The Role of Sequential Cropping and Biogasdoneright™ in Enhancing the Sustainability of Agricultural Systems in Europe
Abstract
:1. Introduction
1.1. Sequential Cropping in a Changing Climate
1.2. The Biogasdoneright™ Model
2. Materials and Methods
2.1. European Climate Regions
2.1.1. Mediterranean Region
2.1.2. Continental Region
2.1.3. Atlantic Region
2.1.4. Boreal Region
2.2. Cropping Rotations and Sequential Crops Inventory
2.3. Biomethane Potential Calculation
3. Results and Discussion
3.1. Sequential Crop Calendars
3.2. Biomethane Potential
3.3. Sequential Cropping in Combination with BDR Principles in Europe: Open Questions to Research
3.3.1. Carbon Sequestration and Soil Quality Enhancement
3.3.2. Avoidance of Emissions from the BDR™ System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agovino, M.; Casaccia, M.; Ciommi, M.; Ferrara, M. Agriculture, Climate Change and Sustainability: The Case of EU-28. Ecol. Indic. 2019, 105, 525–543. [Google Scholar] [CrossRef]
- Aydinalp, C.; Cresser, M.S. The Effects of Global Climate Change on Agriculture. Eurasian J. Agric. Environ. Sci. 2008, 3, 672–676. [Google Scholar]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural Sustainability and Intensive Production Practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Bastos Lima, M.G. The Politics of Bioeconomy and Sustainability: Lessons from Biofuel Governance, Policies and Production Strategies in the Emerging World; Springer Nature: Stockholm, Sweden, 2021; ISBN 9783030668365. [Google Scholar]
- Wollenberg, E.; Richards, M.; Smith, P.; Havlíc, P.; Obersteiner, M.; Tubiello, F.; Herold, M.; Gerber, P.J.; Carter, S.; Reisinger, A.; et al. Reducing Emissions from Agriculture to Meet the 2 °C Target. Glob. Chang. Biol. 2016, 3859–3864. [Google Scholar] [CrossRef] [Green Version]
- European Commission. The European Green Deal. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019DC0640 (accessed on 9 July 2021).
- European Commission. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment Updated Bioeconomy Strategy. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A52018DC0673 (accessed on 25 June 2021).
- European Commission. A Greener and Fairer CAP. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/key_policies/documents/factsheet-newcap-environment-fairness_en.pdf (accessed on 9 August 2021).
- Muscat, A.; de Olde, E.M.; de Boer, I.J.M. The Battle for Biomass: A Systematic Review of Food-Feed-Fuel Competition. Glob. Food Secur. 2020, 25, 100330. [Google Scholar] [CrossRef]
- Thompson, P.B. The Agricultural Ethics of Biofuels: The Food vs. Fuel Debate. Agriculture 2012, 20, 339. [Google Scholar] [CrossRef] [Green Version]
- Dauber, J.; Brown, C.; Fernando, A.L.; Finnan, J.; Krasuska, E.; Ponitka, J.; Styles, D.; Thrän, D.; van Groenigen, K.J.; Weih, M.; et al. Bioenergy from “Surplus” Land: Environmental and Socio-Economic Implications. BioRisk 2012, 50, 5–50. [Google Scholar] [CrossRef]
- European Network for Rural Development. European Rural Bioeconomy: Policy and Tools. Available online: https://enrd.ec.europa.eu/sites/default/files/enrd_publications/bioeconomy-briefing_1_policy-and-tools.pdf (accessed on 1 October 2021).
