Breeding Temperate Japonica Rice Varieties Adaptable to Tropical Regions: Progress and Prospects
Abstract
:1. Introduction
2. Progress of Temperate Japonica Rice Adaptable to Tropical Regions
3. Breakthrough in Yield with the New Variety, Japonica 7
4. Challenges and Breeding Initiatives
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.H.; Zheng, X.M.; Xu, Q.; Yuan, X.P.; Huang, L.; Zhou, H.F.; Wei, X.H.; Ge, S. Genetic diversity and classification of Oryza sativa with emphasis on Chinese rice germplasm. Heredity 2014, 112, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Changrong, Y.; Hengming, L.; Wei, D.; Jinwen, Z.; Yuran, X.; Anyu, G.; Yonggang, L.; Wei, N.; Shengli, S.; Hua, A.; et al. Genome-wide association study on agronomic traits of temperate japonica rice (Oryza sativa L.). Crop Breed. Appl. Biotechnol. 2020, 20, e22462011. [Google Scholar] [CrossRef] [Green Version]
- Prisana, S.; Linnemann, A. Rice-eating quality among consumers in different rice grain preference countries. J. Sens. Stud. 2008, 23, 1–13. [Google Scholar]
- Kim, S.R.; Torollo, G.; Yoon, M.R.; Kwak, J.; Lee, C.K.; Prahalada, G.D.; Choi, I.R.; Yeo, U.S.; Jeong, O.Y.; Jena, K.K.; et al. Loss-of-function alleles of heading date 1 (Hd1) are associated with adaptation of temperate japonica rice plants to the tropical region. Front. Plant Sci. 2018, 871, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bombay, M.; Lee, S.B.; Pacleb, M.; Jo, S.; Lee, J.Y.; Cho, J.H.; Lee, J.H.; Kang, J.W.; Kim, S.R.; Lee, J.S.; et al. Mapping of a Major QTL, qHD6-SD responsible for days to heading under natural short day conditions to develop rice varieties adaptable to tropical regions. J. Korean Soc. Int. Agric. 2021, 33, 161–169. (In Korean) [Google Scholar] [CrossRef]
- Jeong, E.G.; Kang, K.H.; Hong, H.C.; Cho, Y.C.; Jung, O.Y.; Jeon, Y.H.; Chang, J.K.; Lee, J.H.; Won, Y.J.; Yang, U.H.; et al. A wide region of tropical Asia adaptable japonica rice ‘Asemi’. J. Korean Soc. Int. Agric. 2019, 31, 76–81. (In Korean) [Google Scholar] [CrossRef]
- Jeong, O.Y.; Torollo, G.; Bombay, M.; Baek, M.K.; Ahn, E.K.; Hyun, W.J.; Park, H.S.; Jeong, J.M.; Cho, J.H.; Lee, J.H.; et al. Adaptable tropical japonica high quality new rice cultivar ‘Japonica 6’. J. Korean Soc. Int. Agric. 2019, 31, 249–254. (In Korean) [Google Scholar] [CrossRef]
- Jeong, O.Y.; Lee, J.S.; Bombay, M.; Torollo, G.; Padolina, T.; Braceros, R.; Pautin, L.; Baek, M.K.; Ahn, E.K.; Hyun, W.J.; et al. A new high quality japonica rice cultivar ‘Japonica 7’ adaptable to tropical region. J Korean Soc. Int. Agric. 2020, 32, 151–157. (In Korean) [Google Scholar] [CrossRef]
- Jeong, O.Y.; Lee, J.S.; Bombay, M.; Torollo, G.; Padolina, T.; Braceros, R.; Pautin, L.; Baek, M.K.; Ahn, E.K.; Hyun, W.J.; et al. A cold-tolerant japonica rice cultivar ‘Cordillera 4’ adaptable to the tropical mountainous region. J. Korean Soc. Int. Agric. 2021, 33, 119–124. (In Korean) [Google Scholar] [CrossRef]
- Lee, J.H.; Muhsin, M.; Atienza, G.A.; Kwak, D.Y.; Kim, S.M.; Leon, T.B.D.; Angeles, E.R.; Coloquio, E.; Kondoh, H.; Satoh, K.; et al. Single nucleotide polymorphisms in a gene for translation initiation factor (eIF4G) of rice (Oryza sativa) associated with resistance to rice tungro spherical virus. Mol. Plant-Microbe Interact. 