Quantitative and Qualitative Responses of Soil Water-Extractable Organic Matter to Carbon and Nitrogen Management Practices in Loess Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Soil Sampling
2.4. Soil Analysis
2.4.1. SOC Analysis
2.4.2. WEOC Analysis
2.4.3. Fluorescence EEM Spectra Analysis
2.5. Data Analysis
3. Results
3.1. Soil Organic Carbon Concentrations
3.2. Water-Extractable Organic Carbon Concentrations
3.3. Water-Extractable Organic Matter Composition
3.4. Humification Index and the Ratio of β to α
3.5. Relative Importance of C and N Management Practices on SOC and WEOM
4. Discussion
4.1. Soil Organic Carbon Concentrations Are Increased by Various Organic Amendment Practices
4.2. Water-Extractable Organic Carbon Concentrations Are Increased by Various Organic Amendment Practices
4.3. Water-Extractable Organic Matter Composition Is Influenced by Both Carbon and Nitrogen Management Practices
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Reeves, D.W. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res. 1997, 43, 131–167. [Google Scholar] [CrossRef]
- Balesdent, J.; Chenu, C.; Balabane, M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res. 2000, 53, 215–230. [Google Scholar] [CrossRef]
- Zhou, Z.; Gan, Z.; Shangguan, Z.; Zhang, F. Effects of long-term repeated mineral and organic fertilizer applications on soil organic carbon and total nitrogen in a semi-arid cropland. Eur. J. Agron. 2013, 45, 20–26. [Google Scholar] [CrossRef]
- Pribyl, D.W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Sanderman, J.; Hengl, T.; Fiske, G.J. Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. USA 2017, 114, 9575–9580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Gregorich, E.G.; Liang, B.C.; Drury, C.F.; Mackenzie, A.F.; Mcgill, W.B. Elucidation of the source and turnover of water soluble and microbial biomass carbon in agricultural soils. Soil Biol. Biochem. 2000, 32, 581–587. [Google Scholar] [CrossRef]
- Battin, T.J.; Kaplan, L.A.; Findlay, S.; Hopkinson, C.S.; Marti, E.; Packman, A.I.; Newbold, J.D.; Sabater, F. Biophysical controls on organic carbon fluxes in fluvial networks. Nat. Geosci. 2008, 1, 95–100. [Google Scholar] [CrossRef]
- Graeber, D.; Boechat, I.G.; Encina-Montoya, F.; Esse, C.; Gelbrecht, J.; Goyenola, G.; Gücker, B.; Heinz, M.; Kronvang, B.; Meerhoff, M.; et al. Global effects of agriculture on fluvial dissolved organic matter. Sci. Rep. 2015, 5, 16328. [Google Scholar] [CrossRef] [Green Version]
- Guggenberger, G.; Kaiser, K. Dissolved organic matter in soil: Challenging the paradigm of sorptive preservation. Geoderma 2003, 113, 293–310. [Google Scholar] [CrossRef]
- Kappler, A.; Haderlein, S.B. Natural organic matter as reductant for chlorinated aliphatic pollutants. Environ. Sci. Technol. 2003, 37, 2714–2719. [Google Scholar] [CrossRef]
- Hishi, T.; Hirobe, M.; Tateno, R.; Takeda, H. Spatial and temporal patterns of water-extractable organic carbon (WEOC) of surface mineral soil in a cool temperate forest ecosystem. Soil Biol. Biochem. 2004, 36, 1731–1737. [Google Scholar] [CrossRef]
- Bjarnason, S. Immobilization and remineralization of ammonium and nitrate after addition of different energy sources to soil. Plant Soil 1987, 97, 381–389. [Google Scholar] [CrossRef]
- Embacher, A.; Zsolnay, A.; Gattinger, A.; Munch, J.C. The dynamics of water extractable organic matter (WEOM) in common arable topsoils: I. Quantity, quality and function over a three year period. Geoderma 2007, 139, 11–22. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- Dong, X.; Sun, H.; Wang, J.; Liu, X.; Singh, B.P. Wheat-derived soil organic carbon accumulates more than its maize counterpart in a wheat-maize cropping system after 21 years. Eur. J. Soil Sci. 2020, 71, 695–705. [Google Scholar] [CrossRef]
- Kalbitz, K.; Solinger, S.; Park, J.H.; Michalzik, B.; Matzner, E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci. 2000, 165, 277–304. [Google Scholar] [CrossRef]
- Chantigny, M.H. Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practices. Geoderma 2003, 113, 357–380. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Angers, D.A.; Rochette, P. Fate of carbon and nitrogen from animal manure and crop residues in wet and cold soils. Soil Biol. Biochem. 2002, 34, 509–517. [Google Scholar] [CrossRef]