- De Pedro, L.; Perera-Fernández, L.G.; López-Gallego, E.; Pérez-Marcos, M.; Sanchez, J.A. The Effect of Cover Crops on the Biodiversity and Abundance of Ground-Dwelling Arthropods in a Mediterranean Pear Orchard. Agronomy 2020, 10, 580. [Google Scholar] [CrossRef] [Green Version]
- Blanchart, E.; Villenave, C.; Viallatoux, A.; Barthès, B.; Girardin, C.; Azontonde, A.; Feller, C. Long-Term Effect of a Legume Cover Crop (Mucuna Pruriens Var. Utilis) on the Communities of Soil Macrofauna and Nematofauna, under Maize Cultivation, in Southern Benin. Eur. J. Soil Biol. 2006, 42, S136–S144. [Google Scholar] [CrossRef]
- Elhakeem, A.; van der Werf, W.; Ajal, J.; Lucà, D.; Claus, S.; Vico, R.A.; Bastiaans, L. Cover Crop Mixtures Result in a Positive Net Biodiversity Effect Irrespective of Seeding Configuration. Agric. Ecosyst. Environ. 2019, 285, 106627. [Google Scholar] [CrossRef]
- Dale, B.E.; Bozzetto, S.; Couturier, C.; Fabbri, C.; Hilbert, J.A.; Ong, R.; Richard, T.; Rossi, L.; Thelen, K.D.; Woods, J. The Potential for Expanding Sustainable Biogas Production and Some Possible Impacts in Specific Countries. Biofuels Bioprod. Biorefin. 2020, 14, 1335–1347. [Google Scholar] [CrossRef]
- Selvaggi, R.; Valenti, F.; Pappalardo, G.; Rossi, L.; Bozzetto, S.; Pecorino, B.; Dale, B.E. Sequential Crops for Food, Energy, and Economic Development in Rural Areas: The Case of Sicily. Biofuels Bioprod. Biorefin. 2018, 12, 22–28. [Google Scholar] [CrossRef]
- Peters, D.; Zabeti, M.; Kühner, A.K.; Spöttle, M.; van der Werf, W.; Stomph, J. Assessing the Case for Sequential Cropping to Produce Low ILUC Risk Biomethane—Final Report. Available online: https://edepot.wur.nl/406739 (accessed on 8 August 2021).
- Waha, K.; Dietrich, J.P.; Portmann, F.T.; Siebert, S.; Thornton, P.K.; Bondeau, A.; Herrero, M. Multiple Cropping Systems of the World and the Potential for Increasing Cropping Intensity. Glob. Environ. Chang. 2020, 64, 102131. [Google Scholar] [CrossRef]
- European Biogas Association. Biogas: A Powerful and Safe Enabler of Decarbonisation & Complementing the Zero-Pollution Ambition of the Green Deal; European Biogas Association: Brussels, Belgium, 2020; Available online: https://www.europeanbiogas.eu/wp-content/uploads/2020/05/FINAL-position-paper_agriculture.pdf (accessed on 15 August 2021).
- Sammy, A.; Takriti, E.; Malins, C.; Searle, S. Understanding Options for ILUC Mitigation. Available online: https://theicct.org/publications/understanding-options-iluc-mitigation (accessed on 1 July 2021).
- European Parliament Directive (EU). 2015/1513 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32015L1513 (accessed on 6 August 2021).
- Hlaváček, M.; Decerle, J. ANNEX I: Impact, Result and Output Indicators Pursuant to Article 7; 2020; Volume 200, Available online: https://www.europarl.europa.eu/doceo/document/A-8-2019-0200-AM-1154-1154_EN.pdf (accessed on 1 October 2021).
- European Parliament Directive (EU). 2018/2001 of the European Parliament and of the Council on the Promotion of the Use of Energy from Renewable Sources. Off. J. Eur. Union 2018, 2018, 82–209. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018L2001 (accessed on 26 June 2021).
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the Design of Climate Change-Resilient Farming Systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef] [Green Version]
- Dale, B.E.; Sibilla, F.; Fabbri, C.; Pezzaglia, M.; Pecorino, B.; Veggia, E.; Baronchelli, A.; Gattoni, P.; Bozzetto, S. BiogasdonerightTM: An Innovative New System Is Commercialized in Italy. Biofuels Bioprod. Biorefin. 2016, 10, 341–345. [Google Scholar] [CrossRef]
- Andrews, D.J.; Kassam, A.H. The Importance of Multiple Cropping in Increasing World Food Supplies. Mult. Crop. 1976, 27, 1–10. [Google Scholar]
- Petrie, C.A.; Singh, R.N.; Bates, J.; Dixit, Y.; French, C.A.I.; Hodell, D.A.; Jones, P.J.; Lancelotti, C.; Lynam, F.; Neogi, S.; et al. Adaptation to Variable Environments, Resilience to Climate Change. Curr. Anthropol. 2017, 58. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. Climate Change, Impacts and Vulnerability in Europe. 2016. Available online: https://www.eea.europa.eu/publications/climate-change-impacts-and-vulnerability-2016 (accessed on 2 June 2021).
