Alternate Wetting and Drying (AWD) Mitigates the Decline in Grain Filling of Basmati 370 Due to Low Temperature in Tropical Highlands
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Weather Conditions and Soil Water Environment in the Experimental Field
3.2. Plant Growth, Yield, and Yield Components
3.3. Analysis of Yield Determinants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Maclean, J.; Hardy, B.; Hettel, G. Rice Almanac: Source Book for One of the Most Important Economic Activities on Earth, 4th ed.; International Rice Research Institute: Los Baños, Philippines, 2013. [Google Scholar]
- Rosegrant, M.W.; Ringler, C.; Zhu, T. Water for Agriculture: Maintaining Food Security under Growing Scarcity. Annu. Rev. Environ. Resour. 2009, 34, 205–222. [Google Scholar] [CrossRef]
- Howell, K.R.; Shrestha, P.; Dodd, I.C. Alternate wetting and drying irrigation maintained rice yields despite half the irrigation volume, but is currently unlikely to be adopted by smallholder lowland rice farmers in Nepal. Food Energy Secur. 2015, 4, 144–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maneepitak, S.; Ullah, H.; Paothong, K.; Kachenchart, B.; Datta, A.; Shrestha, R.P. Effect of water and rice straw management practices on yield and water productivity of irrigated lowland rice in the Central Plain of Thailand. Agric. Water Manag. 2019, 211, 89–97. [Google Scholar] [CrossRef]
- Price, A.H.; Norton, G.J.; Salt, D.E.; Ebenhoeh, O.; Meharg, A.A.; Meharg, C.; McNally, K.L. Alternate wetting and drying irrigation for rice in Bangladesh: Is it sustainable and has plant breeding something to offer? Food Energy Secur. 2013, 2, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Rejesus, R.M.; Palis, F.G.; Rodriguez, D.G.P.; Lampayan, R.M.; Bouman, B.A.M. Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines. Food Policy 2011, 36, 280–288. [Google Scholar] [CrossRef]
- Ullah, H.; Mohammadi, A.; Datta, A. Growth, yield and water productivity of selected lowland Thai rice varieties under different cultivation methods and alternate wetting and drying irrigation. Ann. Appl. Biol. 2018, 173, 302–312. [Google Scholar] [CrossRef]
- Yang, J.; Liu, K.; Wang, Z.; Du, Y.; Zhang, J. Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential. J. Integr. Plant Biol. 2007, 49, 1445–1454. [Google Scholar] [CrossRef]
- Pan, S.G.; Cao, C.G.; Cai, M.L.; Wang, J.P.; Wang, R.H.; Zhai, J.; Huang, S.Q. Effects of irrigation regime and nitrogen management on grain yield, quality and water productivity in rice. J. Food Agric. Environ. 2009, 7, 559–564. [Google Scholar]
- Sriphirom, P.; Chidthaisong, A.; Towprayoon, S. Effect of Alternate Wetting and Drying Water Management on Rice Cultivation with Low Emissions and Low Water Used during Wet and Dry Season. J. Clean. Prod. 2019, 223, 980–988. [Google Scholar] [CrossRef]
- Ye, Y.; Liang, X.; Chen, Y.; Liu, J.; Gu, J.; Guo, R.; Li, L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice: Effects on dry matter accumulation, yield, water and nitrogen use. Field Crop. Res. 2013, 144, 212–224. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, S.; Yang, J.; Zhang, J.; Wang, Z. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agron. J. 2008, 100, 726–734. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Toung, T.P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crop. Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Rungrat, T.; Poothab, C. Short-term water deficit stress induces anthocyanin accumulation and changes in grain yield and yield components in colored rice grain. Agric. Nat. Resour. 2019, 53, 292–297. [Google Scholar]
- Mati, B.M.; Wanjogu, R.; Odongo, B.; Home, P.G. Introduction of the System of Rice Intensification in Kenya: Experiences from Mwea Irrigation Scheme. Paddy Water Environ. 2011, 9, 145–154. [Google Scholar] [CrossRef]
- FAO. Faostat. Available online: https://faostat.fao.org/ (accessed on 18 October 2019).
- Ministry of Agriculture (MoA), Republic of Kenya. National Rice Development Strategy (2008–2018); Ministry of Agriculture: Nairobi, Kenya, 2008.
