_on_conversion_efficiency_of_biomass.pdf (accessed on 19 October 2021).
- Clariant International Ltd. Clariant and Enviral Announce First License Agreement on Sunliquid® Cellulosic Ethanol Technology. Available online: https://www.clariant.com/en/Corporate/News/2017/09/Clariant-and-Enviral-announce-first-license-agreement-on-sunliquid-cellulosic-ethanol-technology (accessed on 19 October 2021).
- Clariant International Ltd. Clariant to Build Flagship Sunliquid® Cellulosic Ethanol Plant in Romania. Available online: https://www.clariant.com/en/Corporate/News/2017/10/Clariant-to-build-flagship-sunliquid-cellulosic-ethanol-plant-in-Romania (accessed on 19 October 2021).
- ETIP. Bioenergy Cellulosic Ethanol. Available online: https://www.etipbioenergy.eu/value-chains/products-end-use/products/cellulosic-ethanol#ce1 (accessed on 19 October 2021).
- Witsch, K. Biosprit: So Kann der Durchbruch in Europa Gelingen. Available online: https://www.handelsblatt.com/unternehmen/energie/erneuerbare-energien-umstrittener-biosprit-wie-der-durchbruch-auch-in-europa-gelingen-kann/25427964.html (accessed on 19 October 2021).
- Mayer, A. Amid Biofuels Uncertainties, Iowa Cellulosic Ethanol Plant Halts Production. Available online: https://www.iowapublicradio.org/agriculture/2019-11-19/amid-biofuels-uncertainties-iowa-cellulosic-ethanol-plant-halts-production (accessed on 19 October 2021).
- Grzincic, B.; Abengoa Affiliates Can’t Recoup $70 Million in Loans to Bankrupt Biomass Plant—10th Circuit. Reuters 2020. Available online: https://www.reuters.com/article/abengoa-affiliates-cant-recoup-70-millio-idUSL1N2CO0BZ (accessed on 22 November 2021).
- Global Industry Analysts, Inc. Cellulosic Ethanol—Global Market Trajectory & Analytics. Available online: https://www.researchandmarkets.com/reports/5029784/cellulosic-ethanol-global-market-trajectory-and (accessed on 19 October 2021).
- Chundawat, S.P.S.; Beckham, G.T.; Himmel, M.E.; Dale, B.E. Deconstruction of Lignocellulosic Biomass to Fuels and Chemicals. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 121–145. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.A.S.; Lambert, J.G.; Balogh, S.B. EROI of Different Fuels and the Implications for Society. Energy Policy 2014, 64, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Baral, A.; Bakshi, B.R.; Smith, R.L. Assessing Resource Intensity and Renewability of Cellulosic Ethanol Technologies Using Eco-LCA. Environ. Sci. Technol. 2012, 46, 2436–2444. [Google Scholar] [CrossRef] [PubMed]
- NRDC. Ethanol: Energy Well Spent—A Survey of Studies Published Since 1990. 2006. Available online: https://www.nrdc.org/sites/default/files/ethanol.pdf (accessed on 19 October 2021).
- Hammerschlag, R. Ethanol’s Energy Return on Investment: A Survey of the Literature 1990−Present. Environ. Sci. Technol. 2006, 40, 1744–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patzek, T. A Probabilistic Analysis of the Switchgrass Ethanol Cycle. Sustainability 2010, 2, 3158–3194. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Patzek, T.W. Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower. Nat. Resour. Res. 2005, 14, 65–76. [Google Scholar] [CrossRef]
- Cleveland, C.J.; Hall, C.A.S.; Herendeen, R.A. Energy Returns on Ethanol Production. Science 2006, 312, 1746–1748. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.J.; Hall, C.A.S.; Dale, M.; Cleveland, C. Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels. Sustainability 2011, 3, 1888–1907. [Google Scholar] [CrossRef] [Green Version]
- Robertson, P.G.; Landis, D.A.; Khanna, M. The Sustainability of Cellulosic Biofuels 2012. Available online: https://lter.kbs.msu.edu/wp-content/uploads/2012/06/sustainability-of-cellulosic-biofuels.pdf (accessed on 19 October 2021).