- Gaba, S.; Lescourret, F.; Boudsocq, S.; Enjalbert, J.; Hinsinger, P.; Journet, E.P.; Navas, M.L.; Wery, J.; Louarn, G.; Malézieux, E.; et al. Multiple Cropping Systems as Drivers for Providing Multiple Ecosystem Services: From Concepts to Design. Agron. Sustain. Dev. 2015, 35, 607–623. [Google Scholar] [CrossRef] [Green Version]
- Azam-Ali, S.N. Multicropping. Encyclopedia of Applied Plant Science. In Production Systems and Agronomy; Elsevier: Amsterdam, The Netherlands, 2003; pp. 978–984. [Google Scholar] [CrossRef]
- Francis, C.A.; Porter, P. Multicropping. Encycl. Appl. Plant Sci. 2016, 3, 29–33. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture—Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- Tilman, D. Global Environmental Impacts of Agricultural Expansion: The Need for Sustainable and Efficient Practices. Proc. Natl. Acad. Sci. USA 1999, 96, 5995–6000. [Google Scholar] [CrossRef] [Green Version]
- Chaplin-Kramer, R.; Sharp, R.P.; Mandle, L.; Sim, S.; Johnson, J.; Butnar, I.; Milà I Canals, L.; Eichelberger, B.A.; Ramler, I.; Mueller, C.; et al. Spatial Patterns of Agricultural Expansion Determine Impacts on Biodiversity and Carbon Storage. Proc. Natl. Acad. Sci. USA 2015, 112, 7402–7407. [Google Scholar] [CrossRef] [Green Version]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural Expansion and Its Impacts on Tropical Nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef]
- Skinner, J.A.; Lewis, K.A.; Bardon, K.S.; Tucker, P.; Catt, J.A.; Chambers, B.J. An Overview of the Environmental Impact of Agriculture in the U.K. J. Environ. Manag. 1997, 50, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Influence of Synthetic Fertilizers and Pesticides on Soil Health and Soil Microbiology. Agrochem. Detect. Treat. Remediat. 2020, 25–54. [Google Scholar] [CrossRef]
- Cheo, A.E.; Tapiwa, K.A. SDG 2—Zero Hunger: Food Security, Improved Nutrition and Sustainable Agriculture; Emerald Publishing Editing: Bingley, UK, 2021. [Google Scholar]
- Romaniuk, W.; Mazur, K.; Borek, K.; Borusiewicz, A.; Wardal, W.J.; Tabor, S.; Kuboń, M. Biomass Energy Technologies from Innovative Dairy Farming Systems. Processes 2021, 9, 335. [Google Scholar] [CrossRef]
- Valenti, F.; Porto, S.M.C.; Selvaggi, R.; Pecorino, B. Evaluation of Biomethane Potential from By-Products and Agricultural Residues Co-Digestion in Southern Italy. J. Environ. Manag. 2018, 223, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Feyereisen, G.W.; Camargo, G.G.T.; Baxter, R.E.; Baker, J.M.; Richard, T.L. Cellulosic Biofuel Potential of a Winter Rye Double Crop across the U.S. Corn–Soybean Belt. Agron. J. 2013, 105, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Tang, K.; Kragt, M.E.; Hailu, A.; Ma, C. Carbon Farming Economics: What Have We Learned ? J. Environ. Manag. 2016, 172, 49–57. [Google Scholar] [CrossRef]
- Bezzi, G. Biogasdoneright® Model: Soil Carbon Sequestration and Efficiency in Agriculture. In Proceedings of the 24th European Biomass Conference and Exhibition, Amsterdam, The Netherlands, 6–9 June 2016; pp. 4–7. [Google Scholar]
- Arec Les Cultures Intermédiaires à Vocation Énergétique (CIVE). Available online: https://www.arec-idf.fr/fileadmin/DataStorageKit/AREC/Methanisation/_Presentation_CIVE.pdf (accessed on 1 July 2021).
- European Commission. EU Strategy to Reduce Methane Emissions. Available online: https://ec.europa.eu/energy/sites/ener/files/eu_methane_strategy.pdf (accessed on 6 October 2021).
- Van Melle, T.; Peters, D.; Cherkasky, J.; Wessels, R.; Mir, G.R.; Hofsteenge, W. Gas for Climate: How Gas Can Help to Achieve the Paris Agreement Target in an Affordable Way. Available online: https://gasforclimate2050.eu/wp-content/uploads/2020/03/Ecofys-Gas-for-Climate-Report-Study-March18.pdf (accessed on 19 July 2021).