- Ni, K.; Ding, W.; Cai, Z.; Wang, Y. Soil carbon dioxide emission from intensively cultivated black soil in Northeast China: Nitrogen fertilization effect. J. Soils Sediments 2012, 12, 1007–1018. [Google Scholar] [CrossRef]
- Yang, X.; Li, P.; Zhang, S.; Sun, B.; Chen, X. Long-term-fertilization effects on soil organic carbon, physical properties, and wheat yield of a loess soil. J. Plant Nutr. Soil Sci. 2011, 174, 775–784. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Wang, X.; Li, M. Effects of land use on characteristics of water-extracted organic matter in soils of arid and semi-arid regions. Environ. Sci. Pollut. Res. 2019, 26, 26052–26059. [Google Scholar] [CrossRef] [PubMed]
- Zsolnay, A.; Baigar, E.; Jimenez, M.; Steinweg, B.; Saccomandi, F. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 1999, 38, 45–50. [Google Scholar] [CrossRef]
- Iqbal, J.; Hu, R.; Feng, M.; Lin, S.; Malghani, S.; Ali, I.M. Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: A case study at Three Gorges Reservoir Area, South China. Agric. Ecosyst. Environ. 2010, 137, 294–307. [Google Scholar] [CrossRef]
- Bertora, C.; Cucu, M.A.; Lerda, C.; Peyron, M.; Bardi, L.; Gorra, R.; Sacco, D.; Celi, L.; Said-Pullicino, D. Dissolved organic carbon cycling, methane emissions and related microbial populations in temperate rice paddies with contrasting straw and water management. Agric. Ecosyst. Environ. 2018, 265, 292–306. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, C.; Zou, L.; Cui, H. Optical characteristics and chemical composition of dissolved organic matter (DOM) from riparian soil by using excitation-emission matrix (EEM) fluorescence spectroscopy and mass spectrometry. Appl. Spectrosc. 2015, 69, 623–634. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Bro, R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr. Meth. 2008, 6, 572–579. [Google Scholar] [CrossRef]
- McIntyre, A.M.; Gueguen, C. Binding interactions of algal-derived dissolved organic matter with metal ions. Chemosphere 2013, 90, 620–626. [Google Scholar] [CrossRef]
- Singh, S.; Sudarshan, D.; Inamdar, S. Land application of poultry manure and its influence on spectrofluorometric characteristics of dissolved organic matter. Agric. Ecosyst. Environ. 2014, 193, 25–36. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, X.; Hua, G.; Li, M.; Lin, L. Disinfection byproduct precursors in paddy fields under swine manure application: Reactivity, origins and interception. Agric. Ecosyst. Environ. 2018, 256, 173–183. [Google Scholar] [CrossRef]
- Xu, H.; Cai, H.; Yu, G.; Jiang, H. Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Res. 2013, 47, 2005–2014. [Google Scholar] [CrossRef]
- Li, M.; Zhang, A.; Wu, H.; Liu, H.; Lv, J. Predicting potential release of dissolved organic matter from biochars derived from agricultural residues using fluorescence and ultraviolet absorbance. J. Hazard. Mater. 2017, 334, 86–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Jia, R.; Li, L.; Qu, D. Effects of high concentrations of sulfate on dissolved organic matter in paddy soils revealed by excitation-emission matrix analyzing. Chemosphere 2020, 249, 126207. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.E.; Halvorson, A.D.; Delgado, J.A. Long-term N fertilization and conservation tillage practices conserve surface but not profile SOC stocks under semi-arid irrigated corn. Soil Tillage Res. 2017, 171, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Tian, X.; Liu, T.; Lu, X.; You, D.; Li, S. Irrigation, straw, and nitrogen management benefits wheat yield and soil properties in a dryland agro-ecosystem. Agron. J. 2014, 106, 2193–2201. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Nkhili, E.; Guyot, G.; Vassal, N.; Richard, C. Extractability of water-soluble soil organic matter as monitored by spectroscopic and chromatographic analyses. Environ. Sci. Pollut. Res. 2012, 19, 2400–2407. [Google Scholar] [CrossRef]
- Fellman, J.B.; Hood, E.; Spencer, R.G.M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnol. Oceanogr. 2010, 55, 2452–2462. [Google Scholar] [CrossRef]
- Parlanti, E.; Wörz, K.; Geoffroy, L.; Lamotte, M. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org. Geochem. 2000, 31, 1765–1781. [Google Scholar] [CrossRef]