- van der Weijde, T.; Kiesel, A.; Iqbal, Y.; Muylle, H.; Dolstra, O.; Visser, R.G.F.; Lewandowski, I.; Trindade, L.M. Evaluation of Miscanthus Sinensis Biomass Quality as Feedstock for Conversion into Different Bioenergy Products. GCB Bioenergy 2017, 9, 176–190. [Google Scholar] [CrossRef] [Green Version]
- Isikgor, F.H.; Becer, C.R. Lignocellulosic Biomass: A Sustainable Platform for the Production of Bio-Based Chemicals and Polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar] [CrossRef] [Green Version]
- Kralova, K.; Masarovičová, E. Plants for the Future. Ecol. Chem. Engineering. S Chem. I Inżynieria Ekologiczna. S 2006, 13, 1179–1207. [Google Scholar]
- van der Weijde, T.; Alvim Kamei, C.L.; Torres, A.F.; Vermerris, W.; Dolstra, O.; Visser, R.G.F.; Trindade, L.M. The Potential of C4 Grasses for Cellulosic Biofuel Production. Front. Plant Sci. 2013, 4, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trindade, L.M.; Dolstra, O.; van Loo, E.N.; Visser, R.G.F. Plant Breeding and Its Role in a Biobased Economy; Routledge: London, UK, 2010; ISBN 978-1-84407-770-0. [Google Scholar]
- da Costa, R.M.F.; Pattathil, S.; Avci, U.; Winters, A.; Hahn, M.G.; Bosch, M. Desirable Plant Cell Wall Traits for Higher-Quality Miscanthus Lignocellulosic Biomass. Biotechnol. Biofuels 2019, 12, 85. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.F.; Visser, R.G.F.; Trindade, L.M. Bioethanol from Maize Cell Walls: Genes, Molecular Tools, and Breeding Prospects. GCB Bioenergy 2015, 7, 591–607. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Parrish, D.; Berti, M.; Monti, A. Dedicated Crops for Advanced Biofuels: Consistent and Diverging Agronomic Points of View between the USA and the EU-27. Biofuels Bioprod. Bioref. 2013, 7, 715–731. [Google Scholar] [CrossRef]
- Dauber, J.; Brown, C.; Fernando, A.L.; Finnan, J.; Krasuska, E.; Ponitka, J.; Styles, D.; Thrän, D.; Van Groenigen, K.J.; Weih, M.; et al. Bioenergy from “Surplus” Land: Environmental and Socio-Economic Implications. BioRisk 2012, 7, 5–50. [Google Scholar] [CrossRef]
- Jones, M.B.; Finnan, J.; Hodkinson, T.R. Morphological and Physiological Traits for Higher Biomass Production in Perennial Rhizomatous Grasses Grown on Marginal Land. GCB Bioenergy 2015, 7, 375–385. [Google Scholar] [CrossRef] [Green Version]
- Zegada-Lizarazu, W.; Elbersen, H.W.; Cosentino, S.L.; Zatta, A.; Alexopoulou, E.; Monti, A. Agronomic Aspects of Future Energy Crops in Europe. Biofuels Bioprod. Bioref. 2010, 4, 674–691. [Google Scholar] [CrossRef]
- Zhu, X.-G.; Chang, T.-G.; Song, Q.-F.; Finnan, J.; Barth, S.; Mårtensson, L.-M.; Jones, M.B. A Systems Approach Guiding Future Biomass Crop Development on Marginal Land. In Proceedings of the Perennial Biomass Crops for a Resource-Constrained World; Barth, S., Murphy-Bokern, D., Kalinina, O., Taylor, G., Jones, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 209–224. [Google Scholar]
- Allwright, M.R.; Taylor, G. Molecular Breeding for Improved Second Generation Bioenergy Crops. Trends Plant Sci. 2016, 21, 43–54. [Google Scholar] [CrossRef] [Green Version]
- van der Weijde, T.; Torres, A.F.; Dolstra, O.; Dechesne, A.; Visser, R.G.F.; Trindade, L.M. Impact of Different Lignin Fractions on Saccharification Efficiency in Diverse Species of the Bioenergy Crop Miscanthus. Bioenerg. Res. 2016, 9, 146–156. [Google Scholar] [CrossRef] [Green Version]
- Purdy, S.J.; Maddison, A.L.; Cunniff, J.; Donnison, I.; Clifton-Brown, J. Non-Structural Carbohydrate Profiles and Ratios between Soluble Sugars and Starch Serve as Indicators of Productivity for a Bioenergy Grass. AoB Plants 2015, 7, plv032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Comission, Directive (EU). 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Text with EEA Relevance). OJL 2018, 328, 82–209. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0082.01.ENG (accessed on 19 October 2021).
- European Commission. Sustainable and Optimal Use of Biomass for Energy in the EU beyond 2020—Annexes of the Final Report. 2017. Available online: https://ec.europa.eu/energy/studies/sustainable-and-optimal-use-biomass-energy-eu-beyond-2020_en (accessed on 19 October 2021).