2010, 23, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Doi, K.; Izawa, T.; Fuse, T.; Yamanouchi, U.; Kubo, T.; Shimatani, Z.; Yano, M.; Yoshimura, A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 2004, 18, 926–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashikari, M.; Sakakibara, H.; Lin, S.; Yamamoto, T.; Takashi, T.; Nishimura, A.; Angeles, E.R.; Qian, Q.; Kitano, H.; Matsuoka, M. Cytokinin oxidase regulates rice grain production. Science 2005, 309, 741–745. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Ikeda, M.; Matsubara, A.; Song, X.J.; Ito, M.; Asano, K.; Matsuoka, M.; Kitano, H.; Ashikari, M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 2010, 42, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Ookawa, T.; Hobo, T.; Yano, M.; Murata, K.; Ando, T.; Miura, H.; Asano, K.; Ochiai, Y.; Ikeda, M.; Nishitani, R.; et al. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat. Commun. 2010, 1, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.S.; Chebotarov, D.; McNally, K.L.; Pede, V.; Setiyono, T.D.; Raquid, R.; Hyun, W.J.; Jeung, J.U.; Kohli, A.; Mo, Y. Novel sources of pre-harvest sprouting resistance for japonica rice improvement. Plants 2021, 10, 1709. [Google Scholar] [CrossRef]
- Lee, J.S.; Kwak, J.; Yoon, M.; Lee, J.; Hay, F. Contrasting tocol ratios associated with seed longevity in rice variety groups. Seed Sci. Res. 2017, 27, 273–280. [Google Scholar] [CrossRef]
- Tao, L.; Wang, X.; Tan, H.; Chen, H.; Yang, C.; Zhuang, J.; Zheng, K. Physiological analysis on pre-harvest sprouting in recombinant inbred rice lines. Front. Agric. China 2007, 1, 24–29. [Google Scholar] [CrossRef]
- Fang, J.; Chu, C. Abscisic acid and the pre-harvest sprouting in cereals. Plant Signal Behav. 2008, 3, 1046–1048. [Google Scholar] [CrossRef] [Green Version]
- Barnard, A.; Smith, M.F. The effect of rainfall and temperature on the preharvest sprouting tolerance of winter wheat in the dryland production areas of the Free State Province. Field Crops Res. 2009, 112, 158–164. [Google Scholar] [CrossRef]
- Sugimoto, K.; Takeuchi, Y.; Ebana, K.; Miyao, A.; Hirochika, H.; Hara, H.; Ishiyama, K.; Kobayashi, M.; Ban, Y.; Hattori, T.; et al. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc. Natl. Acad. Sci. USA 2010, 107, 5792–5797. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.Y.; Foley, M.E.; Horvath, D.P.; Anderson, J.V.; Feng, J.H.; Zhang, L.H.; Mowry, C.R.; Ye, H.; Suttle, J.V.; Kadowaki, K.I.; et al. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics 2011, 189, 1515–1524. [Google Scholar] [CrossRef] [Green Version]
- Rency, R.; Kohli, A.; Reinke, R.; Dionisio-Sese, M.; Kwak, J.; Chebotarov, D.; Mo, Y.; Lee, J.S. Genetic factors enhancing seed longevity in tropical japonica rice. Curr. Plant Biol. 2021, 26, 100196. [Google Scholar]
- Kameswara, R.N.; Jackson, M.T. Seed longevity of rice cultivars and strategies for their conservation in genebanks. Ann. Bot. 1996, 77, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Hay, F.R.; Timple, S.; van Duijn, B. Can chlorophyll fluorescence be used to determine the optimal time to harvest rice seeds for long-term genebank storage? Seed Sci. Res. 2015, 25, 321–334. [Google Scholar] [CrossRef]
- Lee, J.S.; Kwak, J.; Cho, J.H.; Chebotarov, D.; Yoon, M.R.; Lee, J.S.; Hamilton, R.S.; Hay, F.R. A high proportion of beta-tocopherol in vitamin E is associated with poor seed longevity in rice produced under temperate conditions. Plant Genet. Resour. 2019, 17, 375–378. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Takeuchi, Y.; Miura, K.; Yamaguchi, T.; Ando, T.; Ebitani, T.; Higashitani, A.; Yamaya, T.; Yano, M.; Sato, T. Fine mapping of a major quantitative trait locus, qLG-9, that controls seed longevity in rice (Oryza sativa L.). Theor. Appl. Genet. 2015, 128, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Mauleon, R.; Hu, Z.; Chebotarov, D.; Tai, S.; Wu, Z.; Li, M.; Zheng, T.; Fuentes, R.; Zhang, F.; et al. Genomic variation in 3010 diverse accessions of Asian cultivated rice. Nature 2018, 557, 43–49. [Google Scholar] [CrossRef]