- Valli, L.; Ricerche, C.; Animali, P.; Crpa, S.; Emilia, R.; Dale, B.E.; Kim, S.; Ong, R.G.; Engineering, C. Greenhouse Gas Emissions of Electricity and Biomethane Produced Using the BiogasdonerightTM System: Four Case Studies from Italy. Biofuels Bioprod. Biorefin. 2017, 39, 847–860. [Google Scholar] [CrossRef]
- Trnka, M.; Kersebaum, K.C. Agroclimatic Conditions in Europe under Climate Change Agroclimatic Conditions in Europe under Climate Change. Glob. Chang. Biol. 2011, 17, 2298–2318. [Google Scholar] [CrossRef] [Green Version]
- Prade, T.; Björnsson, L.; Lantz, M.; Ahlgren, S.; Prade, T. Can Domestic Production of ILUC-Free Feedstock from Arable Land Supply Sweden ’ s Future Demand for Biofuels ? Supply Sweden ’ s Future Demand for Biofuels ? J. Land Use Sci. 2017, 12, 407–441. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Agri4Cast Resource Portal. Available online: https://agri4cast.jrc.ec.europa.eu/dataportal/ (accessed on 1 August 2021).
- Charalampopoulos, I.; Polychroni, I.; Psomiadis, E.; Nastos, P. Spatiotemporal Estimation of the Olive and Vine Cultivations’ Growing Degree Days in the Balkans Region. Atmosphere 2021, 12, 148. [Google Scholar] [CrossRef]
- DLO-Alterra; DLO-Plant Research Internarional; NEIKER; Institute of Agricultural and Environmental Engineering (JTI). Review and Further Differentiation of Pedo-Climatic Zones in Europe; 2011. Available online: https://publications.europa.eu/resource/cellar/e1d06bc3-58c4-43a3-b2bc-6ad6d53d7953.0001.01/DOC_1 (accessed on 1 October 2021).
- Jacobs, C.; Berglund, M.; Kurnik, B.; Dworak, T.; Marras, S.; Mereu, V.; Michetti, M. Climate Change Adaptation in the Agriculture Sector in Europe (4/2019); EEA Report; European Environment Agency: Copenhagen, Denmark, 2019; p. 112. [Google Scholar]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and Adaptation of European Crop Production Systems to Climate Change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Olesen, J.E.; Trnka, M.; Ewert, F.; Siebert, S.; Brisson, N.; Eitzinger, J.; van Asselt, E.D.; Oberforster, M. Changes in Time of Sowing, Flowering and Maturity of Cereals in Europe under Climate Change. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 1527–1542. [Google Scholar] [CrossRef] [PubMed]
- Hernández, L.; Sánchez de Dios, R.; Montes, F.; Sainz-Ollero, H.; Cañellas, I. Exploring Range Shifts of Contrasting Tree Species across a Bioclimatic Transition Zone. Eur. J. For. Res. 2017, 136, 481–492. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature Extremes: Effect on Plant Growth and Development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Michaelides, S.; Karacostas, T.; Sánchez, J.L.; Retalis, A.; Pytharoulis, I.; Homar, V.; Romero, R.; Zanis, P.; Giannakopoulos, C.; Bühl, J.; et al. Reviews and Perspectives of High Impact Atmospheric Processes in the Mediterranean. Atmos. Res. 2018, 208, 4–44. [Google Scholar] [CrossRef]
- Bocchiola, D. Impact of Potential Climate Change on Crop Yield and Water Footprint of Rice in the Po Valley of Italy. Agric. Syst. 2015, 139, 223–237. [Google Scholar] [CrossRef]
- Lionello, P.; Abrantes, F.; Gacic, M. The Climate of the Mediterranean Region: Research Progress and Climate Change Impacts. Reg. Environ. Chang. 2014, 14, 1679–1684. [Google Scholar] [CrossRef]
- Hossain, A.; el Sabagh, A.; Barutcular, C.; Bhatt, R.; Çiğ, F.; Seydoşoğlu, S.; Turan, N.; Konuskan, O.; Iqbal, M.A.; Abdelhamid, M.; et al. Sustainable Crop Production to Ensuring Food Security under Climate Change: A Mediterranean Perspective. Aust. J. Crop Sci. 2020, 14, 439–446. [Google Scholar] [CrossRef]