- Ouma-Onyango, A. Promotion of Rice Production: A Likely Step to Making Kenya Food Secure. An Assessment of Current Production and Potential. Dev. Ctry. Stud. 2014, 4, 26–31. [Google Scholar]
- Kihoro, J.; Bosco, N.J.; Murage, H.; Ateka, E.; Makihara, D. Investigating the impact of rice blast disease on the livelihood of the local farmers in greater Mwea region of Kenya. SpringerPlus 2013, 2, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullahi, M.; Mizutani, M.; Tanaka, S.; Goto, A.; Matsui, H. Changes in water management practices in the Mwea Irrigation Scheme, Kenya from 1994 to 1998. Rural. Environ. Eng. 2003, 44, 60–67. [Google Scholar]
- Samejima, H.; Katsura, K.; Kikuta, M.; Njinju, S.M.; Kimani, J.M.; Yamauchi, A.; Makihara, D. Analysis of rice yield response to various cropping seasons to develop optimal cropping calendars in Mwea, Kenya. Plant Prod. Sci. 2020, 23, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Njinju, S.M.; Samejima, H.; Katsura, K.; Kikuta, M.; Gweyi-Onyango, J.P.; Kimani, J.M.; Makihara, D. Grain yield responses of lowland rice varieties to increased amount of nitrogen fertilizer under tropical highland conditions in central Kenya. Plant Prod. Sci. 2018, 21, 59–70. [Google Scholar] [CrossRef]
- Samejima, H.; Kikuta, M.; Katura, K.; Menge, D.; Gichuhi, E.; Wainaina, C.; Kimani, J.; Inukai, Y.; Yamauchi, A.; Makihara, D. A method for evaluating cold tolerance in rice during reproductive growth stages under natural low-temperature conditions in tropical highlands in Kenya. Plant Prod. Sci. 2020, 23, 466–476. [Google Scholar] [CrossRef]
- Japan International Cooperation Agency (JICA). Joint Mid-Team Review Report on the Japanese Technical Cooperation for Rice-Based and Market-Oriented Agriculture Promotion Project in the Republic of Kenya. Available online: http://open_jicareport.jica.go.jp/pdf/12235024.pdf (accessed on 18 October 2019).
- Omwenga, K.G.; Mati, B.M.; Home, P.G. Determination of the effect of the system of rice intensification (SRI) on rice yields and water saving in Mwea irrigation scheme, Kenya. J. Water Resour. Prot. 2014, 6, 895–901. [Google Scholar] [CrossRef] [Green Version]
- Kikuta, M.; Makihara, D.; Arita, N.; Miyazaki, A.; Yamamoto, Y. Growth and yield responses of upland NERICAs to variable water management under field conditions. Plant Prod. Sci. 2017, 20, 36–46. [Google Scholar] [CrossRef]
- Yoshida, S. Fundamentals of Rice Crop Science; International Rice Research Institute: Los Baños, Philippines, 1981; p. 269. [Google Scholar]
- Kusutani, A. Studies on Productivity of Rice Plants Growing the North-Marginal Area in Japan: II. Influence of cool-weather damage on yield and harvest index. Jpn. J. Crop. Sci. 1985, 54, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Farrell, T.C.; Fukai, S.; Williams, R.L. Minimizing cold damage during reproductive development among temperate rice genotypes: I. Avoiding low temperature with the use of appropriate sowing time and photoperiod-sensitive varieties. Aust. J. Agric. Res. 2006, 57, 75–88. [Google Scholar] [CrossRef]