- Wilson, H.F.; Xenopoulos, M.A. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat. Geosci. 2008, 2, 37–41. [Google Scholar] [CrossRef]
- Yamashita, Y.; Jaffe, R. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnol. Oceanogr. 2008, 53, 1900–1908. [Google Scholar] [CrossRef] [Green Version]
- Ziegelgruber, K.L.; Zeng, T.; Arnold, W.A.; Chin, Y.P. Sources and composition of sediment pore-water dissolved organic matter in prairie pothole lakes. Limnol. Oceanogr. 2013, 58, 1136–1146. [Google Scholar] [CrossRef]
- Williams, C.J.; Yamashita, Y.; Wilson, H.F.; Jaffe, R.; Xenopoulos, M.A. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol. Oceanogr. 2010, 55, 1159–1171. [Google Scholar] [CrossRef]
- Ishii, S.K.L.; Boyer, T.H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: A critical review. Environ. Sci. Technol. 2012, 46, 2006–2017. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Jaffé, R. Photo- and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface waters in a subtropical wetland. Water Res. 2014, 61, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Chang, C.H.; Lee, D.J.; He, P.J.; Shao, L.M.; Su, A. Dissolved organic matter with multi-peak fluorophores in landfill leachate. Chemosphere 2009, 74, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Santin, C.; Yamashita, Y.; Otero, X.L.; Alvarez, M.A.; Jaffe, R. Characterizing humic substances from estuarine soils and sediments by excitation-emission matrix spectroscopy and parallel factor analysis. Biogeochemistry 2009, 96, 131–147. [Google Scholar] [CrossRef]
- Liang, B.; Yang, X.; He, X.; Murphy, D.V.; Zhou, J. Long-term combined application of manure and NPK fertilizers influenced nitrogen retention and stabilization of organic C in Loess soil. Plant Soil 2012, 353, 249–260. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Panettieri, M.; Guigue, J.; Prevost-Bouré, N.G.; Thévenot, M.; Lévêque, J.; Guillou, C.L.; Maron, P.; Santoni, A.; Ranjard, L.; Mounier, S.; et al. Grassland-cropland rotation cycles in crop-livestock farming systems regulate priming effect potential in soils through modulation of microbial communities, composition of soil organic matter and abiotic soil properties. Agric. Ecosyst. Environ. 2020, 299, 106973. [Google Scholar] [CrossRef]
- Fontaine, S.; Barot, S.; Barre, P.; Bdioui, N.; Mary, B.; Rumpel, C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 2007, 450, 277–280. [Google Scholar] [CrossRef]
- Guenet, B.; Juarez, S.; Bardoux, G.; Abbadie, L.; Chenu, C. Evidence that stable C is as vulnerable to priming effect as is more labile C in soil. Soil Biol. Biochem. 2012, 52, 43–48. [Google Scholar] [CrossRef]
- Chen, R.; Senbayram, M.; Blagodatsky, S.; Myachina, O.; Dittert, K.; Lin, X.; Blagodatskaya, E.; Kuzyakov, Y. Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories. Glob. Chang. Biol. 2014, 20, 2356–2367. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Z.; Zhang, Q.; Hu, N.; Li, Z.; Lou, Y.; Li, Y.; Xue, D.; Chen, Y.; Wu, C.; et al. Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil. Sci. Total Environ. 2018, 624, 1131–1139. [Google Scholar] [CrossRef]
- Liang, B.; Yang, X.; He, X.; Zhou, J. Effects of 17-year fertilization on soil microbial biomass C and N and soluble organic C and N in loessial soil during maize growth. Biol. Fertil. Soils 2011, 47, 121–128. [Google Scholar] [CrossRef]
- Embacher, A.; Zsolnay, A.; Gattinger, A.; Munch, J.C. The dynamics of water extractable organic matter (WEOM) in common arable topsoils: II. Influence of mineral and combined mineral and manure fertilization in a Haplic Chernozem. Geoderma 2008, 148, 63–69. [Google Scholar] [CrossRef]
- Smolander, A.; Kitunen, V. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biol. Biochem. 2002, 34, 651–660. [Google Scholar] [CrossRef]
- Moreau, D.; Bardgett, R.D.; Finlay, R.D.; Jones, D.L.; Philippot, L.J.; Ecology, F. A plant perspective on nitrogen cycling in the rhizosphere. Funct. Ecol. 2019, 33, 540–552. [Google Scholar] [CrossRef] [Green Version]
- Mcknight, D.M.; Bencala, K.E.; Zellweger, G.W.; Aiken, G.R.; Feder, G.L.; Thorn, K.A. Sorption of dissolved organic carbon by hydrous aluminum and iron oxides occurring at the confluence of Deer Creek with the Snake River, Summit County, Colorado. Environ. Sci. Technol. 1992, 26, 1388–1396. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, Q.; Kraus, T.E.C.; Dahlgren, R.A.; Anastasio, C.; Zasoski, R.J. Contribution of amino compounds to dissolved organic nitrogen in forest soils. Biogeochemistry 2002, 61, 173–198. [Google Scholar] [CrossRef]