- Lee, J.S.; Velasco-Punzalan, M.; Pacleb, M.; Valdez, R.; Kretzschmar, T.; McNally, K.L.; Ismail, A.M.; Cruz, P.C.S.; Hamilton, N.R.S.; Hay, F.R. Variation in seed longevity among diverse Indica rice varieties. Ann. Bot. 2019, 124, 447–460. [Google Scholar] [CrossRef]
- Lee, J.S.; Kwak, J.; Hay, F.R. Genetic markers associated with seed longevity and vitamin E in diverse Aus rice varieties. Seed Sci. Res. 2020, 30, 133–141. [Google Scholar] [CrossRef]
- Nakagomi, K.; Shigemune, A.; Sasahara, H.; Arai, T.; Hirabayashi, H.; Yamanouchi, U.; Ideta, O. Finding a novel QTL responsible for kernel cracking resistance from CSSLs of ‘Itadaki’ (O. sativa L.) × donor O. rufipogon. Breed. Sci. 2020, 70, 567–575. [Google Scholar] [CrossRef]
- Arisaka, M. Analysis of factors that cause a high incidence of cracked rice kernel in Niigata prefecture in 2000. Hokuriku Crop Sci. 2002, 37, 52–53, (In Japanese with English summary). [Google Scholar]
- Nitto, A.; Ito, O.; Agatsuma, Y. Primary factors of deterioration of rice quality in Miyagi prefecture in 1999 and 2000. Tohoku Agric. Res. 2001, 54, 35–36. (In Japanese) [Google Scholar]
- Hayashi, T.; Kobayashi, A.; Tomita, K.; Shimizu, T. A quantitative trait locus associated with resistance to rice kernel cracking in progeny of japonica cultivars ‘Nipponbare’ and ‘Yamahikari’. Hokuriku Crop Sci. 2017, 52, 67–70, (In Japanese with English summary). [Google Scholar]
- Pinson, S.R.M.; Jia, Y.; Gibbons, J.W. Three quantitative trait loci conferring resistance to kernel fissuring in rice identified by selective genotyping in two tropical japonica populations. Crop Sci. 2013, 53, 2434–2443. [Google Scholar] [CrossRef]
- Nakagomi, K.; Ideta, O.; Shigemune, A.; Ohta, H.; Kaji, R.; Fukushima, A.; Tsuda, N. QTL mapping of grain cracking resistance of rice derived from ‘Yanxuan 203’. Breed. Res. 2014, 16, 122. (In Japanese) [Google Scholar]
Variety | Release Name | IRRI Designation | Parentage | Year Registered | Reference |
---|---|---|---|---|---|
MS11 * | NSIC Rc 170 SR | IRRI 142 | Jinmibyeo/Cheolweon 46 | 2008 | Jeong et al. [6] |
Japonica 1 | NSIC Rc 220 SR | IRRI 152 | IR77863-95-2-3/HR15490-34 | 2009 | https://nsic.buplant.da.gov.ph/, accessed on 13 September 2021 |
Japonica 2 | NSIC Rc 242 SR | IRRI 157 | IR80091-46-2-1/IR71663-14-2-3-5 | 2011 | https://nsic.buplant.da.gov.ph/, accessed on 13 September 2021 |
Japonica 6 | NSIC Rc 484 SR | IRRI 202 | MS 11/IR86743-2B-1-4 | 2017 | Jeong et al. [7] |
Cordillera 4 | NSIC Rc 566 SR | IRRI 232 | Jinmibyeo/SR18977-2-7-2-TB-1 | 2019 | Jeong et al. [9] |
Japonica 7 | NSIC Rc 584 SR | IRRI 236 | Japonica 2/IR11K233 | 2019 | Jeong et al. [8] |
Variety * | Culm Length (cm) | Days to Maturity | Yield (t/ha) | Milling Recovery (%) | Eating Quality | |
---|---|---|---|---|---|---|
Variety | Check Variety ** | |||||
MS11 | 90 | 112 | 4.9 | 4.5 (IR72) | 70.5 | Soft |
Japonica 1 | 89 | 109 | 2.8 | 2.3 (MS11) | 64.7 | Soft |
Japonica 2 | 94 | 109 | 3.7 | 3.0 (MS11) | 63.0 | Soft |
Japonica 6 | 87 | 121 | 3.6 | 2.6 (MS11) | 73.0 | Medium |
Cordillera 4 *** | 77 | 145 | 3.1 | 2.5 (PSB Rc 96) | 73.0 | Soft |