- Bartolini, G.; Morabito, M.; Crisci, A.; Grifoni, D.; Torrigiani, T.; Petralli, M.; Orlandini, S. Recent Trends in Tuscany ( Italy ) Summer Temperature and Indices of Extremes. Int. J. Climatol. 2008, 1760, 1751–1760. [Google Scholar] [CrossRef]
- Altman, J.; Fibich, P.; Santruckova, H.; Dolezal, J.; Stepanek, P.; Kopacek, J.; Hunova, I.; Oulehle, F.; Tumajer, J.; Cienciala, E. Environmental Factors Exert Strong Control over the Climate-Growth Relationships of Picea Abies in Central Europe. Sci. Total Environ. 2017, 609, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Juhász, C.; Gálya, B.; Kovács, E.; Nagy, A.; Tamás, J.; Huzsvai, L. Seasonal Predictability of Weather and Crop Yield in Regions of Central European Continental Climate. Comput. Electron. Agric. 2020, 173, 105400. [Google Scholar] [CrossRef]
- Sutton, R.T.; Dong, B. Atlantic Ocean Influence on a Shift in European Climate in the 1990s. Nat. Geosci. 2012, 5, 788–792. [Google Scholar] [CrossRef]
- European Environmental Agency. Average Annual Precipitation. Available online: https://www.eea.europa.eu/data-and-maps/figures/average-annual-precipitation (accessed on 1 September 2021).
- European Environmental Agency. Trend in the Number of Frost-Free Days. Available online: https://www.eea.europa.eu/data-and-maps/figures/rate-of-change-of-frost-1 (accessed on 5 July 2021).
- Peltonen-sainio, P.; Jauhiainen, L.; Hakala, K. Crop Responses to Temperature and Precipitation. J. Agric. Sci. 2011, 149, 49–62. [Google Scholar] [CrossRef]
- Peltonen-sainio, P.; Jauhiainen, L.; Laurila, I.P. Field Crops Research Cereal Yield Trends in Northern European Conditions: Changes in Yield Potential and Its Realisation. Field Crops Res. 2009, 110, 85–90. [Google Scholar] [CrossRef]
- European Commission. Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 8 June 2021).
- Han, J.; Zhang, Z.; Luo, Y.; Cao, J.; Zhang, L.; Zhang, J.; Li, Z. The RapeseedMap10 Database: Annual Maps of Rapeseed at a Spatial Resolution of 10 m Based on Multi-Source Data. Earth Syst. Sci. Data 2021, 13, 2857–2874. [Google Scholar] [CrossRef]
- Grillo, F.; Piccoli, I.; Furlanetto, I.; Ragazzi, F.; Obber, S.; Bonato, T.; Meneghetti, F.; Morari, F. Agro-Environmental Sustainability of Anaerobic Digestate Fractions in Intensive Cropping Systems: Insights Regarding the Nitrogen Use Efficiency and Crop Performance. Agronomy 2021, 11, 745. [Google Scholar] [CrossRef]
- DAL; CRPA. Biogas, Potenziale Energetico Dei Cereali Autunno-Vernini; L’informatore Agrario: Verona, Italy, 2015. [Google Scholar]
- Campiglia, E.; Mancinelli, R. Legume Cover Crops and Mulches: Effects on Nitrate Leaching and Nitrogen Input in a Pepper Crop (Capsicum annuum L.). Nutr. Cycl. Agroecosyst. 2011, 89, 399–412. [Google Scholar] [CrossRef]
- Debaeke, P. A Rule-Based Method for the Development of Crop Management Systems Applied to Grain Sorghum in South-Western France. Agric. Syst. 2006, 90, 180–201. [Google Scholar] [CrossRef]
- Marsac, S.; Quod, C.; Leveau, V.; Heredia, M.; Delaye, N.; Labalette, F.; Lecomte, V.; Bazet, M.; Sanner, E.A. Optimization of French Energy Cover Crop Production in Double Cropping Systems for On-Farm Biogas Use. In Proceedings of the 27th European Biomass Conference and Exhibition, Lisbon, Portugal, 27–30 May 2019; pp. 27–30. [Google Scholar]
- Hartmann, S.; Hofmann, D.; Lichti, F.; Gehring, K. Weidelgras-Untersaaten in Wintergetreide Zur GPS-Nutzung Als Biogassubstrat. Available online: https://www.lfl.bayern.de/mam/cms07/ipz/dateien/leitfaden_2011-16_biogasforum.pdf (accessed on 7 July 2021).