- European Commission (EC). Sustainability Criteria for Biofuels Specified. Available online: https://ec.europa.eu/commission/presscorner/detail/en/MEMO_19_1656 (accessed on 19 October 2021).
- Carter, T.R.; La Rovere, E.L. Developing and Applying Scenarios. 2018. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/wg2TARchap3.pdf (accessed on 19 October 2021).
- European Commission. Methodology Underlying the CAPRI Model. Available online: https://ec.europa.eu/clima/sites/default/files/strategies/analysis/models/docs/capri_model_methodology_en.pdf (accessed on 19 October 2021).
- European Commission. Modelling Tools for EU Analysis. Available online: https://ec.europa.eu/clima/policies/strategies/analysis/models_en (accessed on 19 October 2021).
- Lask, J.; Wagner, M.; Trindade, L.M.; Lewandowski, I. Life Cycle Assessment of Ethanol Production from Miscanthus: A Comparison of Production Pathways at Two European Sites. GCB Bioenergy 2018, 11, 269–288. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Hu, G. Techno-Economic Analysis of Biofuel Production Considering Logistic Configurations. Bioresour. Technol. 2016, 206, 195–203. [Google Scholar] [CrossRef]
- Crews, T.; Cattani, D. Strategies, Advances, and Challenges in Breeding Perennial Grain Crops. Sustainability 2018, 10, 2192. [Google Scholar] [CrossRef] [Green Version]
- Schuler, M.L.; Mantegazza, O.; Weber, A.P.M. Engineering C4 Photosynthesis into C3 Chassis in the Synthetic Biology Age. Plant J. 2016, 87, 51–65. [Google Scholar] [CrossRef]
- Houghton, J.; Weatherwax, S.; Ferrell, J. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda; EERE Publication and Product Library: Washington, DC, USA, 2006. Available online: https://www.osti.gov/biblio/1218382 (accessed on 22 November 2021).
- Reinhardt, J.; Hilgert, P.; Von Cossel, M. A Review of Industrial Crop Yield Performances on Unfavorable Soil Types. Agronomy 2021, 11, 2382. [Google Scholar] [CrossRef]
- White, J.W. Combining Ecophysiological Models and Genomics to Decipher the GEM-to-P Problem. NJAS Wagening. J. Life Sci. 2009, 57, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.B.; Isaacs, R. Landscape Composition Influences Pollinators and Pollination Services in Perennial Biofuel Plantings. Agric. Ecosyst. Environ. 2014, 193, 1–8. [Google Scholar] [CrossRef]
- Carlsson, G.; Mårtensson, L.-M.; Prade, T.; Svensson, S.-E.; Jensen, E.S. Perennial Species Mixtures for Multifunctional Production of Biomass on Marginal Land. GCB Bioenergy 2017, 9, 191–201. [Google Scholar] [CrossRef]
- Werling, B.P.; Meehan, T.D.; Robertson, B.A.; Gratton, C.; Landis, D.A. Biocontrol Potential Varies with Changes in Biofuel–Crop Plant Communities and Landscape Perenniality. GCB Bioenergy 2011, 3, 347–359. [Google Scholar] [CrossRef]
- Liere, H.; Kim, T.N.; Werling, B.P.; Meehan, T.D.; Landis, D.A.; Gratton, C. Trophic Cascades in Agricultural Landscapes: Indirect Effects of Landscape Composition on Crop Yield. Ecol. Appl. 2015, 25, 652–661. [Google Scholar] [CrossRef]
- Valentine, J.; Clifton-Brown, J.; Hastings, A.; Robson, P.; Allison, G.; Smith, P. Food vs. Fuel: The Use of Land for Lignocellulosic ‘next Generation’ Energy Crops That Minimize Competition with Primary Food Production. GCB Bioenergy 2012, 4, 1–19. [Google Scholar] [CrossRef]
Crops. | Geographical Boundary | Date | Marginal Land Definition | Sources of Input for Biomass Yield Modeling | References |
---|---|---|---|---|---|
Switchgrass, Giant reed, Miscanthus | Mediterranean Basin (Greece and Italy) | 1993/7/8 and 2004–2014 | Water scarcity, salt and nutrient stress | Soil assessment: not specified Climate assessment: between 2005 and 2014 based on calculation of indices for rainfall distribution according to Monti and Venturi 2007 Yield: empirical data, compared by means of an ANOVA analysis Yield model: No projection of yields (only ex post analysis) | [61] |
Low-input high-diversity mixtures of native perennials, Miscanthus, Switch-grass | Africa, China, Europe, India, South America and United States | Not specified | Abandoned land as well as mixed crop and vegetation land | Soil assessment: Harmonized World Soil Database (FAO/IIAS 2009) Topography assessment: Global Terrain Slope (Global Agro-Ecological Zones (GAEZ) 2008) Climate assessment: humidity and temperature (Natural Resources Conservation Service NRCS 2001 and New et al. 2000) Yield: based on empirical knowledge and expert opinions Yield model: Fuzzy logic modeling (FLM) to estimate productivity and net energy gain from marginal land | [62] |