- Zhang, Z.; Nakamura, T.; Nishiyama, I. Effects of the amount and activity of roots on the cool-weather resistance in rice plants. Jpn. J. Crop. Sci. 2001, 70, 84–91, (In Japanese with English Abstract). [Google Scholar] [CrossRef]
- Mishra, A.; Salokhe, V.M. Flooding stress: The effects of planting pattern and water regime on root morphology, physiology and grain yield of rice. J. Agron. Crop. Sci. 2010, 196, 368–378. [Google Scholar] [CrossRef]
- Lampayan, R.M.; Samoy-Pascual, K.C.; Sibayan, E.B.; Ella, V.B.; Jayag, O.P.; Cabangon, R.J.; Bouman, B.A.M. Effects of alternate wetting and drying (AWD) threshold level and plant seedling age on crop performance, water input, and water productivity of transplanted rice in Central Luzon, Philippines. Paddy Water Environ. 2015, 13, 215–227. [Google Scholar] [CrossRef]
2014 | 2015 | 2016 | 2017 | ||
---|---|---|---|---|---|
Solar radiation (mJ m−2) | CF | 17.5 | 16.5 | 16.5 | - |
AWD | 17.6 | 16.5 | 16.5 | - | |
Soil temperature (°C) | CF | - | 22.1 | 22.2 | 24.1 |
AWD | - | 22.1 | 22.8 | 23.9 | |
EC (mS cm−1) | CF | 0.84 | 0.77 | 0.50 | 0.52 |
AWD | 0.58 | 0.70 | 0.45 | 0.52 | |
pH | CF | 5.77 | 5.45 | 5.47 | 5.48 |
AWD | 5.13 | 4.86 | 5.03 | 5.03 | |
ORP (mV) | CF | −30.9 | −17.6 | −47.4 | −108.1 |
AWD | 210.7 | 208.9 | 254.8 | 250.1 |
Year | Treatment | Plant Length | Tiller Number | SPAD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(cm) | (per Plant) | ||||||||||||
2014 | CF | 106.5 | ± | 5.1 | ab | 20.9 | ± | 3.6 | e | - | |||
AWD | 96.7 | ± | 3.0 | b | 21.7 | ± | 1.2 | de | - | ||||
2015 | CF | 108.8 | ± | 11.3 | ab | 33.0 | ± | 3.0 | bcd | 39.7 | ± | 1.5 | a |
AWD | 103.9 | ± | 5.3 | ab | 30.1 | ± | 2.5 | cde | 36.2 | ± | 2.7 | a | |
2016 | CF | 136.8 | ± | 2.3 | a | 44.1 | ± | 2.3 | ab | 40.5 | ± | 2.2 | a |
AWD | 115.8 | ± | 3.1 | ab | 36.4 | ± | 5.9 | abc | 39.6 | ± | 4.0 | a | |
2017 | CF | 108.3 | ± | 2.2 | ab | 47.7 | ± | 2.0 | a | 38.0 | ± | 2.4 | a |
AWD | 100.3 | ± | 0.2 | ab | 46.0 | ± | 0.9 | a | 27.5 | ± | 1.2 | b |
CF | AWD | |||
---|---|---|---|---|
2014 | 14 January 2015 | (85) | 20 January 2015 | (91) |
2015 | 9 December 2015 | (84) | 8 December 2015 | (83) |
2016 | 21 December 2016 | (86) | 21 December 2016 | (86) |
2017 | 11 October 2017 | (86) | 11 October 2017 | (86) |
Year | Treat | Panicle Number | Number of Grains | Number of Grains | Filled Grain Ratio | 1000-Grain Weight | Above-Ground Biomass | Grain Yield | Harvest Index | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(per m2) | (per Panicle) | (per m2) | (%) | (g) | (g m−2) | (g m−2) | (%) | ||||||||||
2014 | CF | 439.4 | a | 148.2 | a | 65029 | a | 38.8 | c | 19.4 | d | 1790 | a | 468.5 | c | 0.27 | c |
AWD | 397.3 | ab | 117.8 | b | 46289 | b | 58.0 | b | 19.1 | d | 1499 | bc | 510.9 | bc | 0.34 | b | |
2015 | CF | 345.2 | bc | 88.8 | de | 30637 | d | 79.1 | a | 19.8 | cd | 1446 | bc | 480.4 | c | 0.33 | b |
AWD | 278.9 | c | 73.6 | e | 20303 | e | 83.4 | a | 20.3 | bc | 1034 | d | 345.9 | d | 0.34 | b | |
2016 | CF | 345.9 | bc | 109.2 | bc | 37755 | cd | 59.9 | b | 21.1 | ab | 1414 | bc | 464.9 | c | 0.33 | bc |