- LfL Grünroggen Als Biogassubstrate. Available online: https://www.lfl.bayern.de/mam/cms07/ipz/dateien/leitfaden_2009-07_biogasforum.pdf (accessed on 9 June 2021).
- LfL Weidelgras-Untersaat in Wintergetreide Als Ganzpflanzensilage. Available online: http://www.biogas-forum-bayern.de (accessed on 15 July 2021).
- Murphy, J.; Bochmann, G.; Weiland, P.; Wellinger, A. Biogas from Crop Digestion. In IEA Bioenergy—Task 37; IEA Bioenergy: Paris, France, 2011; p. 24. [Google Scholar]
- Dinuccio, E.; Balsari, P.; Gioelli, F.; Menardo, S. Evaluation of the Biogas Productivity Potential of Some Italian Agro-Industrial Biomasses. Bioresour. Technol. 2010, 101, 3780–3783. [Google Scholar] [CrossRef] [PubMed]
- Guy, C.L. Low Temperature and Crop Yield. Physiol. Determ. Crop Yield 1994, 417–424. [Google Scholar] [CrossRef]
- Campillo, C.; Fortes, R.; Prieto, H. Solar Radiation Effect on Crop Production. Sol. Radiat. 2012. [Google Scholar] [CrossRef] [Green Version]
- Meza, F.J.; Silva, D.; Vigil, H. Climate Change Impacts on Irrigated Maize in Mediterranean Climates: Evaluation of Double Cropping as an Emerging Adaptation Alternative. Agric. Syst. 2008, 98, 21–30. [Google Scholar] [CrossRef]
- Kaye, J.P.; Quemada, M. Using Cover Crops to Mitigate and Adapt to Climate Change. A Review. Agron. Sustain. Dev. 2017, 37, 4. [Google Scholar] [CrossRef]
- Walter Stinner Deutsches Biomasseforschungszentrum. Personal Communication, 31 May 2021.
- Sinclair, T.R. Limits to Crop Yield? Physiol. Determ. Crop Yield 1994, 509–532. [Google Scholar] [CrossRef]
- Terlouw, W.; Peters, D.; van Tilburg, J.; Schimmel, M.; Berg, T.; Cihlar, J.; Ur Rehman Mir, G.; Spöttle, M.; Staats, M.; Buseman, M.; et al. Gas for Climate. The Optimal Role for Gas in a Net-Zero Emissions Energy System. Available online: https://www.europeanbiogas.eu/wp-content/uploads/2019/11/GfC-study-The-optimal-role-for-gas-in-a-net-zero-emissions-energy-system.pdf (accessed on 7 July 2021).
- European Commission. Quarterly Report Energy on European Gas Markets with Focus on the European Barriers in Retail Gas Markets Market Observatory for Energy DG Energy. Available online: https://ec.europa.eu/energy/sites/default/files/quarterly_report_on_european_gas_markets_q4_2020_final.pdf (accessed on 1 October 2021).
- Zahan, Z.; Georgiou, S.; Muster, T.H.; Othman, M.Z. Semi-Continuous Anaerobic Co-Digestion of Chicken Litter with Agricultural and Food Wastes: A Case Study on the Effect of Carbon/Nitrogen Ratio, Substrates Mixing Ratio and Organic Loading. Bioresour. Technol. 2018, 270, 245–254. [Google Scholar] [CrossRef]
- Karki, R.; Chuenchart, W.; Surendra, K.C.; Shrestha, S.; Raskin, L.; Sung, S.; Hashimoto, A.; Kumar Khanal, S. Anaerobic Co-Digestion: Current Status and Perspectives. Bioresour. Technol. 2021, 330, 125001. [Google Scholar] [CrossRef]
- Paustian, K.; Larson, E.; Kent, J.; Marx, E.; Swan, A. Soil C Sequestration as a Biological Negative Emission Strategy. Front. Clim. 2019, 1, 1–11. [Google Scholar] [CrossRef]
- Aguilera, E.; Díaz-Gaona, C.; García-Laureano, R.; Reyes-Palomo, C.; Guzmán, G.I.; Ortolani, L.; Sánchez-Rodríguez, M.; Rodríguez-Estévez, V. Agroecology for Adaptation to Climate Change and Resource Depletion in the Mediterranean Region. A Review. Agric. Syst. 2020, 181, 102809. [Google Scholar] [CrossRef]
- Béghin-Tanneau, R.; Guérin, F.; Guiresse, M.; Kleiber, D.; Scheiner, J.D. Carbon Sequestration in Soil Amended with Anaerobic Digested Matter. Soil Tillage Res. 2019, 192, 87–94. [Google Scholar] [CrossRef]
- EIP-AGRI. Focus Group Moving from Source to Sink in Arable Farming. Available online: https://ec.europa.eu/eip/agriculture/sites/default/files/eip-agri_fg_carbon_storage_in_arable_farming_final_report_2019_en.pdf (accessed on 18 August 2021).