Poplar, Black locust | Germany | Not specified (part of EU SEEMLA project 2016–2018) | Soil physical and chemical parameters, which give a Soil Quality Rating score < 40 | Soil assessment: Muencheberg Soil Quality Rating system based on data from European Soil Database and a geographic information system (GIS) toolset Topography assessment: National Aeronautics and Space Administration (NASA) Shuttle Radar Topography Mission (SRTM), European Environment Agency (EEA) Climate assessment: WorldClim–Global Climate Data, Institute for Veterinary Public Health Yield: empirical data of surrounding fields Yield model: Soil Quality Rating and GIS tool to calculate marginal land availability in Europe | [55] |
Black locust, Pine | Greece | ||||
Miscanthus, Poplar, Willow | Ukraine | ||||
Switchgrass, Miscanthus, Poplar | Southern Appalachian Mountain region (United States) | 2008–2012 | Land that is currently not used for food production | Soil assessment: based on United States Department of Agriculture (USDA) Soil Survey Topography assessment: based on literature Climate assessment: Current: averages and standard deviations for 30 years (1981–2001) based on DayMet dataset Future: from global circulation model, adjusted for the IPCC’s medium- and high-emissions scenarios (representative concentration pathway, RCP 4.5 and RCP 8.5) Yield: literature data (of growth period of 4 years 2008–2012), Yield model: process-based crop growth model Agricultural Land Management Alternative with Numerical Assessment Criteria (ALMANAC), comparison between current and future yields by means of an ANOVA analysis | [63] |
Switchgrass | Great Plains (United States) | 2010–2012 | Land with a crop indemnity lower than USD 2,157,068 | Soil assessment: based on literature, available soil water capacity from NRCS Topography assessment: United States Geological Survey’s (USGS) National Elevation Dataset, USGS compound topographic index Climate assessment: based on literature, USGS irrigation map, USDA Natural Resources, Conservation Service (NRCS), Soil Survey Geographic Database (SSURGO) Yield: derived from satellite-derived growing season Normalized Difference Vegetation Index (NDVI) for 2010–2012, USGS crop mask (from USDA National Agricultural Statistics Service Cropland Data Layer) Economic suitability: USDA county-level crop indemnity map | [64] |
Miscanthus | Hesse (Germany) | Not specified | Produces low yields, similar to set-aside farm land | Soil assessment: Integrated Administration and Control System for Payments in the Context of the EU Common Agricultural Policy (EC 2007), German Soil Rating Survey (“Bodenschätzung”), Topography assessment: Hessian Agency for the Environment and Geology (Hessisches Landesamt für Umwelt und Geologie), Digital Elevation Model Climate assessment: Hessisches Landesamt für Umwelt und Geologie, National Weather Service of Germany. Yield: estimates at field level, literature and expert knowledge Yield model: yield function of the economic GIS-based model ProLand (Prognosis of Land use) | [65] |
Miscanthus | Denmark, Germany, Greece, Ireland, Italy, Netherlands, Portugal, Sweden, Turkey, United Kingdom, US | Not specified | Not specified (just labeled ‘different agro-ecological environments’) | Soil assessment: texture class, soil depth and water holding capacity from literature of experiments and FAO’s digital soil map of the word Topography assessment: slope class from literature of experiments and FAO’s digital soil map of the word Climate assessment: from global gridded databases, average monthly weather information (1961–1990) on radiation, temperature, vapor pressure, wind speed, precipitation and rainfall days Yield: Field experiments from literature (used annual biomass yields after 3rd year of growth) Yield model: LINPAC (modified LINTUL model for Perennial and Annual Crops), including sensitivity analysis | [25] |
Willow | Canada, Finland, Germany, Sweden, United Kingdom, US | ||||
Reed canary grass | Czech Republic, Finland, Lithuania, Sweden, US | ||||
Eucalyptus | Australia, Brazil, China, Congo, India, New Zealand, South Africa, US | ||||
Russian olive, Euphrates poplar, Siberian elm | Aral Sea Basin (Uzbekistan) | 2003–2005 | Increased salinity, low ground water availability and reduced irrigation water availability | Soil assessment: based on literature and empirical data Topography assessment: based on literature Climate assessment: based on literature Yield: empirical data, compared by means of an ANOVA analysis Yield model: No projection of yields (only ex post analysis) | [66] |