AWD | 379.6 | ab | 93.9 | cd | 35225 | cd | 76.3 | a | 21.0 | ab | 1259 | cd | 560.9 | b | 0.45 | a | |
2017 | CF | 368.9 | ab | 101.0 | bcd | 37331 | cd | 87.7 | a | 21.4 | a | 1552 | ab | 697.3 | a | 0.45 | a |
AWD | 375.2 | ab | 106.2 | bcd | 39440 | bc | 80.9 | a | 21.3 | a | 1531 | ab | 677.9 | a | 0.44 | a | |
Year | ** | *** | *** | *** | *** | ** | *** | ** | |||||||||
Treatment | ns | ** | ** | * | ns | ** | ns | *** | |||||||||
Year × Treatment | ns | ns | ** | * | ns | ns | ** | * |
Year | Panicle Number | Number of Grains | Number of Grains | Filled Grain Ratio | 1000-Grain Weight | Above-Ground Biomass | Harvest Index | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(per m2) | (per Panicle) | (per m2) | (%) | (g) | (g m−2) | (%) | ||||||||
2014 | −0.497 | n.s. | −0.620 | n.s. | −0.717 | † | 0.802 | * | −0.483 | n.s. | −0.281 | n.s. | 0.692 | n.s. |
2015 | 0.760 | † | 0.805 | * | 0.962 | ** | −0.228 | n.s. | −0.427 | n.s. | 0.941 | ** | −0.023 | n.s. |
2016 | −0.030 | n.s. | −0.240 | n.s. | −0.356 | n.s. | 0.854 | * | −0.603 | n.s. | −0.073 | n.s. | 0.846 | * |
2017 | 0.549 | n.s. | 0.049 | n.s. | 0.713 | † | −0.117 | n.s. | −0.409 | n.s. | 0.769 | † | −0.303 | n.s. |
Year | Treatment | Average Temperature from 14 Days before Heading to Heading | Average Temperature from Heading to 14 Days after Heading | ||||
---|---|---|---|---|---|---|---|
Mean | Max | Min | Mean | Max | Min | ||
2014 | CF | 21.9 | 29.3 | 14.2 | 21.6 | 28.9 | 14.1 |
AWD | 21.6 | 29.0 | 14.2 | 21.6 | 29.0 | 14.1 | |
2015 | CF | 21.1 | 27.1 | 17.0 | 21.3 | 27.1 | 16.6 |
AWD | 21.1 | 27.1 | 16.9 | 21.2 | 27.1 | 16.6 | |
2016 | CF | 20.7 | 27.4 | 15.2 | 20.9 | 27.7 | 15.0 |
AWD | 20.7 | 27.4 | 15.2 | 20.9 | 27.7 | 15.0 | |
2017 | CF | 24.0 | 33.3 | 16.9 | 23.6 | 31.7 | 18.1 |
AWD | 24.0 | 33.3 | 16.9 | 23.6 | 31.7 | 18.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakehashi, T.; Kikuta, M.; Menge, D.M.; Gichuhi, E.W.; Samejima, H.; Makihara, D. Alternate Wetting and Drying (AWD) Mitigates the Decline in Grain Filling of Basmati 370 Due to Low Temperature in Tropical Highlands. Agronomy 2021, 11, 2345. https://doi.org/10.3390/agronomy11112345
Kakehashi T, Kikuta M, Menge DM, Gichuhi EW, Samejima H, Makihara D. Alternate Wetting and Drying (AWD) Mitigates the Decline in Grain Filling of Basmati 370 Due to Low Temperature in Tropical Highlands. Agronomy. 2021; 11(11):2345. https://doi.org/10.3390/agronomy11112345
Chicago/Turabian StyleKakehashi, Takahiro, Mayumi Kikuta, Daniel Makori Menge, Emily Waringa Gichuhi, Hiroaki Samejima, and Daigo Makihara. 2021. "Alternate Wetting and Drying (AWD) Mitigates the Decline in Grain Filling of Basmati 370 Due to Low Temperature in Tropical Highlands" Agronomy 11, no. 11: 2345. https://doi.org/10.3390/agronomy11112345
APA StyleKakehashi, T., Kikuta, M., Menge, D. M., Gichuhi, E. W., Samejima, H., & Makihara, D. (2021). Alternate Wetting and Drying (AWD) Mitigates the Decline in Grain Filling of Basmati 370 Due to Low Temperature in Tropical Highlands. Agronomy, 11(11), 2345. https://doi.org/10.3390/agronomy11112345