- European Commission. Technical Guidance Handbook Setting up and Implementing Result-Based Carbon Farming Mechanisms in the EU. Available online: https://op.europa.eu/en/publication-detail/-/publication/10acfd66-a740-11eb-9585-01aa75ed71a1/language-en (accessed on 1 October 2021).
- European Commission. Farm to Fork Strategy. Available online: https://ec.europa.eu/food/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 1 June 2021).
- Consorzio Italiano Biogas Farming For Future—10 Azioni per Coltivare Il Futuro. Available online: https://farmingforfuture.it/wp-content/uploads/2021/03/Farming_for_Future_Position_Paper_web.pdf (accessed on 1 October 2021).
Crop Type/Land Use | Surface 0.000 Ha | ||||
---|---|---|---|---|---|
EU-28 | Mediterranean | Atlantic | Continental | Boreal | |
Arable land | 105,020.5 | 22,227.5 | 26,601.5 | 52,010.8 | 9674.9 |
Irrigated land | 15,689.3 | 9651.4 | 3711 | 2120.5 | 164.5 |
Irrigated land (% arable land) | 15% | 43% | 14% | 4% | 2% |
Cereals | 55,437 | 10,280.1 | 12,892 | 30,724.9 | 4396.3 |
Wheat | 25,499.4 | 4382 | 7347.1 | 12,887.7 | 1894 |
Barley | 12,282.8 | 2985.1 | 3169.3 | 5070.6 | 1396.6 |
Triticale | 2610.5 | 261.7 | 300.1 | 2015.2 | 82 |
Maize | 8259.5 | 1164.5 | 1501 | 6816.9 | 14.5 |
Sorghum | 147.8 | 48.2 | 60.8 | 38.6 | - |
Grain pulses/proteins | 2365.6 | 747.6 | 500.8 | 810.9 | 363.4 |
Potatoes | 1702.8 | 161.2 | 605.7 | 955.6 | 88.8 |
Sugarbeet | 1735.6 | 71.8 | 747.9 | 927.3 | 55 |
Rapeseed | 6900.6 | 96.4 | 2223.5 | 4102.4 | 553.8 |
Soybean | 955.4 | 328.9 | 154.4 | 677.3 | 1.9 |
Green maize | 6355.9 | 681.6 | 2037.4 | 3694.9 | 81.6 |
Sunflower | 4025.6 | 887.5 | 552.8 | 2832.9 | - |
Total primary crops | 88,324.7 | 13,255.3 | 19,715.6 | 44,726.1 | 5541.9 |
Mediterranean (North and South) | |||
---|---|---|---|
Sequential Crop |
Average Biomass Yield (T DM/ha) | Biogas Yield 1,2 (m3/t DM) | References for Biomass Yield |
Maize | 16.5 | 620 | [73] |
Triticale | 13.5 | 570 | [74] |
Barley | 11 | 570 | [74] |
Sorghum | 13.5 | 570 | [17] |
Legume cover crops | 8.5 | 510 | [75] |
Atlantic | |||
Sorghum | 7 | 570 | [76,77] |
Maize | 14 | 620 | [77] |
Oats | 7.6 | 570 | [77] |
Triticale | 9.3 | 570 | [77] |
Barley | 4.5 | 570 | [77] |
Continental | |||
Maize | 14 | 620 | [78] |
Green rye (early harvest) | 6.5 | 570 | [79] |
Sorghum | 10 | 570 | [78,80] |
Ryegrass | 9 | 570 | [78,80] |
Conservative_Scenario % Summer Crops—Maize, Sorghum, Soybean, Sunflower and Green Maize | Conservative_Scenario (20% of Primary Crop Land) Ha | Maximum_Scenario (80% of Primary Crop Land) Ha | |
---|---|---|---|
Mediterranean Atlantic Continental | 23% | 2,651,058 | 10,604,232 |
22% | 3,943,126 | 15,772,504 | |
31% | 8,945,212 | 35,780,848 | |
≈20% |
Mediterranean | |||
Biogas Yield/Ha (m3/ha) | Conservative_Scenario Suitable Land Considered for Sequential Cropping (Ha) (20% of Primary Crop Land) | Maximum_Scenario Suitable Land Considered for Sequential Cropping (Ha) (80% of Primary Crop Land) | |