- Ussiri, D.A.N.; Johnson, C.E. Sorption of Organic carbon fractions by spodosol mineral horizons. Soil Sci. Soc. Am. J. 2004, 68, 253–262. [Google Scholar] [CrossRef]
- Inamdar, S.; Finger, N.; Singh, S.; Mitchell, M.; Levia, D.; Bais, H.; Scott, D.; Mchale, P. Dissolved organic matter (DOM) concentration and quality in a forested mid-Atlantic watershed, USA. Biogeochemistry 2012, 108, 55–76. [Google Scholar] [CrossRef]
- Tye, A.M.; Lapworth, D.J. Characterising changes in fluorescence properties of dissolved organic matter and links to N cycling in agricultural floodplains. Agric. Ecosyst. Environ. 2016, 221, 245–257. [Google Scholar] [CrossRef] [Green Version]
Factor | Level | Label | Material | Treatment kg ha−1 year−1 | Duration |
---|---|---|---|---|---|
Organic amendment | No organic amendment | CK | – | 0 | 2002–2019 |
Straw return at low rate | S1 | Air-dried former wheat straw | 7500 | 2016–2019 | |
Straw return at high rate | S2 | Air-dried former wheat straw | 15,000 | ||
Manure addition at low rate | M1 | Sheep manure | 30,000 | ||
Manure addition at high rate | M2 | Sheep manure | 45,000 | ||
N fertilization | No N | N0 | – | 0 | 2002–2019 |
N applied at low rate | N120 | urea (N: 46.7%) | 120 | ||
N applied at high rate | N240 | urea (N: 46.7%) | 240 |
Source of Variation | df | SOC | WEOC | WEOM Components | Fluorescence Index | ||||
---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | HIX | β:α | ||||
N fertilization | 2 | ns | ns | <0.001 | 0.010 | 0.011 | ns | ns | 0.006 |
Organic amendment | 4 | <0.001 | <0.001 | 0.001 | 0.003 | <0.001 | 0.013 | 0.001 | <0.001 |
N fertilization × organic amendment | 6 | ns | ns | 0.007 | 0.009 | ns | ns | ns | ns |
This Study | Previous Studies | |||
---|---|---|---|---|
Components | Ex/Em (nm) | Component | Description and Source Assignment | References |
C1 | 260/430 | Humic-like | Terrestrial humic-like, UV humic-like, strong visible humic-like, microbially transformed; short excitation wavelengths; expected to consist of low-molecular-weight substances | [42,43,44,45] |
C2 | 270/502 | Humic-like | Long excitation and emission wavelengths; expected to consist of high-molecular-weight, hydrophobic, and terrestrial humic-like substances | [45,46] |
C3 | 250;300/342 | Soluble microbial byproduct-like, tryptophan-like | Tryptophan-like fluorescence; fluorescence peak almost identical to free tryptophan; derived from autochthonous processes; related to terrestrial fluorescent material in forested catchments | [43,46] |
C4 | 225;280/300–350 | Soluble microbial byproduct-like, both tryptophan-like and tyrosine-like | Agriculturally impacted subtropical wetlands | [43,47,48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Ge, Z.-k.; Chai, R.; Li, Y.; Li, Y.-l.; Zhang, Y.-j.; Qu, Z.; Zhao, A.-q.; Tian, X.-h.; Duan, M.; et al. Quantitative and Qualitative Responses of Soil Water-Extractable Organic Matter to Carbon and Nitrogen Management Practices in Loess Soil. Agronomy 2021, 11, 2025. https://doi.org/10.3390/agronomy11102025
Chen Q, Ge Z-k, Chai R, Li Y, Li Y-l, Zhang Y-j, Qu Z, Zhao A-q, Tian X-h, Duan M, et al. Quantitative and Qualitative Responses of Soil Water-Extractable Organic Matter to Carbon and Nitrogen Management Practices in Loess Soil. Agronomy. 2021; 11(10):2025. https://doi.org/10.3390/agronomy11102025
Chicago/Turabian StyleChen, Qin, Zheng-kui Ge, Rong Chai, Yuan Li, Yu-long Li, Yan-jiang Zhang, Zhi Qu, Ai-qing Zhao, Xiao-hong Tian, Min Duan, and et al. 2021. "Quantitative and Qualitative Responses of Soil Water-Extractable Organic Matter to Carbon and Nitrogen Management Practices in Loess Soil" Agronomy 11, no. 10: 2025. https://doi.org/10.3390/agronomy11102025
APA StyleChen, Q., Ge, Z.-k., Chai, R., Li, Y., Li, Y.-l., Zhang, Y.-j., Qu, Z., Zhao, A.-q., Tian, X.-h., Duan, M., & Li, M. (2021). Quantitative and Qualitative Responses of Soil Water-Extractable Organic Matter to Carbon and Nitrogen Management Practices in Loess Soil. Agronomy, 11(10), 2025. https://doi.org/10.3390/agronomy11102025