Miscanthus | Loess Plateau (China) | 2010 | Reduced soil cover by severely eroded soil, landscape degradation and nutrient depletion in the soil | Soil assessment: based on literature and empirical data Topography assessment: based on literature Climate assessment: based on data from Xifeng Meteorological Station (next to the experimental site), from the Data Sharing Infrastructure of Earth System Science Yield: empirical data Yield model: based on the radiation model by Monteith 1977, modified for Miscanthus field trials by Beale and Long [67]; Clifton-Brown et al. [68] | [69] |
Miscanthus | Italy and Greece | Not specified | Not specified | Soil assessment: literature, expert knowledge Topography assessment: literature, expert knowledge Climate assessment: literature, expert knowledge Yield: literature, expert knowledge Yield model: No projection of yields (only ex post analysis) Economic suitability: Analysis of strengths, weaknesses, opportunities and threats Social suitability: input output analysis | [70] |
Switchgrass, Miscanthus | US | 1989–2008 | Abandoned land, land with mixed vegetation and marginal productivity (based on Cai et al. [62]) | Soil assessment: based on data from Food and Agriculture Organization (FAO)/Civil Service Reform Committee digitalization of the FAO/United Nations Educational, Scientific and Cultural Organization (UNESCO) soil map of the world Topography assessment: based on data from NASA Shuttle Radar Topography Mission Climate assessment: based on data from European Centre for Medium-Range Weather Forecasts, National Oceanic and Atmospheric Administration Mauna Loa CO₂ record Yield: calculated based on model (based on N and C dynamics) Yield model: AgTEM including ecophysiological, biogeochemical and management-related processes into the Terrestrial Ecosystem Model framework | [71] |
Miscanthus, Switchgrass, Giant Reed, Reed canary Grass, Cardoon, Willow, Poplar, Eucalyptus | Europe | Not specified | Low quality land, where only non-competitive yields for rotational food and feed crops can be achieved | Soil assessment: based on data from literature (European Soil classification) Topography assessment: based on data from literature (European Soil classification) Climate assessment: based on data from literature Yield: calculated based on the Aqua Crop model for low, medium and high management practices Yield model: Aqua Crop model from FAO Economic suitability: ABC cost model (for minimum cost prices of feedstock production) | [45] |
Miscanthus, Switchgrass, Jatropha | China | Miscanthus 2009–2010, for switchgrass and jatropha not specified | Land that is not a forest, an environmental reserve, a residential area and that is not currently used as cropland or pastoral land | Soil assessment: HWSD (2000–2016), Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC, 2015), Institute of Soil Science, Chinese Academy of Sciences (ISSCAS) Topography assessment: NASA Shuttle Radar Topography Mission (SRTM) Climate assessment: Climatic Research Unit Time Series (CRU TS; 2000–2016), China Meteorological Administration (CMA), General circulation model (GCM) Yield: Miscanthus’ yields (as input for MiscanFor) for 2009–2010 from expert knowledge Calculated based on the respective yield model Yield model: MiscanFor (for Miscanthus, Hastings et al. [72]), GIS-based Environmental Policy Integrated Climate Model (GEPIC, for switchgrass; Liu et al. [73]), GAEZ Model (for Miscanthus, switchgrass and jatropha; International Institute for Applied Systems Analysis (IIASA)/FAO, 2012) | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haberzettl, J.; Hilgert, P.; von Cossel, M. A Critical Review on Lignocellulosic Biomass Yield Modeling and the Bioenergy Potential from Marginal Land. Agronomy 2021, 11, 2397. https://doi.org/10.3390/agronomy11122397
Haberzettl J, Hilgert P, von Cossel M. A Critical Review on Lignocellulosic Biomass Yield Modeling and the Bioenergy Potential from Marginal Land. Agronomy. 2021; 11(12):2397. https://doi.org/10.3390/agronomy11122397
Chicago/Turabian StyleHaberzettl, Jan, Pia Hilgert, and Moritz von Cossel. 2021. "A Critical Review on Lignocellulosic Biomass Yield Modeling and the Bioenergy Potential from Marginal Land" Agronomy 11, no. 12: 2397. https://doi.org/10.3390/agronomy11122397
APA StyleHaberzettl, J., Hilgert, P., & von Cossel, M. (2021). A Critical Review on Lignocellulosic Biomass Yield Modeling and the Bioenergy Potential from Marginal Land. Agronomy, 11(12), 2397. https://doi.org/10.3390/agronomy11122397