Suitable primary crop land | 2,651,058 (12% of arable land) | 10,604,232 (48% of arable land) | |
Summer sequential | 8925 | 1,325,529 | 6,512,732 |
Winter sequential | 6050 | 1,325,529 | 4,091,500 |
Biomethane potential (bcm/yr) | 9.9 | 37.9 | |
Atlantic | |||
Biogas Yield/ha (m3/ha) | Conservative_Scenario Suitable Land Considered for Sequential Cropping (Ha) (20% of Primary Crop Land) | Maximum_Scenario Suitable Land Considered for Sequential Cropping (Ha) (80% of Primary Crop Land) | |
Suitable primary crop land | 3,943,126 (15% of arable land) | 15,772,504 (59% of arable land) | |
Summer sequential | 6248 | 1,971,563 | 9,611,604 |
Winter sequential | 4066 | 1,971,563 | 6,160,900 |
Biomethane potential (bcm/yr) | 10.2 | 42.5 | |
Continental | |||
Biogas Yield/ha (m3/ha) | Conservative_Scenario Suitable Land Considered for Sequential Cropping (Ha) (20% of Primary Crop Land) | Maximum_Scenario Suitable Land Considered for Sequential Cropping (Ha) (80% of Primary Crop Land) | |
Suitable primary crop land | 8,945,212 (17% of arable land) | 35,780,848 (69% of arable land) | |
Summer Sequential | 7140 | 4,472,606 | 19,026,448 |
Winter Sequential | 4418 | 4,472,606 | 16,754,400 |
Biomethane potential (bcm/yr) | 25.8 | 104.9 | |
Total biomethane potential (bcm/yr) | 45.9 | 185.4 |
Mediterranean | Atlantic | Continental | Mediterranean | Atlantic | Continental | |
---|---|---|---|---|---|---|
Ha | Ha | Ha | % TOT | % TOT | % TOT | |
Winter primary crops: winter wheat, barley, triticale and rapeseed | 9,163,790 | 13,554,730 | 27,971,660 | 69% | 69% | 63% |
Summer primary crops: sorghum, sunflower, maize, sugarbeet, soya, green maize, potatoes and protein | 4,091,500 | 6,160,900 | 16,754,400 | 31% | 31% | 37% |
Total | 13,255,290 | 19,715,630 | 44,726,060 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magnolo, F.; Dekker, H.; Decorte, M.; Bezzi, G.; Rossi, L.; Meers, E.; Speelman, S. The Role of Sequential Cropping and Biogasdoneright™ in Enhancing the Sustainability of Agricultural Systems in Europe. Agronomy 2021, 11, 2102. https://doi.org/10.3390/agronomy11112102
Magnolo F, Dekker H, Decorte M, Bezzi G, Rossi L, Meers E, Speelman S. The Role of Sequential Cropping and Biogasdoneright™ in Enhancing the Sustainability of Agricultural Systems in Europe. Agronomy. 2021; 11(11):2102. https://doi.org/10.3390/agronomy11112102
Chicago/Turabian StyleMagnolo, Francesca, Harmen Dekker, Mieke Decorte, Guido Bezzi, Lorella Rossi, Erik Meers, and Stijn Speelman. 2021. "The Role of Sequential Cropping and Biogasdoneright™ in Enhancing the Sustainability of Agricultural Systems in Europe" Agronomy 11, no. 11: 2102. https://doi.org/10.3390/agronomy11112102
APA StyleMagnolo, F., Dekker, H., Decorte, M., Bezzi, G., Rossi, L., Meers, E., & Speelman, S. (2021). The Role of Sequential Cropping and Biogasdoneright™ in Enhancing the Sustainability of Agricultural Systems in Europe. Agronomy, 11(11), 2102. https://doi.org/10.3390/agronomy11112102