Japonica 7 | 91 | 111 | 3.0 | 2.6 (MS11) | 69.0 | Soft |
Variety * | Blast | Bacterial Leaf Blight | Tungro Disease | Stem Borer | Brown Planthopper | Green Leafhopper |
---|---|---|---|---|---|---|
MS11 | R ** | I | I | I | S | S |
Japonica 1 | S | I | S | I | I | S |
Japonica 2 | I | I | S | MS | MS | MS |
Japonica 6 | I | I | S | I | S | S |
Cordillera 4 | I | S | S | R | I | MR |
Japonica 7 | I | I | S | R | I | I |
Variety | Yield (Rough Rice) | |||
---|---|---|---|---|
IRRI | PhilRice-CES * | |||
Ton/Ha | % ** | Ton/Ha | % ** | |
MS 11 | 5.4 | 79 | 5.8 | 73 |
Japonica 1 | 6.1 | 90 | 5.3 | 66 |
Japonica 2 | 5.4 | 79 | 5.6 | 70 |
Japonica 6 | 7.1 | 104 | 6.0 | 75 |
Japonica 7 | 7.0 | 103 | 8.8 | 110 |
NSIC Rc 222 (indica) *** | 6.8 | 100 | 8.0 | 100 |
NSIC Rc 238 (indica) *** | 6.8 | 100 | 6.3 | 79 |
LSD (0.05) **** | 0.6 | - | 1.3 | - |
Variety | Position in EIF4G (LOC_Os07g3690) | Allele Type |
---|---|---|
Nipponbare | 3163 GCCGGAAAGTCTTATGTTGTTGATCACCCA 3192 | Susceptible |
MS 11 | GCCGTAAAGTCTTATGTTGTTGATCACCCA | Resistant |
Japonica 1 | GCCGGAAAGTCTTATGTTGTTGATCACCCA | Susceptible |
Japonica 2 | GCCGGAAAGTCTTATGTTGTTGATCACCCA | Susceptible |
Japonica 6 | GCCGGAAAGTCTTATGTTGTTGATCACCCA | Susceptible |
Japonica 7 | GCCGTAAAGTCTTATGTTGTTGATCACCCA | Resistant |
Cordillera 4 | GCCGGAAAGTCTTATGTTGTTGATCACCCA | Susceptible |
Variety | Allele Type of Resistance Gene * | ||
---|---|---|---|
Blast (Pita) | BLB (xa5) | BPH (BPH32) | |
MS 11 | S | S | S |
Japonica 1 | S | S | S |
Japonica 2 | S | S | S |
Japonica 6 | S | S | S |
Japonica 7 | S | S | S |
Cordillera 4 | S | S | S |
NSIC Rc 222 (indica) ** | R | R | R |
NSIC Rc 238 (indica) ** | R | R | R |
Subspecies | Number (Percentage) of Rice Accessions Harboring Resistance Allele Type | ||
---|---|---|---|
Blast (Pita) | BLB (xa5) | BPH (BPH32) | |
Japonica (96) | 4 (4.1%) Dongjinbyeo, IR13K187 IR18K1018, IR18K1028 | 6 (6.3%) IR13K158, IR13K176 IR13K177, IR13K181 IR13K187, IR18K1018 | 3 (3.1%) IR13K187, IR18K1018 IR18K1028 |
Indica (85) | 71 (83.5%) | 29 (34.1%) | 52 (61.1%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacleb, M.; Jeong, O.-Y.; Lee, J.-S.; Padolina, T.; Braceros, R.; Pautin, L.; Torollo, G.; Sana, E.E.; Del-Amen, J.Y.; Baek, M.-K.; et al. Breeding Temperate Japonica Rice Varieties Adaptable to Tropical Regions: Progress and Prospects. Agronomy 2021, 11, 2253. https://doi.org/10.3390/agronomy11112253
Pacleb M, Jeong O-Y, Lee J-S, Padolina T, Braceros R, Pautin L, Torollo G, Sana EE, Del-Amen JY, Baek M-K, et al. Breeding Temperate Japonica Rice Varieties Adaptable to Tropical Regions: Progress and Prospects. Agronomy. 2021; 11(11):2253. https://doi.org/10.3390/agronomy11112253
Chicago/Turabian StylePacleb, Myrish, O-Young Jeong, Jeom-Sig Lee, Thelma Padolina, Rustum Braceros, Lenie Pautin, Gideon Torollo, Elbert E. Sana, Jesson Y. Del-Amen, Man-Kee Baek, and et al. 2021. "Breeding Temperate Japonica Rice Varieties Adaptable to Tropical Regions: Progress and Prospects" Agronomy 11, no. 11: 2253. https://doi.org/10.3390/agronomy11112253
APA StylePacleb, M., Jeong, O.-Y., Lee, J.-S., Padolina, T., Braceros, R., Pautin, L., Torollo, G., Sana, E. E., Del-Amen, J. Y., Baek, M.-K., Jo, S., Hyun, W.-J., Park, H.-S., Jeong, J.-M., Lee, J.-Y., Cho, J.-H., Lee, J.-H., Lee, S.-B., Choi, I.-R., ... Park, D.-S. (2021). Breeding Temperate Japonica Rice Varieties Adaptable to Tropical Regions: Progress and Prospects. Agronomy, 11(11), 2253. https://doi.org/10.3390/agronomy11112253